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Abstract. In this study, a computational fluid–structure interaction (FSI) framework for 
characteristic deformations in insect’s wings is proposed. The proposed framework consists of 
a pixel wing model using a structured shell finite element mesh, a projection method for the 
monolithic FSI monolithic equations using an algebraic splitting, and the FSI dynamic 
similarity law to measure dynamic similarity between model’s and actual insect’s flights. It is 
shown that the proposed framework can directly simulate passive feathering and cambering in 
insect’s wings caused by the FSI, whose magnitudes are very close to those of actual insects. 
 
1 INTRODUCTION 

In insect’s wings, wing membranes are supported by a complicated network of veins. 
Characteristic wing shape changes such as feathering and cambering are observed in many 
species of insects. These changes will be the elastic deformation caused by the inertial and 
aerodynamic forces because of no interior muscle in insects’ wings [1]. Many literatures have 
reported their essential importance for creating insect’s flight abilities [2-5]. However, the 
detailed mechanism of these characteristic deformations is still unclear because of the 
complicated wing’s structure strongly coupled with the surrounding air flow. 

In this study, a computational FSI framework for simulating characteristic deformations in 
insect flapping wings is proposed. The proposed framework consists of a pixel wing model 
using a structured shell finite element mesh [6], a projection method for the FSI monolithic 
equation system using an algebraic splitting [7], and the FSI dynamic similarity law to 
measure dynamic similarity between model’s and actual insect’s flights [8]. It is shown that 
the proposed framework can simulate the passive feathering and cambering caused by the FSI 
directly, whose magnitudes are very close to those of actual insects. 
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2 PIXEL MODELING OF INSECT FLAPPING WING 

2.1 Pixel wing model 

The proposed wing model consists of a structured mesh using shell finite elements as 
shown in Fig. 1. Each element represents a pixel. The complicated network of veins is 
simplified by the leading edge, the center vein, and the root vein pixels based on Ref. [9] that 
represent the functionally distinct domains as the supporting structures. The rest of the pixels 
represents the wing membrane. The different set of the pseudo-elastic material properties is 
given to the pixels in each domain to represent the different mechanical behavior of the 
leading edge, the center vein, the root vein, and the wing membrane. The leading edge 
governs the flexural rigidity of the wing’s span-wise direction Gs. Hence, the Young’s 
modulus of the leading edge is determined such that the flexural rigidity is equal to Gs of an 
actual insect’s wing [10]. The root vein governs the flexural rigidity of the wing’s chord-wise 
direction Gc. Hence, the Young’s modulus of the root vein is determined such that the flexural 
rigidity is equal to Gc of an actual insect’s wing [10]. The Young’s modulus of the center vein 
is determined such that the flexural rigidity is equal to that of a most significant vein in the 
center domain of an actual insect’s wing [11, 12]. The Young’s modulus of the wing 
membrane Em is determined from an actual insect’s cuticle [13]. 

2.2 Modeling of the insect flapping motion 

Fig. 2 shows the schematic of the flapping motion. The wing flaps in the horizontal stroke 
plane with the stroke angle Φ. The flapping motion can be described using the stroke angular 
displacement φ, which is positive for the counter-clockwise direction about the flapping axis. 
The trapezoidal function is used for the time history of dφ/dt based on an observation of 
actual insects [14] as shown in Fig. 3, where Tφ is the flapping period, and the acceleration 
and deceleration time tφ is set to Tφ/8, which is a typical value. This time history is applied to 
the base of the stiff leading edge. The model wing starts to flap in a quiescent fluid, and is 
strongly coupled with the fluid flow to cause feathering and cambering deformations. The 
feathering motion can be described using the feathering angular displacement θ, which is 
positive in the counter-clockwise direction about the torsional axis. The magnitude of the 
camber is defined as the ratio of the wing’s height Ch to the wing’s chord length Cl as shown 
in Fig. 4, and the sign of the camber is positive if the shape of the camber is concave along the 
direction of the flapping translation [15]. 

 

  
Figure 1: Pixel wing model Figure 2: Schematic of the flapping motion 
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Figure 3: Time history of the stroke angular velocity Figure 4: Definition of the camber 

3 FLUID-STRUCTURE INTERACTION ANALYSIS OF THE WING MODEL 

3.1 Governing equations 

The equilibrium equation for the elastic body can describe the deformable wing as follows: 
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where d/dt is the Lagrangian time derivative, the superscript s stands for a structural quantity, 
ρ is the mass density, vi is the ith component of the velocity vector, σij is the ijth component of 
the Cauchy stress tensor. 

The incompressible Navier-Stokes equations can describe the fluid surrounding the wing 
using the arbitrary Lagrangian–Eulerian (ALE) method as follows: 
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where /t is the ALE time derivative, the superscript f stands for a fluidic quantity, and vm

i is 
the ith component of the velocity vector of the ALE coordinate. 

The following conditions are satisfied on the interface between the wing and the fluid: 
 

f s
i iv v , f f s s 0ij j ij jn n   ,     (3a, b) 

 
where nf

i and ns
i are the ith components of the outward unit normal vectors on the fluid-

structure interface corresponding to the fluid and the structure, respectively.  

