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Abstract. The paper reports on the homogenization based modelling of fluid saturated
poroelastic materials containing locally controlable piezoelectric (PZ) actuators. This
option provides metamaterial properties which enable to convert the electric power into
the fluid transport due to the peristaltic deformation wave induced by the propagating
voltage wave. A quasi-linear PZ-poroelastic material model is proposed to respect de-
pendence of the effective medium parameters on the deformation at the microstructure
(pore) level. Due to the sensitivity analysis of the homogenized coefficient, the two-scale
modelling avoids any need to update the local microconfigurations. Numerical studies
has been performed as the proof of the concept.

1 INTRODUCTION

Electroactive structures equipped with embedded actuators and sensors connected to
electric circuits, which provide a higher level of multi-functionality such as the capability
to harvest energy or to suppress undesired vibrations. In this study we focus on porous
materials with periodic structure involving locally controlable PZ actuators inducing pore
deformation. The homogenization based modelling of PZ composites, or foams has been
reported in the literature over past two decades, see e.g. [1, 2] even in the context of
biological tissues or biomaterials [8, 6]

We consider a fluid-saturated porous medium subjected to deformation waves which
generate peristaltic driven flow. The deformation is actuated by piezoelectric elements
periodically distributed in the structure and controlled locally by electrodes inducing the
electrostatic field. The presented research is aimed to explore functionality of such meta-
material structures by in silico experiments. For this we employ a two-scale modelling

1



Eduard Rohan and Vladimı́r Lukeš

approach based on the homogenization method [3] combined with the sensitivity analy-
sis. We extend the homogenized model of the fluid-saturated piezo-poroelastic medium
equipped with the controlling conductor networks [13] to describe the fluid-structure in-
teraction respecting influence of the deformation of the microconfiguration. The com-
putational model arises from the homogenization of the fluid-saturated porous medium.
To treat the large deformation phenomenon, we follow the Eulerian approach leading
to the updated-Lagrangian incremental formulation in the two-scale setting [10, 7]. In
the context of locally periodic structures, local cell problems are obtained which pro-
vide characteristic responses of the microstructures with respect to macroscopic strains,
fluid pressure and electric potentials. Within the homogenization scheme introduced for
the incremental fluid-structure interaction problem, the macroscopic nonlinearity of the
device is captured using the first order expansions of the homogenized coefficients with
respect to macroscopic variables [12], cf. [9]. For this, the sensitivity analysis approach is
employed. We present examples of microstructures and results of the simulations as the
proof of concept aimed at designing smeared peristaltic pumps in a bulk medium. The
computational tools are intended for subsequent two-scale design optimization [4] of local
microstructures according to objectives of the macroscopic functionality, namely the fluid
pumping.

2 FLUID FLOW IN PIEZO-POROELASTIC MATERIAL

The effective behaviour of such a material can be obtained by homogenization of fluid
flow in deforming piezoelectric scaffolds. We assume the small deformation and linear
material behaviour at the pore level to derive the linear model of the homogenized medium.

2.1 Micromodel at the pore level

We consider a quasi-static loading of a piezoelectric skeleton interacting with a viscous
fluid saturating the pores in the skeleton. The two-phase medium is characterized by
the pore size `ε ≈ ε, where the asymptotic analysis ε → 0 leads to a model of the
homogenized fluid saturated piezo-poroelastic medium which occupies an open bounded
domain Ω ⊂ R3. For a given ε > 0, the following decomposition of Ω into the piezoelectric
matrix, Ωε

m, elastic conductive inclusions, Ωε
∗, and fluid-saturated channel parts, Ωε

f , is
considered:

Ω = Ωε
f ∪ Ωε

m ∪ Ωε
∗ , Ωε

f ∩ Ωε
m ∩ Ωε

∗ = ∅ , where Ωε
∗ =

⋃
k

Ωk,ε
∗ . (1)

By Γε
fs we denote the solid-fluid interface. The interface between the piezoelectric matrix

and the conductors Γε
∗ consists of its subparts Γk,ε

∗ = ∂Ωk,ε
∗ , k = 1, . . . , k∗, k∗ ≥ 2.

