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Abstract: Dam safety assessment is typically made by comparison between the outcome of some
predictive model and measured monitoring data. This is done separately for each response variable,
and the results are later interpreted before decision making. In this work, three approaches based on
machine learning classifiers are evaluated for the joint analysis of a set of monitoring variables: multi-
class, two-class and one-class classification. Support vector machines are applied to all prediction
tasks, and random forest is also used for multi-class and two-class. The results show high accuracy
for multi-class classification, although the approach has limitations for practical use. The performance
in two-class classification is strongly dependent on the features of the anomalies to detect and their
similarity to those used for model fitting. The one-class classification model based on support vector
machines showed high prediction accuracy, while avoiding the need for correctly selecting and
modelling the potential anomalies. A criterion for anomaly detection based on model predictions is
defined, which results in a decrease in the misclassification rate. The possibilities and limitations of
all three approaches for practical use are discussed.

Keywords: anomaly detection; machine learning; support vector machines; random forest;
one-class classification

1. Introduction

Dams are an essential element in our way of living, since they provide fundamental
services to our society, including drinking water, irrigation, navigation, flood protection,
and recreation. In addition, they are a decisive element in hydroelectric generation schemes.
According to the International Commission on Large Dams (ICOLD), there are around
60,000 large dams in operation worldwide, 6100 of which are in Europe [1]. Many of them
were built decades ago and are close to, or even exceeded, their service life. This results in
an increasing relevance of predictive maintenance and safety assessment of dams, as was
highlighted in a recent report published by the United Nations University [2]. Similar
figures were also reported in the USA [3].

Dam failures are rare, but safe dam operation requires significant resources for moni-
toring and repair. In this context, the early detection of anomalies allows increasing the
effectiveness of investments in maintenance and, therefore, reduces the cost of operation.

The conventional approach to anomaly detection involves the use of some predictive
model to estimate the dam response under a given combination of loads. Models based on
the finite element method (FEM) can be used for such a purpose, once properly calibrated.
Nonetheless, there is a tendency towards the use of machine-learning (ML) models, which
are solely based on monitoring data [4,5].

In both cases, a set of monitoring devices is typically selected, and the measurements
are compared to the predictions of the model. This is done separately for each response
variable, then results are interpreted together with the knowledge about the dam properties,
past behaviour, and other relevant information. In case some deviation is detected between
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the expected response and the observed behaviour, engineering judgement is employed to
make decisions regarding dam safety. In particular, the comparison shall be interpreted to
identify the probable origin of the observed deviations, which requires an additional effort.

In this work, ML is applied to jointly analyse the records of a set of relevant monitoring
devices and to associate them either to normal operation or to some anomaly scenario. This
approach has two potential benefits:

• Increased efficiency of the overall process: it directly provides an interpretation of the
dam response, without the need for analysing each device separately.

• Reduction of the occurrence of false alerts: deviations of measurements from predic-
tions due to measurement errors in isolated devices are not compatible with serious
anomaly scenarios and therefore would be considered as normal behaviour with
this approach.

In spite of the increasing interest of the community in applying ML methods in
dam safety, the joint analysis has been much less explored. Mata et al. [6] applied linear
discriminant analysis (LDA) to classify a group of observations into two classes: normal
operation and potential failure scenario. They used DEM/FEM to generate the data
corresponding to both situations. In a previous work, we used random forests (RF) as
classifiers to associate a set of records to six potential scenarios (normal and five different
potential anomalies) [7]. Although the results showed the potential of such an approach,
a relevant drawback was also highlighted: anomaly scenarios need to be simulated with
accuracy to generate the training set. This raises doubts on the capability for anomaly
detection when the actual behaviour is not considered among the simulated scenarios.
This relevant issue, specially from a practical viewpoint, is addressed in this work: a
methodology is proposed for detecting unforeseen anomalies, i.e., scenarios which were
not used for training the ML classifier. A similar approach was applied by Fischer et al.
for detecting internal erosion in earth dams and levees, based on experimental laboratory
data [8,9]. We further explore the possibilities of such approach for anomaly detection in
arch dams, with the addition of the following elements:

• A real arch dam in operation is considered as the case study, and the dataset used is
based on the actual recorded monitoring data.

• Realistic anomaly scenarios are analysed, correspondent to crack opening in typical
locations in arch dams.

• Time is considered when analysing the predictions of the model, so that part of the
false negatives are eliminated and the final method is more robust.

• The predictions of the model are further analysed, which provides additional infor-
mation on the reliability of anomaly detection.

The rest of the paper is organised as follows: the methods used are introduced in
Section 2, including the FEM model used for generating the database, the ML algorithms
and their calibration; results are presented and described in Section 3: model calibration,
performance analysis, exploration of errors and evaluation on the validation set. Section 4
includes the conclusions and ideas for future research.

2. Methods

The overall workflow includes the following steps:

1. A thermo-mechanical FEM model of the dam was created and its results compared to
available monitoring data.

2. Transient analyses were run on the FEM model for the scenarios considered: normal
operation and different crack openings.

3. The time series of results of the FEM model in terms of radial and tangential displace-
ments were exported, together with a label correspondent to the scenario from which
they were obtained.

4. ML classifiers were fitted to a fraction of the data available and they were later
evaluated in terms of prediction accuracy on an independent dataset.
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5. In view of the results for the test set, a new criterion for anomaly detection was
defined, based on the model predictions, which was applied to the validation set.

The details of each step are described in the next subsections.

2.1. Case Study

The proposed methodology was applied to a Spanish double curvature arch dam with
a height of 81 m above foundation and 20 cantilevers, with the material properties specified
in Table 1. Five years of monitoring data were considered for this work (corresponding
to the period from March 1999 to March 2004), which included the reservoir level and the
air temperature, as well as the displacements at 28 monitoring stations corresponding to
seven pendulums located as shown in Figure 1.

