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Abstract. In aerospace industry, the computations of liquid-propelled launchers vibra-
tions are based on linear elastic tanks coupled with an inviscid, incompressible fluid with
free surface. In this specific case, the fluctuation of pressure on the free surface is supposed
to be zero (i.e. the sloshing effects are neglected). Those vibrations are usually called
hydroelastic vibrations. The discretized finite element dynamic problem is commonly
expressed only in terms of displacements considering an added mass matrix, which repre-
sents the kinetic energy of the moving liquid expressed in terms of normal displacement
interface. Those computations can be performed for various fluid level configurations,
but no prestressing from geometrical nonlinearity is usually considered [1]. In the present
study, the evaluation of the prestressed state influence on the coupled fluid structure vi-
brations is estimated numerically. This prestressing is supposed to be due to a gas or
liquid pressurization, acting on the internal surface of the tank, inducing relatively large
static displacement compared to the tank thickness. In reference [2], we have evaluated
efficiently and accurately the nonlinear displacements for various filling rate with the use
of an original level-set approach. We present here the hydroelastic vibrations around each
known prestressed state corresponding to different level of liquid with the use of the added
mass matrix. Using the open-source computing finite element platform FEniCS [3], nu-
merical results are in very good agreements with experimental studies from the literature
[4]. Comparisons with and without prestressing illustrates the contribution of the effect.
To overcome an expensive added mass matrix computation, an appropriate reduced order
model obtained by projection on prestressed dry modes is also proposed and show very
encouraging results.
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1 INTRODUCTION

The subject consists in computing the fluid-structure dynamic behavior of prestressed
elastic tanks containing a free surface liquid. An original expression of a reduced eigen-
value problem involving: (i) a reduced tangent matrix and (ii) a reduced added mass
matrix, allow a fast computation of the eigenfrequencies for each level of liquid height.
The problem is presented in two steps (see Fig. 5). First, nonlinear static problems
with geometrical nonlinearities and follower forces are solved with the finite-element (FE)
method. Then a linearized dynamic problem is proposed and solved considering the
projection-based reduced order model.

Figure 1: Prestressed hydroelasticity in two steps : (a) nonlinear elastic static analysis
with hydrostatic follower forces driven by the fluid height H and (b) hydroelastic vibra-
tions around a prestressed state.

2 Nonlinear static problem with hydrostatic follower forces

2.1 Assumptions in the solid domain

The structural reference domain, denoted as Ωs, is supposed to be homogeneous and
isotropic. Considering a mechanical solicitation (i.e. a hydrostatic follower forces in this
case), the problem consists in finding the resulting structural displacement field us at
equilibrium considering a given fluid height. The index “s” is a notation attributed to the
static displacement solution of a nonlinear problem with geometric nonlinearities.
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2.2 Preliminary definitions of nonlinear elasticity

We recall the definition of the Green-Lagrange strain tensor and its virtual form:

E(us) =
1

2
(GradTus + Gradus + GradTus Gradus) (1)

δE(us, δu) =
1

2
(GradTδu + Gradδu + GradTδuGradus + GradTus Gradδu) (2)

where the gradient operator Grad is given in the reference configuration of the structure
Ωs and δu is a virtual displacement function. In the following, the second Piola-Kirchhoff
stress tensor S is supposed to be obtained considering a linear Saint-Venant Kirchhoff
(SVK) constitutive law, suitable for large displacements and small deformations, defined
by:

S(us) = D : E(us) (3)

Here, D is the fourth order tensor of elasticity.

2.3 Virtual works with follower forces and SVK constitutive equation

The problem consists in finding us ∈ Cu, with Cu is a subspace of kinematic admissible
smooth functions, such that:

δWint(us, δu)− δWext(us, δu) = 0, ∀ δu ∈ Cu (4)

where the virtual internal and external works respectively denoted by δWint and δWext

are expressed on the reference configuration:

δWint(us, δu) =

∫
Ωs

S(us) : δE(us, δu) dΩ (5)

δWext(us, δu) =

∫
Σ

−ph(us)J(us)F
−T(us)n · δu dS (6)

where Σ is the fluid structure interface given on the reference configuration. On the above
equation F (us) = I + Gradus is for the deformation gradient, J(us) = detF (us) is the
Jacobian and n is the unit external normal on the reference configuration. Due to the
follower forces, the virtual external work depends on the static solution us.

