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Abstract. This paper describes the design, test and validation processes of a dynamic 
identification algorithm aimed at the time-dependent assessment of modern structures 
and heritage buildings for civil and seismic engineering purposes. Full validation of the 
algorithm is performed through analysis of numerically simulated data from an idealized 
masonry tower. Making use of output-only vibration measurements, the non-parametric 
algorithm can generate dynamic features results as time-dependent functions for the complete 
observation period. The algorithm can work in the presence of different dynamic loads 
and non-linear structural behaviours, close spectral frequency components and noise-
contaminated data. Time-dependent structural dynamic parameters that can be computed 
are modal frequencies, modal displacements, modal curvatures, and higher derivatives of 
mode shapes. The proposed algorithm aims to be used as the core estimator of time-
dependent identification methods devoted to the health monitoring of structures and 
infrastructures, being suitable for a multitude of tasks ranging from the simple operational 
modal analysis (in pre and post-event condition) to the complex online assessment of the 
structural response during seismic events for rapid damage identification. 

1 INTRODUCTION 

In order to appropriately plan maintenance and conservation actions in existing structures 
and heritage buildings, the execution of field dynamic testing under operational conditions 
supported by periodic Structural Health Monitoring (SHM) campaigns has become imperative 
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[1,2,3]. Traditional dynamic identification methods used in Operational Modal Analysis 
(OMA) can accurately estimate parameters like modal frequencies, damping ratios and mode 
shapes [4,5,6], but some methods present problems related to the difficulties in identifying 
close-spaced modes or uncertainties when working with noise-contaminated measurements 
[7,8,9]. On the other hand, most methods based on output-only data work with parametric 
eigenvalue decompositions of a weighted data matrix, like the Singular Value Decomposition 
(SVD) of the Power Spectral Density matrix (PSD) – as far as the Frequency Domain 
Decomposition (FDD) methods are concerned [10,11,12] – or the SVD of Hankel matrixes in 
case of Stochastic System Identification methods (SSI) [13,14,15]. Thus, they are restricted to 
the linear-elastic range (no-damage, no-yielding) and are not suitable to identify dynamic 
features in the presence of nonlinearities. Moreover, these methods cannot generate results as 
time-dependent functions since they are limited to the comparative assessment between 
different structural conditions (usually before and after a particular event), thereby being unable 
to provide any information about the actual temporal evolution of dynamic parameters like 
natural frequencies and mode shapes during the damage progress. To effectively upgrade state-
of-the-art dynamic identification techniques for SHM intents, performing dynamic 
identification in the presence of nonlinearities and tracking relevant time-dependent modal 
parameters are essential tasks to accomplish [16,17,18,19]. The development, testing and 
preliminary validation of a non-parametric algorithm suitable for this purpose are hereby 
presented. The proposed algorithm is capable of processing linear (no damage) and nonlinear 
(with damage) data and can properly conduct dynamic identification either with forced 
accelerations measured during seismic events or with random data coming from ambient 
vibration tests. Results are generated as time-dependent functions, allowing to follow the 
evolution of dynamic parameters before, during and after the occurrence of damage. The 
algorithm aims to be used as the core estimator of vibration-based structural health monitoring 
tools in tasks ranging from the simple OMA for pre- and post-event analysis to the complex 
online assessment of the structural response during seismic events for rapid damage 
identification of ordinary as well as strategic structures and infrastructures, including heritage 
buildings. 

2 BRIEF THEORETICAL FRAMEWORK 

2.1 Wavelet Transform 

Mathematically, the Wavelet Transform (WT) or wavelet Time-Frequency Analysis (TFA) 
is an integral transform that represents a signal x(t) in terms of a series of coefficients related to 
convolutions of the signal data with dilated and translated versions of a compactly supported 
wavelet function 𝜓(∙) [20]. The Continuous Wavelet Transform (CWT) is one of the most 
widely high-resolution TFA, and it has been extensively exploited for a variety of purposes 
[21]–[24]. The CWT of a signal x(t) is mathematically defined as: 

𝐶𝑊𝑇{𝑥(𝑡)}   =   |𝑎|
ିଵ

ଶൗ න 𝑥(𝑡) 𝜓 ൬
𝑡 − 𝑏

𝑎
൰ 𝑑𝑡

ஶ

ିஶ

 (1) 

where a indicates the dilatation factor, b the translation factor , and ψ(∙) is the wavelet function.  
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In the discrete version of the WT, namely the Discrete Wavelet Transform (DWT), the 
wavelet function and the dilatation and translation factors are discretized in order to compute 
the wavelet coefficients only on specific time instants and at specific frequency scales. A 
discrete wavelet 𝜓௡,௠(𝑠) is defined as: 