Table 1. Material properties.

Material Properties Concrete Soil Units

Young Modulus 3 × 1010 4.9 × 1010 Pa
Poisson coefficient 0.2 0.25 [-]

Density 2400 3000 Kg/m3
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Figure 1. Location of pendulums and cracks considered for each scenario. View from downstream.

2.2. FEM Model

For the construction of the 3D model, the designed mesh was formed by linear
tetrahedra of variable size (Figure 2). A portion of the foundation was included in the 3D
model with the conventional dimensions for structural analyses: foundation domain of
two heights of the dam in depth, upstream and downstream directions and more than half
the length of the dam on the left and right sides (Figure 3). The geometry was generated
using a tool developed by the authors [10], which assists in creating the 3D model of arch
dams from the geometrical definition of the arches and cantilevers. The mesh size in the
dam body was chosen to ensure at least three elements along the radial direction, while the
size of the elements of the foundation was increased gradually up to 25 m. This resulted in
a mesh of 33,000 nodes forming 173,000 tetrahedra, generated with the GiD software [11].
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Figure 2. Close view of the dam body and the mesh elements.

Figure 3. Overall view of the computational model for the dam body and foundation.

The final goal of this study is to identify behaviour patterns associated to certain
structural anomalies in arch dams and, in particular, those due to crack openings. After a
literature review, four categories of cracks frequently observed in arch dams were identified
(Table 2). Two anomaly scenarios were defined for each category (Figure 1).

Table 2. Classification according to the type of crack.

Nomenclature Type of Crack

Case 1 (a & b) Vertical crosswise [12–14]
Case 2 (a & b) Horizontal at the base [13,14]
Case 3 (a & b) Parallel to the dam-foundation contact, mid-height [13–15]
Case 4 Perpendicular to the dam-foundation contact, downstream mid-height [13,14]

The cracks are considered in the FEM model by duplicating the faces of the corre-
sponding elements and eliminating the tensile strength. This is basically equivalent to
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using no-tension interface elements. The location and dimensions of the cracks introduced
and the associated scenarios are shown in Figure 1.

Since the temperature field in the dam body influences the deformations of the dam
and depends on the initial temperature considered, we performed a preliminary analysis
to obtain a realistic thermal field to be used as the reference temperature in the body
of the dam. This is a relevant issue, since thermal displacements are computed on the
basis of the difference between these values and the thermal field at each time step of
the simulation [16]. For this purpose, we performed a 12-year transitory analysis with a
fixed value of the initial temperature (8 °C) and a time step of 12 h. The resulting thermal
field at the end of this preliminary calculation was taken as the initial temperature for all
the scenarios considered. A similar approach was used by Santillan et al. [17] and by the
authors in previous studies [18].

A transient analysis was performed for a 5-year period on the Scenario 0 (normal
operation, no crack opening). Since actual records for air temperature and reservoir level
were applied, the results are realistic and can be considered representative of the actual
behaviour of the dam. A one-way coupling between the thermal and the mechanical
problem was applied: the thermal field at the end of the preliminary transient analysis
was taken as reference temperature, i.e., deviations from such a value results in thermal
deformations; the hydrostatic load is applied and the stress and deformation are computed
assuming elastic behaviour; the deformation field is computed as the sum of the thermal
and the mechanical deformations. The numerical implementation was developed by the
authors and described in detail in [16].

The results of this model in terms of radial and tangential displacements at the
location of the monitoring stations (see Figure 1) were extracted and compared to the
actual measurements recorded. Figure 4 shows this comparison for three of the measuring
stations. Results show that the simulated behaviour is representative of the actual evolution
of dam displacements as a function of the variation of the thermal and hydrostatic loads.
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Figure 4. Comparison between the observed radial displacements in stations 12, 16 and 26 and the
results of the numerical model of Scenario 0.

Afterwards, seven FEM simulations were run for the same 5-year period on the
modified models, correspondent to the anomaly scenarios defined. The tile plots in Figure 5
show the magnitude of the difference to Scenario 0: each tile corresponds to a monitoring
variable and a particular scenario. The colour of the tile is a function of the median
difference on the 5-year period between the records of the corresponding device for the
scenario considered and those for Scenario 0, normalized with respect to the range of
variation of the variable. Although this allows for comparison among devices and scenarios,
the denormalized value (Figure 6) is also relevant, since deviations in variables with low
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fluctuation may be of the same order of magnitude of the measuring error, thus hard
to distinguish.

The plots show that Scenario 2a features the greatest deviation from normal operation.
This is due to the nature of the anomaly: a crack opening in the dam heel. The combined
effect of hydrostatic load and low temperatures generates tensile stresses in that area, which
result in high displacements when the crack opens. The deviation from the reference case
is greater for the lower station of the closest pendulum (Rad17), and decays progressively
along such vertical (Rad18 to Rad21). The effect is similar, though lower, for the adjacent
pendulum line (Rad12 to Rad16).

By contrast, the crack simulated in Scenario 2b, located in the downstream toe, has a
minor effect on the records because such an area is compressed most of the time, thus the
crack is closed and the behaviour is similar to the reference case.

The deviations in other scenarios are in general lower, with more impact on the
tangential displacements in relative terms.
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Figure 5. Median difference between anomaly scenarios and Scenario 0 for all tangential (left) and
radial (right) displacements considered. Results are normalized to the range of variation of each
input in Scenario 0.
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Figure 6. Median difference between anomaly scenarios and Scenario 0 for all tangential (left) and
radial (right) displacements considered. Colour scales differ as corresponds to the typical higher
variation of radial displacements.