3 Structural dynamic fluctuations around a known prestressed state

3.1 Assumption of small fluctuations

We consider the solution utot as a sum of a static known static solution us and a dy-
namic solution ud. The dynamic solution is supposed to be small compared to a character-
istic length of the structure lc, for example the thickness of the tank (i.e. || ud || /lc << 1).
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The total pressure ptot is also decomposed as a known hydrostatic pressure ph and a fluc-
tuation of pressure pd:

utot(H, t) = us(H) + ud(t) (7)

ptot(H, t) = ph(us, H) + pd(t) (8)

3.2 Virtual work principle

The problem consists in finding the dynamic displacement and pressure (ud, pd) ∈
Cu × Cp such that:

δWacc(utot, δu) + δWint(utot, δu)− δWext(utot, δu) = 0, ∀ δu ∈ Cu (9)

where the virtual inertia, internal and external works respectively denoted by δWacc, δWint

and δWext are expressed as:

δWacc(utot, δu) =

∫
Ωs

ρsütot · δu dΩ (10)

δWint(utot, δu) =

∫
Ωs

S(utot) : δE(utot, δu) dΩ (11)

δWext(utot, δu) =

∫
Σ

−ph(us)J(us)F
−T(us)n · δudS︸ ︷︷ ︸

static part

+

∫
Σ

−pdJ(utot)F
−T(utot)n dS︸ ︷︷ ︸

fluid-structure coupling part

+

∫
Γt

fd · δu dS︸ ︷︷ ︸
dynamic external load part

(12)

where δu represents only an element of the regular space of admissible function. In the
dynamic external load part, fd is a external known surface load, expressed on a surface
Γt, responsible for the dynamic fluctuation of the system. The external work is separated
into a static part, obtained under the assumption of a plane free-surface of the liquid, and
two dynamic parts.

3.3 Linearized structural dynamic problem around a prestressed state

The linearized problem consists in expressing the virtual work principle considering an
assumption on a small variation of displacement around a known static nonlinear state.
All the terms in the virtual work principle Eq. (9) are expressed considering a truncation
as follow:

δWacc(utot, δu) = 0 +m(üd, δu) (13)

δWint(utot, δu) ' δWint(us, δu) + km(us;ud, δu) + kg(us;ud, δu) (14)

δWext(utot, δu) ' δWext(us, δu) + c(us; pd, δu) + f(δu) (15)
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the semi column is a notation to separated what is known (left) from the linear solution
and the associated virtual fields. In Eq. (14), kg and km are respectively the geometrical
and material stiffnesses (not detailed here for sake of brevity). In Eqs. (13) and (15), the
inertia is denoted by m, the coupling c and the linear external load f are given by:

m(üd, δu) =

∫
Ωs

ρsüd · δu dΩ (16)

c(us; pd, δu) =

∫
Σ

−pdJ(us)F
−T(us) n · δu dS (17)

f(δu) =

∫
Γt

fd · δu dS (18)

All terms with an index “d” are associated to the linearized dynamical problem. The
dynamical problem consists in finding (ud, pd) ∈ Cu × Cp, knowing the static nonlinear
solution us, such that:

ktan(us;ud, δu)︸ ︷︷ ︸
stiffness

+m(üd, δu)︸ ︷︷ ︸
inertia

+ c(us; pd, δu)︸ ︷︷ ︸
coupling

= f(δu)︸ ︷︷ ︸
external load

, ∀δu ∈ Cu (19)

where the tangent stiffness ktan is the sum of the geometrical and the material tangent
stiffness defined around a known static solution us.

4 Modal analysis and FE discretization

4.1 Linearized harmonic dry problem

The established harmonic dynamical dry problem around a prestressed state is ex-
pressed as follow:

ktan(us;ud, δu)− ω2m(üd, δu) = f(δu), ∀ δu ∈ Cu (20)

The finite element discretization leads to the following matrix problem:

[Ktan − ω2M]ud = f (21)

where Ktan is the tangent stiffness matrix, M is the structural mass matrix, fd is an
external load vector and ud is the nodal fluctuation of displacement unknown vector. The
following eigenvalue problem is then considered:

[Ktan − ω2M]u = 0 (22)

In the following, the matrices properties are supposed to be verified to obtain eigenvectors
and eigenvalues {uα, ω2

α}α=1...m from Eq. (22) where ωα are positives. In the following
the Greek-letter indices correspond to the reduced coordinates. An approximation of the
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displacement fluctuation ud is expressed as a linear combinations of the m first eigenmodes
such that:

ud '
nd∑
α=1

qαuα = Ψq with Ψ =


...

...
u1 . . . um
...

...


ns×m

(23)

where ns is the number of degrees of freedom on the structure, the qα are the generalized
coordinates and q the associated unknown vector. Ψ is the matrix containing the pre-
stressed modal basis, with a mass normalization such that uT

αMuα = 1. The projection
of the linearized problem Eq. (20) leads to the following reduced problem:

[Kr − ω2Mr]q = fr (24)

with:
Kr = ΨTKtanΨ and Mr = ΨTMΨ and fr = ΨTfd (25)

with the following properties:

uT
αKtanuβ = ω2

αδαβ and uT
αMuβ = δαβ (26)

where δαβ is the Kronecker symbol. Thus, the two reduced matrices are diagonals.