𝜓௡,௠(𝑠) =  𝑎଴
௠/ଶ 𝜓෨( 𝑎଴

ି௠𝑠 − 𝑛𝑏଴) (2) 

in which ൛𝑠: 𝜓௡,௠(𝑠) ≠ 0ൟ is the set that supports the wavelet function, whereas 𝑎 =  𝑎଴
௠ 

{∀ 𝑎 ∈ ℝା ∶ 𝑎 ≠ 0} is the discrete dilatation coefficient, and 𝑏 =  𝑛𝑏଴𝑎଴
௠ {∀ 𝑏 ∈ ℝ}  is the 

discrete translation coefficient. If required, the original sequence 𝑥[𝑛] can be fully 
reconstructed through the following equations: 

𝑥[𝑛] =  ෍〈𝑥, 𝜓௡,௠〉 𝜓෠௡,௠

௡,௠

 (3) 

𝜓෠௡,௠(𝑠) = 𝑎଴
ି௠ ଶ⁄  𝜓∗(𝑎଴

ି௠𝑠 − 𝑛) (4) 

2.2 Discrete Wavelet Transform Decompositions 

Equations (3) and (4) shed light on the idea that DWT represents the discrete signal 𝑥[𝑛] 
through sets of coefficients computed through convolutions of 𝑥[𝑛] with a set of properly 
selected filters. According to the previous, on a discrete wavelet decomposition algorithm a 
new subsequence of data is produced by the convolution of signal 𝑥[𝑛] with a linear low-pass 
filter 𝑔௠[𝑛] as the scale function and a linear high-pass filter ℎ௠[𝑛] as the wavelet function, 
where 𝑚 is the number of the decomposition levels. After convoluting the signal 𝑥[𝑛] with the 
corresponding pair of filters, two subsequences of coefficients are obtained from every 
convolution: the Approximation Coefficients sequence 𝐴௡,ଵ, generated from the convolution 
with low-pass filter 𝑔௡,ଵ[𝑛], and the Details coefficients sequence 𝐷௡,ଵ, generated from the 
convolution with the high-pass filter ℎ௡,ଵ[𝑛]. For every new level of decomposition, the high 
half of the frequency spectrum is discarded, so according to Nyquist-Shannon criteria [25,26] 
the original number of samples will be redundant. Due to this, a decimation of 𝐴௡,ଵ and 𝐷௡,ଵ is 
performed in each level of decomposition, so every subsequence will have half the samples of 
his immediate superior parent sequence. The convolution of the filters impulse responses with 
the signal will apply repeatedly until reaching maximum level, decomposing the signal in the 
form of a cascade serial processing algorithm, where every new 𝐷௡,௠[𝑛] sequence obtained is 
decomposed into a pair of new 𝐴௡,௠ାଵ[𝑛] and 𝐷௡,௠ାଵ[𝑛] subsequences. If an orthogonal mother 
wavelet function is selected, all the generated sub-sequences will be also orthogonal, thus, they 
will keep the energy distribution according to the original data.  

2.3 Maximum Overlap Discrete Wavelet Packet Transform 

In the Maximum Overlap Discrete Wavelet Packet Transform (MODWPT) [27], there is no 
decimation applied to the original data nor any 𝑊௡,௠ subsequence, thus all 𝑊௡,௠ sub-sequences 
will maintain the same number of samples than the original stream of data and there will be no 
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loss of resolution on low frequencies. The original spectrum is sliced into 2௠ discrete frequency 
bands, each one corresponding to a family of packets of mother wavelets and scale functions. 

2.4 Instantaneous frequency through Hilbert transform 

The Hilbert Transform (HT) is defined as the convolution of 𝑥(𝑡) with the function 𝑔(𝑡) =
1 𝜋𝑡⁄  and it is essential for constructing analytic signals. The Analytic Signal (AS) is the 
representation of any signal or data stream as a complex pair where the imaginary part is the 
Hilbert transform of the real-valued signal x(t). By the modulus operation, the Instantaneous 
Amplitude is calculated, and by the time derivative of the analytic signal´s complex angle, the 
Instantaneous Frequency is obtained. The Hilbert spectrum is a graphical representation of the 
instantaneous frequency, the instantaneous amplitude and the time evolution of the signal, 
usually, in the form of a spectrograph of instantaneous frequency vs time with the instantaneous 
amplitude in the colour scale. The Hilbert transform of a discrete Gaussian white noise will 
produce as many different instantaneous frequency values as the number of samples of the 
signal. Due to the previous, broadband signals are not good candidates for Hilbert spectrum 
analysis and it is better to decompose or band filter the raw data before any further analysis or 
process with HT. 