2.3. Data Preparation

As a result of the numerical calculations, a database is created including 8 scenarios:
normal operation (Scenario 0) and 7 different anomalous behaviours (Scenarios 1a, 1b, 2a,
2b, 3a, 3b and 4). For each scenario, the database includes one record per day, corresponding
to the actual recorded reservoir level and air temperature for the period 18 March 1999–15
March 2004, i.e., 1825 records per scenario.

This database reasonably approximates the dam response to the variation of thermal
and mechanical loads in a realistic situation. However, the numerical model excludes the
measuring errors which exist in actual devices. These errors were considered by adding a
noise with normal distribution N(0, 0.1) to the simulated displacements.

Such data are divided into three subsets as a function of the date: the training set
includes data for the period 18 March 1999–17 March 2002, the test set ranges from 18 March
2002 to 17 March 2003 and the validation set goes from 18 March 2003 to 15 March 2004.

2.4. Classification Tasks
2.4.1. Multi-Class (MC) Classification

The conventional problem of supervised classification requires a training set with a
set of inputs (also called features or predictors) and the corresponding labels. Those data
are supplied to the algorithm, which learns the structure of the data and defines rules for
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assigning some classes to a set of inputs. In our case, the fitted model will be supplied with
a set of monitoring records for a given load combination and will generate a prediction
in terms of the scenario to which it corresponds. More precisely, the model differentiates
between normal operation (Scenario 0) and each of the anomalies (other 7 scenarios).

In practice, ML classification models compute a probability of belonging to each of
the classes defined during training for each set of input values. By default, the predicted
class is that with the highest probability. However, the raw probabilities can be explored to
draw more information regarding model predictions.

The prediction of this model corresponds to one of the 8 classes used for training. This
approach has the advantage of distinguishing among different anomalies, but requires
availability of samples corresponding to all possible situations, which need to be generated
with numerical models. It is not clear if such a model would be useful in case some anomaly
not included in the training set occurs.

2.4.2. Two-Class (TC) Classification

To overcome such limitation, an alternative approach is proposed. Part of the anoma-
lies considered were eliminated from the training set. As a result, models were fitted on a
modified training set, which only includes Scenarios 0, 1a, 2a, 3a and 4. A new label was
created with two classes: 0 for normal operation (former Scenario 0) and 1 for all other
scenarios. To avoid the problem of imbalanced data [19], a random sample of records for
anomalous scenarios was taken, so that this modified training set includes 1825 samples for
class 0 and the same amount of records for class 1 (equally distributed among the original
scenarios 1a, 2a, 3a and 4). The test set included both Scenario 0 and those anomalies not
used for training (Scenarios 1b, 2b and 3b). Again, the class label was modified to include
only two classes (0 and 1), as in the training set. This classification task is more challenging,
since part of the test set corresponds to situations not used for training (Scenarios 1b, 2b
and 3b). However, it is more realistic: anomalies in the test set may represent real scenarios,
i.e., actual behaviour patterns not considered during model training.

2.4.3. One-Class (OC) Classification

The third alternative explored makes use of the ‘One-Class Classification’ approach [20,21].
This technique was developed for problems in which the information available for training
only corresponds to the normal operation. It is therefore applied for novelty detection.
The training set in this case is limited to the samples corresponding to Scenario 0 within
the original training set. The model fitted with this procedure is only capable of predicting
two classes: that used for training and some other (it is thus useless to differentiate among
different types of anomalies). This method was developed for cases in which information
on the response of the system for abnormal operation is not available or is costly or
impossible to obtain. That is the case in dam safety, and that was the limitation of previous
approaches: in the best setting, some anomalies could be simulated, but they do not
necessarily correspond to the behaviour patterns that may occur.

2.5. Algorithms

Machine learning (ML) problems can be classified into two main categories in ac-
cordance to the nature of the target variable: while in regression problems the goal is
predicting the value of some numerical variable, in classification tasks the objective is
assigning some label to a set of input values.

The vast majority of applications of statistical and ML methods to the analysis of
dam monitoring data make use of the regression approach: some model is fitted to the
available monitoring data with the aim of predicting some dam response such as the radial
displacement at a given location within the dam body. Decisions regarding dam safety are
made on the basis of the comparison between the model predictions and the observations.

By contrast, this work is based on classification: we define a set of response patterns,
or classes, associated to the scenarios considered. They are provided to the model together
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with the values of the monitoring variables. The objective of model fitting is identifying
patterns in the input data useful to distinguish between classes. The output of the model is
thus a categorical variable (label).

Many ML algorithms can be applied both to regression and classification tasks,
though their capabilities and performance often vary. In this work, two of the most
popular ML algorithms available for classification were considered as described in the next
sections: random forests (RF) and support vector machines (SVM).

2.5.1. Random Forests (RF)

RFs [22] are known to be appropriate for environments with many highly interrelated
input variables [23]. Although the amount of samples in our database is relatively large,
as compared to the number of inputs, these are highly correlated by nature (they have a
strong association since they are linked in the numerical model).

This same algorithm was previously used in regression problems in different appli-
cations, e.g., to build regression models to predict dam behaviour [24], to interpret the
response of dams to seismic loads [25] and to better understand the behaviour of labyrinth
spillways [26]. Other fields of application in the water sector include dam safety [27], water
quality [28], classification of water bodies [29] or urban flood mapping [30].

A random forest model is a group of classification trees, each of which is fitted on an
altered version (a bootstrap sample) of the training set [31]. Since they were first proposed
by Breiman [22], RFs have been used in multiple fields both for regression and classification
tasks. The main ingredients of the algorithm can be summarized as follows:

• For each tree in the final model (ntree), a bootstrap sample from the training set
is drawn.