We assume that both the matrix Ωε
m and the fluid-filled channels Ωε

f are connected
domains. The conductive material is distributed as a piecewise connected phase for each
index k, such that Ωk,ε

∗ ∩ Ωl,ε
∗ = ∅ when k 6= l. The solid occupies domain Ωm∗ =

Ωε
m ∪ Ωε

∗ ∪ Γε
∗ which is constituted by the piezoelectric matrix and by the conductors.
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In the piezoelectric solid, the Cauchy stress tensor σε and the electric displacement
~Dε = (Dε

i ) depend on the strain tensor e(uε) = (∇uε + (∇uε)T )/2 defined in terms of

the displacement field uε = (uεi ), and on the electric field ~Eε = ∇ϕε defined in terms of
the electric potential, Eε

i = ∂xi ϕ
ε. The following constitutive equations characterize the

piezoelectric solid in Ωε
m,

σε
ij(u

ε, ϕε) = Aε
ijkle

ε
kl(u

ε)− gεkijEε
k(ϕε) ,

Dε
k(uε, ϕε) = gεkije

ε
ij(u

ε) + dεklE
ε
l (ϕε) ,

(2)

where AAε = (Aε
ijkl) is the elasticity fourth-order symmetric positive definite tensor of the

solid, where Aijkl = Aklij = Ajilk, the deformation is coupled with the electric field through
the 3rd order tensor g ε = (gεkij), g

ε
kij = gεkji and d ε = (dεkl) is the permittivity tensor. The

conductive solid in Ωε
∗ is described by its elasticity AAε only, since the permittivity infinitely

large, so that the electric potential is constant ϕε = ϕ̄k in each of the subparts Ωk,ε
∗ . In

the solid, the straightforward equilibrium conditions including those on the PZ-conductor
interface Γε

∗ read

ρsü
ε −∇ · σε = 0 , in Ωε

∗m ,

∇ · ~Dε = 0 , in Ωε
∗ ,

n · [σε] = 0 , on Γε
∗ ,

[uε] = 0 , on Γε
∗ ,

ϕε = ϕ̄k , on Γk,ε
∗ ,

(3)

where ȧ is the time derivative of quantity a and [a] expresses the jump of a on the interface.
We consider flow of an electrically neutral incompressible Newtonian fluid with viscosity
µε, such that the fluid velocity v f,ε and the pressure pε satisfy

µε∇2v f,ε −∇pε − ρf
∂

∂t
v f,ε = 0 , ∇ · v f,ε , in Ωε

f . (4)

The following conditions describe the interaction of the two phases on Γε
fs ,

v f,ε = u̇ε , n · σε
f = n · σε

s , and n · ~Dε = 0 on Γε
fs , (5)

where n is the unit normal w.r.t. surface Γε
fs and σε

f = −pεI + µε∇2v f,ε the stress
tensors. For further treatment by the asymptotic analysis, it is advantageous to substitute
v f,ε = w ε+ ˙̃uε, where ˙̃uε is a continuous extension of the solid velocity to the fluid domain
and w ε is the relative velocity. The boundary conditions are prescribed on the external
boundary ∂extΩm∗.

2.2 Model of the homogenized medium

The porous structure is formed as a periodic lattice generated by the representative unit
cell Y =]−1/2, 1/2[3, such that Ω is constituted by copies of real-size cells Y ε(x̂) = εY + x̂
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centered at the lattice nodes x̂ ∈ Ξε. The decomposition (1) reflects the one of the
representative cell, thus, we have Y = Ym ∪ Y∗ ∪ Yf , whereby Γfs = ∂Ym∗ ∩ ∂Yf and
Γ∗ = ∂Y∗. We consider formulation (3) with given potentials ϕ̄k for each simply connected
domain Ωk,ε

∗ occupied by the perfect conductor and represented by Y k
∗ within the cell Y ,

such that Y∗ =
⋃

k Y
k
∗ , Y k

∗ ∩Y l
∗ = ∅ for k 6= l. As the consequence of the strongly controlled

electric field due to prescribed potentials ϕ̄k,ε = ϕ̄k in Ωk,ε
∗ , a weakly piezoelectric material

is required, such that, for given ḡ and d̄ ,

g ε(x) = εḡ ,
d ε(x) = ε2d̄ ,

}
in Ωε

m . (6)

The elasticity tensor AA(y) is given as a piecewise constant function in the piezoelectric
and conductive parts Ym and Y∗, respectively.