3.2 Projection method for the monolithic fluid-structure interaction system 

Eqs. (1) and (2) were discretized using the finite element method, and combined using the 
interface conditions (3) to obtain a monolithic equation system for the FSI as follows: 
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where M, C, and G are the mass, diffusive, and divergence operator matrices, respectively, 
and N, q, g, a, v, u, and p are the convective term, elastic internal force, external force, 
acceleration, velocity, displacement, and pressure vectors, respectively. The subscript L 
represents the lumping, and the superscript  indicates the transpose. 

The monolithic method solves Eqs. (4a) and (4b) simultaneously, and it can satisfy the 
interface conditions (3) implicitly. Hence, it can avoid spurious numerical power on the 
interface, which yields numerical instability. However, this formulation leads to an ill-
conditioned system of equations. Therefore, a projection method using algebraic splitting was 
used to avoid this difficulty [7]. The monolithic equations system (4) was linearized and split 
into equilibrium equations and a pressure Poisson equation as follows: 

 
* ˆ  M a g ,       (5) 

1
L ˆt      G M G p Gv ,     (6) 

*    M a G p g ,       (7) 

 
where â  is the intermediate acceleration, v̂  is the intermediate velocity, M* is the generalized 
mass matrix, which consists of the lumped mass and tangential stiffness matrices, Δ and t are 
the variable increment and time, respectively, and Δg is the residual vector of (4a). Note that 
the relationships among the state variables based on the Newmark’s method are used in these 
equations. In the nonlinear iteration of each time step, first, the equilibrium equation (5) is 
solved to derive the intermediate velocity field v̂ , then the pressure Poisson equation (6) is 
solved to derive the current pressure field p such that the current velocity field satisfies the 
incompressibility constraint (4b), and, finally, the equilibrium equation (7) is solved to derive 
the current velocity field v.  

4 NUERICAL EXAMPLE 

4.1 Problem setup 

Fig. 5 shows the finite element meshes of the surrounding fluid domain. The wing is 
modeled using mixed interpolation of tensorial components shell elements [16] (number of 
nodes: 1,191; number of elements: 1,104), while the fluid domain is modeled using stabilized 
linear equal-order-interpolation velocity-pressure elements (number of nodes: 276,138; 
number of elements: 1,578,960). The wing’s geometric parameters, the material properties of 
the wing’s membrane, and the kinematic parameters of the flapping motion are given based 
on the data obtained from the actual insects [11, 12, 14, 17, 18]. The parameters used in this 
study are summarized as follows: The wing span length Rw = 0.0113m, the wing chord length 
cw = 0.00311 m, the wing’s thickness t = 2.0 μm (constant throughout the entire wing), the 
Young’s modulus of wing membrane = 7.0 GPa, the flexural rigidity of along the wing’s 
span-wise direction Gs = 4.0 μNm2, the flexural rigidity of along the wing’s chord-wise 
direction Gc = 0.35 μNm2, the flexural rigidity of the most significant center vein = 0.26 
nNm2, Em = 7.0 GPa, Poisson’s ratio ν = 0.49,   = 71°, the flapping frequency f (= 1/T) = 
148 Hz, the fluid mass density f = 1.205 kg/m3, the fluid viscosity f = 1.82210-5 Pa s, the 
time increment t = T/150000.  is corrected to satisfy the dynamic similarity law for fluid-
structure interaction [8]. 



M. Onishi and D. Ishihara. 

 5

(a)  (b)  

Figure 5: Finite element mesh of the surrounding fluid. (a) the bird eye view, and (b) the yz plane view. 

4.2 Results and discussion 

Fig. 6 shows the time history of the feathering angle . The normalized position is defined 
as r/Rw, where r is the distance from the wing base. As shown in this figure, the feathering 
motion is adequately caused by the FSI. The magnitude of  in the case of r/Rw = 1.0 is larger 
than that in the case of r/Rw = 0.5. This is because the wing’s flapping speed at r/Rw = 1.0 
larger than that at r/Rw = 0.5 leads to the dynamic pressure acting on the wing at r/Rw = 1.0 
larger than that at r/Rw = 0.5. The maximum  in the case of r/Rw = 1.0 is 36, which is close 
to the actual observations in insects [14]. It follows from these results that the proposed 
framework can simulate the passive feathering motion directly. 

Fig. 7 shows the deformation of the wing model at 0.25 cycle. As shown in this figure, the 
cambering motion is adequately caused by the FSI. The maximum camber is 6.1%. This result 
is close to the actual observation in insects [15]. It follows from these results that the 
proposed framework can simulate the passive cambering motion directly.  

 

  
Figure 6: Time history of the feathering angle. Figure 7:  Deformation of the wing model at 0.25 cycle. 

5 CONCLUDING REMARKS 

In this study, a computational FSI framework for the characteristic deformations in insect 
flapping wings was proposed. The passive feathering and cambering simulated by the 
proposed framework were close to those observed in actual insects. Therefore, the proposed 
framework can simulate the characteristic deformations of insect’s flapping wings directly. As 
long as we know, this is the first study that directly simulates both the feathering and 
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cambering of the flapping wing caused by the FSI, which are close to the actual observations 
in insects. Therefore, the proposed framework will contribute to revealing passive 
mechanisms in insect’s flapping wings. 
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