• A tree model is fitted to each sample. Instead of all the available inputs, a random
subsample of size mtry is taken for each split.

• The prediction of the forest is taken by averaging the outcomes of all individual trees.
For classification, the label with higher proportion of predictions is taken.

This process includes randomness in two steps (in bootstrap sample generation, and in
taking predictors at each split) with the aim of capturing as many patterns as possible from
the training data.

One of the advantages of RF is the existence of the out-of-bag data (OOB), i.e., the part
of the observations excluded from each bootstrap sample. The prediction accuracy for each
observation can be computed from the trees grown on samples where such observation
was not included. This can be considered as an implicit cross validation, which allows for
obtaining a good estimate of the prediction error without the need to explicitly separate a
subset of the available data.

Extensive application of this algorithm showed high prediction accuracy and ro-
bustness, i.e., the effect of the model parameters is low [31,32]. In addition, the algorithm
performs implicit variable selection while fitting each tree, which simplifies pre-process [33].

As mentioned above, RF classifiers are robust in the sense that the model parameters
typically have low influence on the results. Nonetheless, a calibration process was followed
in this work based on the OOB error: all possible combinations of mtry (4, 6, 8 and 10), ntree
(400, 600, 800 and 1000) and nodesize (1, 3, 5 and 7) were considered to fit RF models, and the
prediction accuracy for the OOB data was assessed. The combination of parameters with
the lowest error was chosen to fit the final RF model. The same procedure was followed for
multi-class and two-class tasks.

2.5.2. Support Vector Machines (SVM)

Although SVM can be applied to regression problems, the algorithm was originally
created for classification [34]. The model fitting process not only aims at increasing clas-
sification accuracy on the training set, but also at maximizing the margin to improve
separation of the classes [35]. This results in greater generalization capability. In addition,
SVM is also among the most appropriate algorithms for one-class classification [20] and
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has already been used for this purpose in the water field [21]. Applications of SVM both for
regression and classification are numerous in different sectors. In hydraulics and hydrology,
examples include pipe failure detection in water distribution networks [36], prediction of
urban water demand [37] rainfall-runoff modelling [38], flood forecasting [39], as well as
reliability analysis [40–42] and dam safety [4,5,8,9,43,44].

SVM make use of a non-linear transformation of the inputs into a high dimensional
space, where a linear function is used for classification. The theoretical fundamentals of
the algorithm are described in many publications (see, for instance [34,35,45]).

Since SVM models are more sensitive to the training parameters than RFs, calibration
is more important than for RFs. Five-fold cross-validation (CV) was applied to the training
set to obtain reliable estimates of prediction error and thus to select the best training
parameters. In this work, we used radial basis kernels, defined as a function of two
parameters: C (cost) and γ. For MC and TC, all possible combinations of C (0.1, 1, 10) and
γ (0.001, 0.01, 0.1) were considered and the best combination from CV was later applied to
fit the final model.

The process is similar for one-class classification (see Section 2.4), with the addition of
the parameter ν, which controls the size of the margin between the class used for training
and the outliers (anomalies in our case) [20]. We considered all possible combinations of γ
(0.01, 0.04, 0.05, 0.06, 0.1), C (0.1, 1, 10) and ν (0.01, 0.025, 0.05, 0.075, 0.1). The results were
evaluated in terms of the BA on a test set including both the anomalous situations in the
training period and all the cases for the test period.

2.6. Measures of Accuracy

Henceforth, anomalies are considered as positive experiments (correctly predicted
cracked cases are thus true positives, TP), while Scenario 0 corresponds to negative ex-
periments (correct predictions for Scenario 0 are true negatives, TN). Consequently, false
positives (FP) will be cases where the model predicted a crack on data from a crack-free
case, and false negatives (FN) those when the model predicted no crack with data from a
cracked case. In this work, the following measures of accuracy were considered:

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

Two error measures were used that take into account both false positives and false
negatives: balanced accuracy (BA) is computed as the mean of sensitivity and specificity.
In turn, the F1 score [46] also considers both, but more relevance is given to the false
positives. This is in accordance to the nature of the phenomenon to be considered: in dam
safety, overseeing an anomaly is more important than predicting a false crack.

F1 =
2 × Precision × Sensitivity

Precision + Sensitivity
(3)

where:
Precision =

TP
TP + FP

(4)

3. Results and Discussion
3.1. Multi-Class Classification
3.1.1. Calibration

Figure 7a shows the median of OOB class error for all combinations of parameters
tested for RF models. It can be observed that the effect of the model parameters on
the results is low. Nonetheless, we took the values from the best combination of those
considered: ntree = 1000, mtry = 4, nodesize = 1. The same result of the calibration process is
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shown for the SVM model also in Figure 7. In this case, the best performance was obtained
with C = 10 and γ = 0.001.
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Figure 7. Results of the calibration process. (a) RF model. The mean of the OOB error for all classes is
plotted as a function of the number of trees (ntree), nodesize and the mtry parameter. (b) SVM model
results for 5-folds cross validation.

3.1.2. Evaluation

Although OOB error is often a good estimate for the generalization error, the RF
model was evaluated using the test set, so that it can be compared to the SVM model.
The confusion matrix is the main result, showing the predictions versus the real values.
Tables 3 and 4 include the results both for the RF and the SVM model, in addition to the F1
and balanced accuracy for each class.

Table 3. Confusion matrix for multi-class classification for the RF model.