2.3 Local characteristic responses

The microproblems of the PZ-poroelastic medium are expressed using the following
bilinear forms:

am∗Y (u , v) =∼
∫
Ym∪Y∗

[AAey(u)] : ey(v) dVy ,

gmY (u , ψ) =∼
∫
Ym

gkije
y
ij(u)∂ykψ dVy ,

dmY (ϕ, ψ) =∼
∫
Ym

[d∇yϕ] · ∇yψ dVy .

(7)

By H1
#(Y ) we denote the space of Y -periodic functions in the Sobolev space W 1.2(Y ).

To respect the boundary and interface conditions, we employ the following spaces and
function sets,

H1
#0∗(Ym) = {ψ ∈ H1

#(Ym)| ψ = 0 on Γm∗} ,
Uk

#(Ym) = {ψ ∈ H1
#(Ym)| ψ = δki on Γi

m∗ , i = 1, 2, . . . , k∗} ,
H1

#0(Yf ) = {ψ ∈ H1
#(Ym)| ψ = 0 on Γfs} .

(8)

Due to the problem linearity, the scale separation in the limit ε→ 0 enables to express the
local fluctuations of the displacement and electric potential in terms of the characteristic
responses which satisfy the following local problems imposed in the solid part Ym∗.

� Find (ωij, η̂ij) ∈ H1
#(Ym∗)×H1

#0∗(Ym) for any i, j = 1, 2, 3 satisfying

am∗Y

(
ωij + Πij, v

)
− gmY

(
v , η̂ij

)
= 0 , ∀v ∈ H1

#(Ym∗) ,

gmY
(
ωij + Πij, ψ

)
+ dmY

(
η̂ij, ψ

)
= 0 , ∀ψ ∈ H1

#0∗(Ym) ,
(9)

where Πij = (Πij
k ), i, j, k = 1, 2, 3 with its components Πij

k = yjδik.
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� Find (ωP , η̂P ) ∈ H1
#(Ym∗)×H1

#0∗(Ym) satisfying

am∗Y

(
ωP , v

)
− gmY

(
v , η̂P

)
= − ∼

∫
Γfs

v · n [f ] dSy , ∀v ∈ H1
#(Y∗m) ,

gmY
(
ωP , ψ

)
+ dmY

(
η̂P , ψ

)
= 0 , ∀ψ ∈ H1

#0∗(Ym) ,

(10)

� Find (ω̂k, ϕ̂k) ∈ H1
#(Ym∗)× Uk

#(Ym) satisfying, for k = 1, 2, . . . , k∗,

am∗Y

(
ω̂k, v

)
− gmY

(
v , ϕ̂k

)
= 0 , ∀v ∈ H1

#(Y∗m) ,

gmY
(
ω̂k, ψ

)
+ dmY

(
ϕ̂k, ψ

)
= 0 , ∀ψ ∈ H1

#0∗(Ym) .
(11)

In the fluid domain Yf , the characteristic response ŵ k(·, t) ∈ H1
#0(Yf ) and π̂k(·, t) ∈

H1
#(Yf ) satisfies the non-stationary Stokes problem,

ρf

〈
∂

∂t
ŵ k, ψ

〉
Yf

−
〈
π̂k, ∇y ·ψ

〉
Yf

+ µ̄
〈
∇yŵ

k, ∇yψ
〉
Yf

= 〈1, ψk〉Yf
, ∀ψ ∈ H1

#0(Yf ) ,〈
q, ∇y · ŵ k

〉
Yf

= 0 , ∀q ∈ L2(Yf ) ,

(12)

where 〈·, ·〉Yf
denotes the inner product of two (tensorial) functions.

2.4 Macroscopic problem – linear model of quasistatic flow and deformation

The limit macroscopic equations involve the homogenized coefficients expressed in
terms of the characteristic responses,

AH
klij = am∗Y

(
ωij + Πij, ωkl + Πkl

)
+ dmY

(
η̂kl, η̂ij

)
,

BH
ij = am∗Y

(
ωP , Πij

)
− gmY

(
Πij, η̂P

)
+ φδij ,

MH = am∗Y

(
ωP , ωP

)
+ dmY

(
η̂P , η̂P

)
,

Hk
ij = am∗Y

(
ω̂k, Πij

)
− gmY

(
Πij, ϕ̂k

)
,

Zk = − ∼
∫

Γfs

ω̂k · n [c] dSy .