3 METHODS AND MATERIALS 

3.1 Algorithm description 

The Enhanced Modal Identification for Long-Term Integrity Assessment algorithm 
(EMILIA) proposed in this work was designed in two main stages. The first stage relies on the 
MODWPT decomposition to compute Single Degree of Freedom (SDOF) or pseudo-SDOF sub 
sequences from raw Multi Degrees of Freedom (MDOF) structural ambient vibration 
measurements. MODWPT was selected due to the capabilities of the transform to deal with 
highly noise-contaminated data and to properly work in the low-frequency range without losing 
resolution.  Mode shapes are computed from direct integration of the SDOF accelerations 
computed by the wavelet decomposition (this step is not necessary if displacement 
measurements are analysed). In the second stage, the Hilbert Transform is applied to each 
pseudo-SDOF to compute the analytical signals and subsequently obtain the instantaneous 
frequency and instantaneous amplitude functions. As the instantaneous frequency is computed 
through the time derivative of the oscillatory phase, it follows that the instantaneous frequency 
is a time-dependent parameter. Ambient structural vibration measurements have deterministic 
data well-hidden between stochastic data. Due to this, the initial Wavelet decomposition is of 
critical importance to analyse ambient vibrations with Hilbert transform. The capability of this 
integral transform to compute a frequency value for each sample of the analysed signal is used 
as an intent to reduce the influence of uncertainties. A deep analysis of these aspects can be 
found in [28]. Final computations involve statistical analyses. Probability Density Functions 
(PDFs) with a Kernel distribution are computed for each instantaneous frequency function to 
identify the values with higher probabilities and their corresponding damping factors. PDF 
resorts to a supposed probability data distribution to fit the data, where the most commonly 
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used is the parametric Gaussian normal distribution. Such a distribution can be found in most 
measured data with a universe bigger than thirty samples, nevertheless, the previous does not 
apply to the frequency data distribution of an undamped structural mode featuring a resonant 
peak that goes over the maximum value given by a normal distribution, thus the frequency peak 
bandwidth is also narrower. This could lead to overestimations on damping factor values for 
each modal component. To overcome this issue, Kernel distribution was chosen due to the well-
fitting capabilities of assessing data which is highly contaminated with aleatory variables. 
Further information about Kernel distribution can be found in [29]. The schematics for the 
complete algorithm are presented in Figure 1. 

 
Figure 1: Proposed algorithm schematic. 
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3.2 FEM-based validation  

A Finite Element Model (FEM) of an idealized masonry tower was developed in Diana 
FEA® software in order to numerically validate the proposed algorithm. The model was built 
resorting exclusively to volumetric elements. Concerning the morphological aspects, the tower 
features a square plan of 6 m side, with double-leaf masonry walls of 0.6 m thickness, two 
timber floors 10 m and 20 m high, respectively, and a total height of 28 m. Floor slabs are 
directly connected to the timber beams inserted in the masonry wall thickness. The material 
properties adopted for the numerical model are reported in . It is noted that a linear behaviour 
was assumed for all timber elements, whereas nonlinear properties were assigned to the 
masonry material. Particularly, the latter were set based on values retrieved from the literature 
[30].  

Table 1: Material properties adopted for the numerical model. 

Timber Properties  
Linear Properties 
  Young´s modulus 10000 [N/mm2] 
  Poisson's ratio 0.35 
  Mass density 428.28 [kg/m3] 

Masonry Properties  
Linear Properties 
  Young´s modulus 2200 [N/mm2] 
  Poisson's ratio 0.2 
  Mass density 1400 [kg/m3] 
Tensile behaviour 
  Tensile curve Exponential 
  Tensile strength 0.18 [N/mm2] 
  Mode-I tensile fracture energy 10 [N/m] 
  Crack bandwidth specification Rots 
  Residual tensile strength 0.12 [N/m2] 
  Poisson's ratio reduction Damage based 
Compressive behaviour 
  Compression curve Parabolic 
  Compressive strength 3.7 [N/mm2] 
  Compressive fracture energy 5900 [N/m] 