Observed Class

0 1a 1b 2a 2b 3a 3b 4 F1 BA

Predicted class

0 350 10 0 0 0 0 0 3 0.962 0.977
1a 5 333 0 0 1 0 0 1 0.945 0.955
1b 1 17 365 0 1 0 0 1 0.973 0.996
2a 0 0 0 365 0 0 0 0 1 1
2b 0 0 0 0 360 0 0 0 0.993 0.993
3a 0 0 0 0 0 365 0 0 1 1
3b 2 4 0 0 2 0 365 0 0.989 0.998
4 7 1 0 0 1 0 0 360 0.981 0.991

Table 4. Confusion matrix for multi-class classification for the SVM model.

Observed Class

0 1a 1b 2a 2b 3a 3b 4 F1 BA

Predicted class

0 364 6 0 0 1 0 0 2 0.986 0.997
1a 0 356 0 0 0 0 0 2 0.985 0.987
1b 1 2 365 0 0 0 0 0 0.996 0.999
2a 0 0 0 365 0 0 0 0 1 1
2b 0 0 0 0 364 0 0 0 0.999 0.999
3a 0 0 0 0 0 365 0 0 1 1
3b 0 0 0 0 0 0 365 0 1 1
4 0 1 0 0 0 0 0 361 0.993 0.994

The results of both algorithms show high accuracy in identifying all scenarios, being
the performance of SVM model slightly better. This confirms the benefits of these techniques
for supervised classification.
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Both models show more accurate results than those obtained in a previous work based
on RF [7], in which different anomalies were considered. This may be due to the calibration
process, more detailed in this case, but also to the nature of the anomalies introduced.
While they affected the mechanical boundary conditions in the former study, more realistic
situations are considered here, representative of crack formation in different areas of the
dam body. The effect of these modifications on the dam response have a more local effect,
easier to identify by ML models.

The high accuracy demonstrates the soundness of the approach and the usefulness of
the algorithms. However, it still has the limitation of the need for identifying and modelling
the anomalies to be detected, which is highly relevant for its practical implementation.

3.2. Two-Class Classification
3.2.1. Calibration

The same process was followed for calibration of both models for the case of two
classes. The result is shown in Figure 8. As before, the combinations of parameters with
best performance for the OOB error (RF) and the 5-folds cross-validation error (SVM) were
later used for evaluation.
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Figure 8. Result of the calibration process for the two-class classification task. (a) RF model.
(b) SVM model.

3.2.2. Evaluation

The evaluation of classification models for this task can be done in the first instance
by means of the confusion matrix, as before. Table 5 shows the result for the RF model,
which featured an F1 of 0.820 and a balanced accuracy of 0.846. In this case, there is a clear
difference between classes. The model is highly accurate for identifying anomalies: the
rate of false positives is 0.3%. This results in a specificity of 0.995. By contrast, the rate of
false negatives is relatively high (48%), and thus sensitivity is lower (0.697).

Table 5. Confusion matrix for the RF model on the test set in the two-class classification problem.

Observed Class

0 1

Predicted class 0 363 332
1 2 763

The features of the training set need to be considered for the analysis of these results.
The problem was posed in an unconventional manner, since samples labelled as anomalies
in the training set (Class 1) are indeed different from those with the same label in the test
set. They are both anomalous and different from Class 0, which corresponds to normal
operation in both the training and the test sets, but they were computed from different
numerical models. In conventional classification problems, classes defined in the training
set are the same as in the evaluation or test sets. When the model is applied to a new set of
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input values, these are classified according to their similarity to each of the classes. In this
case, the test scenarios are in fact different from either of the two classes defined during
training. The model determines which of the two classes is more closely related to the
new input. The relatively high proportion of anomalous cases that the model considers as
normal is therefore explained by the nature of the classification task. This can be further
explored by separating the samples for class 1 into the original scenarios (Table 6). There is
a clear difference among anomalies: accuracies or Scenarios 1b, 2b and 3b are 52%, 67%
and 90%, respectively.

Table 6. Detailed confusion matrix for the RF model and the two-class classification. All anomalous
samples are separated into the original scenarios.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class 0 363 0 176 0 120 0 35 0
1 2 0 189 0 245 0 330 0

This conclusion is confirmed by the results of the SVM model (Table 7). Although the
overall accuracy is again slightly higher than for the RF model (F1 0.822; balanced accuracy
0.847), the same imbalance is observed, with specificity of 0.997 and sensitivity of 0.698.

Table 7. Confusion matrix for the SVM model on the test set in the two-class classification problem.

Observed Class

0 1

Predicted class 0 364 331
1 1 764

The same difference among scenarios is observed for the SVM model (Table 8). While
Scenario 3b is again well identified (98% accuracy), results are poorer for Scenarios 1b and
2b (57% and 54%, respectively).

Table 8. Detailed confusion matrix for the SVM model and the two-class classification. All anomalous
samples are separated into the original scenarios.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class 0 364 0 157 0 168 0 6 0
1 1 0 208 0 197 0 359 0

3.3. One-Class Classification
3.3.1. Calibration

Three different combinations of parameters featured the highest accuracy, one of
which (ν = 0.075, C = 0.1, γ = 0.05) was taken to fit the final model. Figure 9 shows the
results of the calibration process.

3.3.2. Evaluation

The results of the one-class classifier on the test set show similar general figures than
for the two-class models (F1 0.920; BA 0.903), but they are more balanced between ability
to detect normal operation and anomalies. The figures from the confusion matrix (Table 9)
result in a sensitivity of 0.858 and a specificity of 0.948.
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Figure 9. Result of the calibration process for the one-class SVM model with 5-folds cross-validation.

Table 9. Confusion matrix for the SVM model on the test set in the one-class classification problem.