(13)

Due to the non-stationary Stokes problem (12), the hydraulic permeability depends on
time and constitutes the dynamic Darcy law governing the fluid seepage,

KH
ij (t) = − ∼

∫
Yf

d

d t
ŵj

i (t, ·) dVy . (14)

The homogenization procedure leads to a model describing the fluid flow in the de-
forming PZ-poroelastic medium situated in the macroscopic domain Ω ⊂ R3. The model
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Figure 1: Schematic illustration of the PZ-poroelastic medium with locally controlable electric field.

is represented by following system of equations involving the macroscopic fields, the dis-
placements u , the fluid seepage velocity w , and the pore fluid pressure p satisfying

ρ̄ü + ρf ẇ −∇ · σH(u , p) = 0 , in Ω ,

where σH(u , p) = AAHe(u)− pBH +
∑
k

H kϕ̄k ,

BH : e(u̇) +MH ṗ+∇ ·w =
∑
k

Zk ˙̄ϕk ,

where w = −
∫ t

0

KH(t− τ)[∇p(τ, ·) + ρf ü(τ, ·)]dτ ,

(15)

whereby the voltage potentials ϕ̄k(t, x), k = 1, . . . , k∗ are assumed to be known functions
given for t ≥ 0 and x ∈ Ω.

Boundary ∂Ω is decomposed into disjoint parts Γi, i = 0, 1, 2, such that ∂Ω = Γ0 ∪
Γ1 ∪ Γ2. The following boundary conditions can be considered on ∂Ω

p = P̄i on Γi , i = 1, 2 ,

n ·w = 0 on Γ0 ,

u = 0 on Γ1 ,

n · σ = 0 on Γ0 ,

n · σ = −P̄2n on Γ2 .

(16)

Problem formulation Let both the fields (u , p) vanish at t = 0 in Ω. For given P k(t)
functions of t > 0, whereby P k(0) = 0 for k = 1, 2 and given electric actuation by voltages
{ϕ̄k(t, x)}k defined for (t, x) ∈ [0, T ] × Ω, with T > 0, whereby ϕ̄k(0, ·) = 0 in Ω, find a
solution (u , p)(t, x) satisfying (15)-(16).
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To achieve the merits of the peristaltic pumping, we are interested in the fluid transport
of the controlable porous medium. For the BCs (16), the global flow rate at time t is

Q̇(t) =

∫
Γ2

w(t, ·) · n dSy . (17)

3 GEOMETRICAL NONLINEARITY APPROXIMATION

Since the peristaltic flow is driven by the pore deformation, it is crucial to capture the
influence of the deformation on the permeability and other effective model parameters,
though it is derived using the linear kinematics framework. As a compromise between the
linear modelling leading to model (15) and a fully nonlinear treatment, cf. [7], we suggest
to apply the approach proposed in [12] which is based on the shape sensitivity analysis,
cf. [14].

3.1 Deforming microstructure

Due to the characteristic responses computed in (10)-(11), deformed geometry is rep-
resented locally by Ỹ (x) = Y + {umic(x, Y )} for any x ∈ Ω, which enables to introduce
the perturbed microconfiguration M̃(umic(x, ·), Y ). The micro-displacement field which
maps Y 7→ Ỹ (x), see Fig. 2, is constituted by two parts, ū and u1,

umic(x, y) = ū(x, y) + u1(x, y) , ū(x, y) = Πij(y)exij(u(x)) , (18)

where u1(x, y) is expressed in terms of the characteristic responses,

u1(x, y) = ωijexij(u
0)− p0ωP +

∑
k

ω̂kϕ̄k . (19)

Recall that ω, η̂ and ϕ̂ are Y-periodic, representing the displacements in the entire solid
part, Ym∗ = Ym ∪ Y∗.

Y
Y

Figure 2: Illustration of the cell deformation due to the displacements umic.
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3.2 Deformation dependent effective parameters

Using the micro-displacement defined in (18) and (19), the homogenized coefficients
can be computed using the perturbed microconfigurations represented by the deformed
geometry of Ỹ (x), depending on the macroscopic coordinate. Although the microstruc-
ture is perturbed from its periodic structure, the homogenization procedure can still be
applied and the homogenized coefficients denoted by IH(M̃(ũ , Y )), in a generic sense,
can be computed for the perturbed geometry determined by the two-scale field umic(x, y),
y ∈ Ỹ (x). To avoid solving the local problems (10)-(11) redefined in Ỹ (x), we pursue
the treatment reported in [12]. By virtue of the split (19), the perturbed coefficients
IH(M̃(ũ , Y )) ≈ ĨH(e(u), p, {ϕ̄k}) can be approximated using the first order expansion
formulae which have the generic form applicable to each of the homogenized coefficients,