 
Interaction between tower foundations and soil was modelled as a boundary interface 

connection with Coulomb friction with cohesion of 100 kN/m, that was used between the model 
base elements and the ground fixed supports. The FE model counted  a total of 8467 
quadratic/hexagonal elements with quadratic mesh order and linear mid-side point 
interpolation. Elements maximum side length was 0.5 m. A Total-Lagrange geometrical 
formulation and crack-model based on total strain were used. For an initial understanding of 
the tower’s dynamic behaviour, a free vibration eigenvalue analysis was conducted first. This 
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allowed to properly define the acquisition parameters necessary for the subsequent Time-
History Non-Linear analyses (THNL) as well as the number and position of measurement points 
to guarantee a sufficient spatial density of the system’s vibration response under simulated 
ambient noise and real seismic inputs. THNL analyses were performed using the Hilbert-
Hughes-Taylor (HHT) transient time integration with α = -0,1 through the Secant iteration 
method, setting Δt = 0.01 s (see also section 4.1). Requested data outputs were the accelerations 
in X, Y and Z directions. The first THNL analysis was conducted by randomly applying 
Gaussian white noise excitations to different points of the structure. The second THNL analysis 
was performed using the same white noise excitations from first analysis in combination with 
a real earthquake signal applied as base excitation in all three directions. The ground motion 
selected for this purpose was the Loma Prieta earthquake of magnitude Mw = 7.0 that occurred 
on October 18th, 1989 and was recorded at the CGS-CSMIP Station 47381, located on a sewer 
farm around 31.1 km far from the epicentre. Data were sampled at 0.01 s for a total duration of 
39.9 seconds, resulting into 3991 data points. The earthquake featured a PGA equal to 0.5 g and 
a maximum displacement of 0.1 m (Y-axis). From each corner of the tower 15 nodes equally 
spaced in height each 2 m were selected along the four edges of the tower to acquire its nodal 
response in terms of accelerations. All nodal processes collected in X and Y directions were 
then loaded into the core algorithm coded in MATLAB® as well as into ARTeMIS® software 
for output-only modal analysis with traditional estimators. 

4 DISCUSSION OF THE RESULTS  

4.1 Eigenvalue Analysis  

A structural free vibration eigenvalue analysis was initially performed to estimate the modal 
frequencies of the masonry tower in sound condition and to properly identify the modes with 
the highest effective mass participation per axis as well as the nodes with the largest 
displacement per mode. The modal periods, frequencies and deformed shapes of the first six 
vibration modes of the tower are presented in Figure 2 along with the relevant mass 
participation. From the results, it was concluded that the dynamic response of the tower could 
be adequately described by the first six vibration modes since the accumulated participating 
mass in the frequency range 1-12 Hz was about 85% in all three directions (Figure 2). Thus, T 
= 0.09 s and f = 11.14 Hz were considered as the lowest period and as the highest frequency of 
interest for the structure, respectively. Though, as the sixth mode mainly presented vertical 
displacements along the Z direction, only the first five modes were considered for dynamic 
benchmarking between the traditional estimators and the proposed algorithm. Based on the 
highest period of interest estimated from the eigenvalue analysis, a time step of 0.01 seconds 
was considered enough to ensure a good resolution for the subsequent THNL analyses. As 
expected, due to the symmetry of the FE model, the first two vibration modes of the tower are 
very close-spaced, reading frequency values of 1.79 Hz and 1.82 Hz, respectively. Both modes 
present essentially translation components, the first one along the x direction and the second 
one along the y direction, and features more than 60% of effective mass participation each. 
Thus, they were chosen as representative modes for conducting a point-wise assessment of the 
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frequency temporal evolution through time-dependent functions computed via the proposed 
algorithm, using as input data the numerical accelerations of the nodes featuring the highest 
displacements for the modes of interest. 

 
Figure 2: Vibration modes of the tower estimated through the eigenvalue analysis. 

4.2 Time-history analysis with simulated ambient excitations  

Six output-only identification methods available in the commercial software ARTeMIS® were 
selected as traditional estimators for the feature extraction process, three based on the FDD 
algorithm and three on the SSI algorithm. In parallel, EMILIA algorithm was run as a Matlab@ 
application. Seventy-one modes with a modal frequency value below the Nyquist frequency 
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were found through the FE eigenvalue analysis, thus a six-level MODWPT decomposition was 
selected for applying the EMILIA algorithm in order to obtain 64 sub-sequences. The results 
obtained from the different estimators are summarized in Table 2 in terms of modal frequencies 
of the first ten vibration modes of the tower. By comparing these results against those computed 
through the eigenvalue analysis, it is observed that SSI-UPC, SSI-UPCX and EMILIA 
algorithms provide the best results. In particular, EMILIA was capable of identifying most of 
the searched modes with high accuracy, especially as far as the higher modes are concerned, 
which results to be a clear advantage for structural health assessment considering that damage 
is a localized phenomenon that mainly affects high-frequency modes. It is also important to 
highlight that the frequency values extracted from the EMILIA algorithm are just a statistical 
approximation, since the main characteristic of the algorithm lies in its capability of computing 
the dynamic parameters as time-dependent functions. 