Observed Class

0 1

Predicted class 0 346 364
1 19 2191

Again, these results can be further explored by separating the anomalies into the
original scenarios (Table 10). In this case, all classes are predicted with higher accuracy
(from 75% for Scenario 4 up to 100% for Scenarios 2a and 3a), at the cost of a higher
proportion of false positives, which nonetheless is low (5 %).

Results are better for Scenarios 2a and 3a because their deviation from the reference
pattern (Scenario 0) is higher, as can be observed in Figure 5.

Table 10. Detailed confusion matrix for the one-class model separated by the original scenarios
considered.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class 0 346 96 70 0 48 0 33 117
1 19 269 295 365 317 365 332 248

3.4. Class Probability

The previous analyses are based on the raw predictions of the ML models. In this
section, we discuss the class probability. For example, RF models include a large number
of classification trees, each of which generates a predicted class. The overall prediction
is taken as the majority vote for all trees. The value of the predicted probability can be
explored to draw more detailed information on the behaviour of the system and make
decisions. The prediction of a class with high probability can be expected to be more
reliable than others for which two or more classes feature similar probabilities.

Following this idea, the predicted probabilities of the calibrated models for the test set
were computed for all scenarios. Figure 10 includes the results for all 4 calibrated models
with the classification of the outcome into TN, FN, TP and FP.



Water 2021, 13, 2387 15 of 22

0.25

0.50

0.75

1.00

0 500 1000 1500

0.00

0.25

0.50

0.75

0 1000 2000 3000

sample ID

pr
ob

ab
ili

ty
 S

ce
na

rio
 0 FN

FP
TN
TP

Multi-class RF Multi-class SVM

sample ID

sample ID

pr
ob

ab
ili

ty
 S

ce
na

rio
 0

pr
ob

ab
ili

ty
 S

ce
na

rio
 0

Two-class RF

(a) (b)

(c) (d)

pr
ob

ab
ili

ty
 S

ce
na

rio
 0

sample ID

Two-class SVM

FN
FP
TN
TP

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500

FN
FP
TN
TP

FN
FP
TN
TP

Figure 10. Predicted probability of belonging to Scenario 0. (a) RF multi-class. (b) SVM multi-class.
(c) RF two-class. (d) SVM two-class.

This analysis was made with the aim of exploring the possibility of defining some
practical criterion to improve the results of the raw predictions. This could be the case
for the multi-class RF model: all wrong predictions, both FPs and FNs, correspond to
relatively low probabilities for Scenario 0. In other words, predicted probabilities for TN
are in general high, and those for TP are low in the vast majority of the cases. This may
suggest that an intermediate category of uncertain predictions might be defined including
all cases with predicted probability for Scenario 0 in an intermediate range (e.g., 0.2 to 0.4).
This would eliminate the FPs and FNs, at the cost of converting a proportion of TPs and
TNs into this intermediate category.

The analysis of the plot for multi-class SVM shows the capability of the algorithm to
maximise the margin between categories. Probabilities of Scenario 0 in correct predictions
are close to 1 for TNs and close to 0 for TPs. The criterion mentioned for RFs is not useful
to eliminate the FNs because the few errors feature probabilities above 0.5.

In any case, the main reason for not defining this practical criterion for multi-class
models is that their default accuracy is already very high, in addition to the aforementioned
limitation of the need to identify a priori and accurately model the anomalies to be detected.

As for the two-class models, the plots show that the separation between classes is less
clear. Interestingly, the predicted probabilities of the SVM model for FNs are farther from
the 0.5 limit than for the RF model. Again, there is not a clear benefit in using the predicted
probabilities for practical purposes.

3.5. Time Evolution of Predictions

In previous sections, the model predictions were evaluated separately: both false
positives and false negatives were assessed in terms of the amount of occurrences as com-
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pared to the size of the test set. From a practical viewpoint, the persistence of predictions
is relevant when it comes to make decisions regarding dam safety. Anomalies in dam
behaviour generally occur progressively, starting by a small deviation from normal opera-
tion and increasing in time. In such event, an accurate model would predict anomalous
behaviour with persistence in time. In other words, no major decision will be made from a
single prediction of anomaly if the subsequent sets of records are considered as normal by
the model.

As a result, isolated prediction errors can be considered affordable from a practical
point of view. Since the test set corresponds to realistic evolution of external loads and dam
response over time (one year of actual measurements), draw relevant conclusions can be
drawn from the exploration of the location of errors in time.

This was done for all five models (three prediction tasks and two algorithms). More
precisely, the number of consecutive errors—at least two—were computed (either false
positives or false negatives) and included in Table 11 together with the overall miss-
classifications. The results show a large reduction in miss-classifications in all cases as
the time window grows. It should be noted that for multi-class models, errors between
anomalous scenarios are considered TPs.

Table 11. Number of consecutive errors (both false negatives and false positives) by model and prediction task. All errors
are also shown for comparison.

Task Algorithm All Errors 2 Consecutive Errors 3 Consecutive Errors 4 Consecutive Errors

MC RF 28 (1.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
MC SVM 10 (0.3%) 0 (0.00%) 0 (0.0%) 0 (0.0%)
TC RF 334 (22.9%) 151 (10.3%) 77 (5.27%) 38 (2.60%)
TC SVM 338 (23.2%) 157 (10.8%) 83 (5.68%) 42 (2.88%)
OC SVM 383 (13.1%) 115 (3.9%) 40 (1.37%) 17 (0.58%)

3.6. Practical Criterion

As a result of the previous analysis, a procedure was defined to generate predictions for
its application to the validation set. A homologous process was followed for all alternatives
used (RF and SVM models for multi-class and two-class classification, and SVM model for
one-class):

1. A new model was fitted using a dataset including both the training and the test set,
i.e., for the period 1999–2003. In all cases, the parameters of the model were taken
from the previous calibration.