ĨH(e(u), p) = IH0 + δeIH0 : e(u) + δpIH
0p+

∑
k

δϕ,kIH0ϕ̄k ,

(δeH
0)ij :=

(
∂e(δIH0 ◦ ũ)

)
ij

= δIH0 ◦ (ωij + Πij) ,

δpIH
0 := ∂p(δIH

0 ◦ ũ) = δIH0 ◦ (−ωP ) ,

δϕ,kIH0 := ∂ϕ,k(δIH0 ◦ ũ) = δIH0 ◦ ω̂k .

(20)

Above the coefficients IH0 are computed according to (13) for the reference “initial” con-
figuration M(Y ) and δIH0 are sensitivities which are derived using the “design velocity”
field according to the shape sensitivity terminology.

It should be noted, that the potentials {ϕ̄k(x, t)} are considered as the (given) control
functions which, however, influence directly the homogenized model parameters due to

the expansion (19). To summarize, all the coefficients ÃA
H
, B̃

H
, M̃H , H̃

H
, Z̃

H
and K̃

H

involved in problem (15) can be substituted by the linear expansions (20) which enables
to respect the influence of the microstructure geometry associated with the spatial (de-
formed) configuration. Althouth the two-scale problem becomes nonlinear, for a periodic
initial configuration all the characeristic responses and the sensitivities are computed for
the unperturbed cell Y , thus, independently of the macroscopic solutions.

3.3 NUMERICAL ILLUSTRATION OF THE PERISTALTIC FLOW

For illustration of the peristaltic flow generated by the voltage-controlled PZ-poroelastic
material we consider a 3D slab, i.e. an elongated hexahedron, see Fig. 4, its largest di-
mension (aligned with axis x1) is 0.1m. A composite made of an elastic material and a
PZT-5 piezoelectric material, cf. [5], interacts with water in the channels; the microstruc-
ture with two electrodes is depicted in Fig. 3. The boundary conditions are prescribed
according to (16). The electric potential ϕ̄2 = 0, while ϕ̄1 is given as

ϕ̄1(t, x) = Φ̄ cos(α)sgn{cos(α)}, with α = π(x1 + ξ(t))/b and ξ(t) = ct+ b/2 (21)

where c, b, Φ̄ are given constants.
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Figure 3: The periodic microsctructure with two electrodes (left). The representative unit cell Y (right).

Figure 4: Boundary conditions prescribed on ∂Ω, a 2D view of the 3D slab. The fluid can flow through
Γ1 and Γ2 only.

In Fig. 5 we report a few results for an example with P̄1 = P̄2. It can be seen, how
the permeability K̃11 varies in time depending on the strain, pressure and the electric
potential. The difference between the linear model and the non-linear one with the ho-
mogenized coefficient modified according to (20), is remarkable especially for the pressure
distribution.

4 CONCLUSIONS

A model of electroactive porous material has been derived using the homogenization
of the linearized fluid-structure interaction problem. The piezoelectric components of the
skeleton are actuated due to electrodes embedded in the microstructure which enable to
induce electric field fluctuating at the microstructure level. However, in this study, the
peristaltic flow in is achieved due to the piezoelectric effect in response to the propagating
macroscopic electric potential wave. To respect deformation-dependent effective proper-
ties of the homogenized material, the sensitivity analysis approach has been applied. It
leads to a computationally efficient numerical scheme for solving the nonlinear problem.
Numerical results show a significant influence of this nonlinearity when compared to the
fully linear model with fixed homogenized coefficients.

In the further research, we intend to focus on the optimization of the peristaltic flow [4]
by means of the microstructure design and the control. Also the self-contact at the pore
level which would enable to minimize the fluid reflux and thus to enhance the pumping
efficiency presents another challenging issue [11].
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voltage distribution ϕ̄1(t̂, ·) at flux rate at Γ1 in time

pressure p(t̂, ·) strain e11(t̂, ·)

Permeability K̃ij, variation in time. Biot coefficients B̃ij, variation in time.

Figure 5: Results computed by the homogenized model; comparison between the linear model and its
nonlinear modification. t̂ = 0.5s, x1 ∈ [0, 1]. The time records at x1 = 0.1.
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