Table 2: Results for the modal frequency of the first ten modes computed by all estimators. 

Nº T[s] 
Frequency [Hz] 

Type 
Eigen FDD EFDD CFDD 

SSI 
EMILIA 

UPC PC UPCX 

1 0.56 1.79 --- --- --- 1.78 1.77 1.78  1.81  Trans. 
2 0.55 1.82 2.30 2.26 2.25 1.83 1.83 1.82  1.83  Trans. 
3 0.18 5.61 --- --- --- 5.51 5.52 5.51  5.73  Tors. 
4 0.13 7.43 --- --- --- 7.25 7.25 7.25  7.48  Trans. 
5 0.12 8.04 8.30 8.30 8.30 7.84 7.84 7.84  8.03  Trans. 
6 0.09 11.11 --- --- --- 10.68 --- 10.68 11.09  Norm. 
7 0.071 13.97 --- --- --- --- --- ---  13.50  Tors. 
8 0.069 14.45 14.20 14.22 14.22 14.41 14.40 14.41 14.55  Tors. 
9 0.066 15.08 --- --- --- --- --- --- 14.80 Trans. 
10 0.063 15.70 --- --- --- 15.30 15.32 15.30 ---  Trans. 

4.3 Time-history analysis with simulated ambient and real earthquake excitations  

 (left) shows the Hilbert spectra of the first and second modes of the masonry tower plotted 
as time-dependent functions, allowing to track the evolution of the instantaneous frequency 
through a 21 minutes THNL analysis, comprising ten minutes of initial ambient excitations 
randomly applied to different points of the tower, one minute of earthquake excitation applied 
to the base of the model, and finally ten minutes of additional ambient excitations. Since the 
analysed data presents non-linearities and high transients, a Daubechies 2 wavelet was selected 
for conducting the MODWPT decomposition in other to properly identify the abrupt changes 
in the simulated accelerations. The spectrum corresponding to the first mode (, top-left) clearly 
shows how the content of the time-dependent frequency function suddenly drops down after 
600 seconds (blue continuous line) with the beginning of the earthquake excitation. Further 
analysis, according to the slope of the first-order polynomial data fits (white-striped lines), also 
showed a subtle drop down of the global frequency, allowing to infer the occurrence of 
structural damage in the tower. 



Manuel F. Hormazábal, Maria Giovanna Masciotta and Daniel V. Oliveira 

 10

 
Figure 3: Hilbert spectrum of first (top-left) and second (bottom-left) modes from the idealized masonry tower 
excited with the 1989 “Loma Prieta” earthquake (all values normalized). White-striped lines show a first-order 

polynomial fit, continuous blue, red, and white lines show 60s, 120s and 280s moving averages respectively. On 
the right, a 3D overlapped plot of several mode shapes computed with the EMILIA algorithm. 

A three-dimensional overlapped plot of several mode shapes computed at different time-
steps during the seismic event is also presented in Figure 3, where the black shapes show the 
modal displacements and the red shapes the modal curvatures (other higher derivatives of mode 
shapes can also be assessed as time-dependant functions). The visual comparison of these 
coordinate-dependent parameters at different temporal instants highlights clear changes in 
terms of modal curvatures in the lower half of the tower. Such changes are due to the structural 
damage induced in the tower by the earthquake and provide indications not only about its 
approximate location of the damage, but also about the time of occurrence of the damage.  

5 CONCLUSIONS 

The results obtained from the current research allow to draw the following conclusions: 
- Wavelet data analysis and Hilbert TFA analysis are rock-solid tools for assessing, 

decomposing and processing non-linear structural data; 
- Wavelet discrete decompositions can appropriately separate MIMO vibration 

measurements into time-dependent orthogonal functions; 
- Hilbert transform instantaneous frequency data can be used to assess temporal changes 

on structural modal frequencies; 
- Displacement mode shape time-dependent functions, and their higher derivatives, are 

useful tools for the assessment of the structural modal response evolution for health 
monitoring and damage identification purposes. 
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