2. A new classification is generated, based on the results of the previous analyses. The ra-
tionale is that true anomalies in dam behaviour are persistent in time, at least until
some remediation measure is adopted. Hence, model predictions should be stable
over short periods of time. In accordance, shifts in model predictions, from normal
to anomaly or vice versa, are considered with caution and termed as “soft predic-
tions”, whereas stable outcomes are classified as “hard predictions”. Therefore, four
categories are defined as follows:

(a) If the model prediction is Normal and equal to previous prediction, i.e., at
least two consecutive predictions of no-crack, it is classified as “Hard negative”
(HN).

(b) If the model prediction is Normal, but the previous prediction was Anomaly,
it is considered “Soft negative” (SN).

(c) If the model prediction is Anomaly, but the previous prediction was Normal,
it is considered “Soft positive” (SP).

(d) If the model prediction is Anomaly and equals the previous prediction, it is
termed as “Hard positive” (HP).

The evaluation of the results is made on the basis of the errors defined in Table 12.
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Table 12. Definition of hard and soft errors for evaluation of the modified predictions.

Observed

Normal Anomaly

Predicted

HN TN Hard FN
SN TN Soft FN
SP Soft FP TP
HP Hard FP TP

3.7. Validation
3.7.1. Multi-Class Classification

The confusion matrix for the RF model is included in Table 13. It shows 5 hard errors
(all of them HP) out of 2912 cases (0.2%). The proportion of soft predictions is below 5%,
which implies that the model can be useful for practical application.

Table 13. Confusion matrix for the validation set and the RF model. Multi-class classification.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class

HN 332 0 0 0 0 0 0 0
SN 14 1 0 0 0 0 0 5
SP 13 60 3 1 5 1 5 18
HP 5 303 361 363 359 363 359 341

The results for the SVM model are similar, as can be observed in Table 14. As in
previous analysis, the performance is slightly better. In particular, only one hard error is
registered, and the amount of soft predictions is lower (37; 1%).

Table 14. Confusion matrix for the validation set and the SVM model. Multi-class classification.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class

HN 347 0 0 0 0 0 0 0
SN 8 0 0 0 0 0 0 2
SP 8 9 1 1 1 1 1 5
HP 1 355 363 363 363 363 363 357

These results demonstrate the capability of both algorithms for identifying behaviour
patterns. The SVM model consistently outperformed RF in all analyses, though the dif-
ference is small. The calibration effort and required computational time is also similar.
In other settings, SVM may require more detailed calibration and some variable selection.
It shall be remembered that the amount of inputs is relatively high and that all inputs are
highly correlated by their nature. In such a setting, the performance of some classification
algorithms may degrade. This was not expected to affect the RF model, which is known to
perform well even with many correlated variables, but SVM also provided accurate results
without performing variable selection.

The main benefit of this approach is the capability of distinguishing response patterns,
not only between normal and anomalous behaviour, but also among different anomalies.
By contrast, it has the limitation of requiring the identification and modelling of the
expected anomalies. It is thus unclear what the effect of the application of these models
would be in practice when some unforeseen anomaly scenario occurs.
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3.7.2. Two-Class Classification

The confusion matrix for the RF model and the two-class classification task is included
in Table 15. The format of this matrix is unconventional, not only because of the particular
definition of the soft predictions, but also because the anomalous situations, which were
provided to the model as belonging to a unique Class with label 1, are disaggregated here in
accordance with the actual scenario from which they were obtained with the FEM (classes
1a to 4). It should be reminded that the models used for this task were fitted on a training
sample including Scenarios 0, 1a, 2a, 3a and 4, and that the anomalous situations in the
validation set comprise different anomalies (Scenarios 1b, 2b and 3b) in addition to the
normal situation. The prediction task is thus more challenging, but also more realistic,
since unforeseen response patterns can be expected to occur in practice.

It can be seen that no HFP are registered for the RF model and the ad hoc criterion
defined. The amount of HFN is higher due to the difference in nature of Class 1 samples
between the training and the validation set.

Table 15. Confusion matrix for the validation set and the RF model. Two-class classification.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class

HN 359 0 90 0 59 0 1 0
SN 3 0 84 0 86 0 22 0
SP 2 0 85 0 85 0 23 0
HP 0 0 105 0 134 0 318 0

In this case, the results for the SVM model is poorer (Table 16), especially for Scenarios
1b and 2b. This may be the effect of the maximization of the margin between categories
when applied to samples of different nature. In this case, no HFP are obtained and the
amount of soft predictions is 332 (23%).

Table 16. Confusion matrix for the validation set and the SVM model. Two-class classification.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class

HN 359 0 180 0 139 0 1 0
SN 3 0 70 0 85 0 8 0
SP 2 0 71 0 84 0 9 0
HP 0 0 43 0 56 0 346 0

The results of this approach for Scenario 3b suggest that it can be useful to detect
anomalies only in case they resemble the situations considered for training. By contrast,
the model tends to consider as normal those patterns not included in the training data. This
is a similar limitation as that described for the MC model, and confirms the conclusions
drawn in the previous section.

These classification models fitted with data involving some situations and applied
to different anomalies, predict on the basis of the degree of similarity between the new,
observed behaviour and those provided for training. Good performance can be expected in
terms of anomaly detection when the actual pattern is more similar to some of the foreseen
anomalies than to the normal scenario. This is the case of Scenario 3b.

3.7.3. One-Class Classification

The new criterion showed to be useful for OC model. Table 17 shows the confusion
matrix for the validation set. The ratio of HFP is low (0.1%). A higher proportion of HFN is
observed, though still better than for the TC models (3.8%). It should be reminded that the
OC model was fitted using exclusively data from normal operation. This is relevant from a
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practical viewpoint, since this approach avoids the need for identifying and modelling the
anomaly scenarios for model fitting.

Table 17. Confusion matrix for the validation set and the SVM model. One-class classification.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class

HN 329 30 18 0 11 0 5 48
SN 17 66 52 0 37 0 28 69
SP 16 67 53 1 37 1 29 70
HP 3 202 242 364 280 364 303 178

3.7.4. Summary of Validation

The models examined include relevant differences in terms of the information used
for training and evaluation. Those differences need to be considered when comparing
performances. Furthermore, although the anomalous scenarios are initially the same for all
tasks, they are included different ways: as different classes (MC), grouped into one single
anomalous class with different scenarios in training and testing (TC) or plainly grouped
into a global category for all situations different from Scenario 0 (OC).

Keeping these differences in mind, results are summarised and compared in Table 18.
It can be seen that the error rates in this case (adding soft and hard errors) are similar than
those for the test set (Table 11). This confirms that the model accuracy is representative of
the models used and the case study.

The proposed criterion is beneficial for the OC model, in the sense that the majority of
raw miss-classifications are turned into soft errors.

Table 18. Model comparison for the validation set.

RF MC SVM MC RF TC SVM TC SVM OC

# pct # pct # pct # pct # pct

TN 346 11.9% 355 12.2% 362 24.9% 362 24.9% 346 11.9%
Hard FN 0 0.0% 0 0.0% 150 10.3% 320 22.0% 112 3.8%
Soft FN 6 0.2% 2 0.1% 192 13.2% 163 11.2% 252 8.7%
Hard FP 5 0.2% 1 0.0% 0 0.0% 0 0.0% 3 0.1%
Soft FP 13 0.4% 8 0.3% 2 0.1% 2 0.1% 16 0.5%

TP 2542 87.3% 2546 87.4% 750 51.5% 609 41.8% 2191 75.2%
# samples 2912 100% 2912 100% 1456 100% 1456 100% 2912 100%

4. Conclusions

Both RF and SVM showed high prediction accuracy for the multi-class classification
task (miss-classification rate below 0.5%), with SVM slightly better than RF. These models
have the advantage of being capable of distinguishing between anomalies of different kind,
which can be useful when potential failure modes can be well defined and modelled. How-
ever, this need may be a relevant limitation in many settings for their practical application.
Their capability to detect anomalous patterns not considered for model fitting is unclear.

Two-class classification models can only distinguish between two classes—normal and
anomalous behaviour—but they are incapable of differentiating among different anomalies.
This approach is more representative of the practical application, where unforeseen patterns,
not considered for model fitting, may occur. The results for the TC models show their
limitations in real settings. Their capability for identifying anomalies is strongly dependent
on the nature of the actual pattern and its relation to the situations used for model fitting.
While high accuracy was obtained for Scenario 3b, the proportion of miss-classifications
for Scenarios 1b and 2b is too high for considering this approach in practice.
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The one-class classifier based on SVM is fitted exclusively on data for normal operation.
This is the typical situation in many dams which performed correctly for long periods,
and thus the approach can be applied in practice using monitoring data. The results
were better than TC models, and overall suggest that this model can be useful in practice.
Although the accuracy also depends on the properties of the situation to identify, the model
is not biased by the decisions of the modeller regarding which scenario to consider: the
ability for anomaly detection of this model depends on the magnitude of the anomaly,
i.e., serious anomalies can be detected with higher accuracy. The process is simpler because
no anomalous data are required for model fitting: there is no need to create a numerical
model and the probable anomaly scenarios need to be neither defined nor modelled. This
also enlarges the scope of application to any dam typology and response variable, since
some phenomena are difficult to simulate with the FEM. The model can be fitted solely with
monitoring data in dams with long series of high-quality records for a relevant number
of response variables. In general, a FEM model can be created to complement the time
series—e.g., fill periods with missing values.

A practical criterion was defined to classify patterns on the basis of the model outcomes
to differentiate predictions as a function of their consistency over time. This resulted in a
decrease in miss-classification rate for all approaches. Although the overall conclusions
hold for all prediction tasks and algorithms, the utility of the one-class classifier is clearer.
This criterion is specific to the case study considered, and thus should be adapted to other
situations in accordance with the amount of data available, the reading frequency and other
problem-specific properties such as the nature of the potential failure scenario. The work
also showed that the time window applied has a relevant effect on the performance of the
mode. Engineering judgment and knowledge on dam history should be the fundamentals
for setting up a procedure for each specific case.

The main drawback of this approach is that no information is obtained regarding
the kind of anomaly identified: the outcome of the model is limited to the probability of
belonging to the pattern used for model fitting or some other, without further specification.
The combination of this approach with engineering knowledge and some other model—
either a multi-class classifier or a set of regression models—may result in a more complete
pattern identification. The authors are exploring this possibility in an open research line.
This involves the need for analysing each output separately, but its application to a set of
selected variables can be beneficial to take advantage of the benefits of both approaches,
and alleviate their limitations.

Another limitation of these approaches is that high-quality data is needed for model
fitting. In this analysis, training data was generated by a FEM model, which ensured that
the resulting time series are complete and—in principle—of arbitrary length. By contrast,
databases of monitoring data in many dams include periods of missing values, variable
reading frequency and other issues. FEM models can be useful for improving the monitor-
ing data to some extent, but still have limitations for some dam typologies, certain failure
scenarios and determined response variables. The performance of ML classifiers when
fitted with low-quality databases is also the topic of ongoing research.
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