5 Equations in the internal fluid

5.1 Assumption on the fluid domain

The fluid is supposed to be inviscid, incompressible without gravity effect (which means
pd = 0 on the free surface). The surface tension is not taken into account either. The
current fluid domain Ωcur

f depend on the fluid height H and the static displacement u(H)
at the fluid structure interface Σ on a current configuration. For sake of convenience,
the reference fluid-structure interface does not change in function of the fluid height. In
addition, the displacement of the fluid-structure interface is supposed to be small so the
effect of us on the fluid domain is neglected. In the following, only the fluid height is
supposed to have an effect on the fluid domain such that:

Ωcur
f (H) ' Ωref

f (H) ≡ Ωf (27)

where Ωref
f (H) is one reference configuration of the fluid domain.

5.2 Harmonic fluctuation of pressure as a finite sum of induced potentials

The fluctuation of pressure problem on the fluid consists in finding (pd,ud) ∈ Cp × Cu
such that :

h(pd, δp) + ρf c(us; δp, üd) = 0, ∀ δp ∈ Cp (28)
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where ρf is the mass dentity of the fluid, h is a bi-linear form such that:

h(pd, δp) =

∫
Ωf

Grad pd ·Grad δp dΩ (29)

Then, we consider the dynamic pressure as a linear combination of potential, such that:

pd ' −ρf ω
2

nd∑
α=1

qαϕα (30)

where the potential ϕα corresponds to the potential of displacement to a given eigenmode
uα regarding the following set of equations:

4ϕα = 0 in Ωf (31)

Gradϕα · J(us)F
−T(us)n = uα · J(us)F

−T(us)n on Σ (32)

ϕα = 0 on Γ (33)

Considering a variational formulation and a finite element discretization, the computation
of the potential of displacement are obtain considering the following linear system of
equation:

Hϕα = −CTuα (34)

where H is the finite element operator of the symmetric pressure gradient, C is the cou-
pling matrix at the fluid-structure interface and ϕα the induced potential of displacement
nodal vector.

6 Reduced hydroelastic eigenvalue problem with prestressing

Considering the prestressed based Ψ and the associated fluid responses concatenated
in a matrix Φ, one can express the following reduced eigenproblem from the coupling
term Eq. (22):

[Kr − ω2(Mr + Mra)]q = 0 (35)

where the reduced added mass matrix is given by the following expression:

Mra = −ρfΨ
TCΦ with Φ =


...

...
ϕ1 . . . ϕm
...

...


nf×m

(36)

where nf is the number of degrees of freedom in the fluid. The reduced eigenvalue problem
(35) leads to the computation of the reduced eigenvectors and the hydroelastic eigenvalues
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{
qγ, ω

2
γ

}
γ=1...nd

where ωγ are the hydroelastic pulsation of the prestressed problem. The

advantage of this approach relies on the computation of the reduced added mass matrix
Mra which depends on Φ such that:

Φ = H−1CTΨ (37)

No explicit inverse of the operator H is computed (with respect to the boundary condition
on the free surface) considering the m linear systems of equations from Eq. (34). It can
be highlighted that Mra is a symmetric matrix, but not diagonal.

7 Example : circular plate under a column of water

The numerical problem presented in this section is based on an experimental study [4].
The problem consists in evaluating the prestressed hydroelastic pulsations of a clamped
circular plate under a column of incompressible liquid (see Fig 2). It is a problem param-
eterized by the fluid height H. All the numerical results are generated with the FEniCS
package [3].

Figure 2: Prestressed vibrations of a circular plate under a column of liquid. (a) Nonlinear
static analysis considering a hydrostatic follower force and (b) linearized hydroelastic
vibrations around prestressed state. For each fluid height increment, a new fluid mesh,
coincident with the solid mesh at the interface is generated.
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7.1 Nonlinear static analysis with hydrostatic follower forces

The nonlinear static problem is illustrated in Fig. 3. A three dimensional circular
clamped plate is subject to a hydrostatic follower forces driven by the fluid height.

Figure 3: Definition of the nonlinear static problem with an hydrostatic follower forces.
The fluid pressure is defined as ph(H) = −ρg(z −H) with ρf = 1× 103 kg/m−3, g = 9.81
m.s−2 and H ∈ [0, 250] mm. The plate geometrical parameters are R = 0.144 m and
t = 0.35 mm. The material parameters are the Young modulus E = 6.9 × 107, the
Poisson ratio ν = 0.38 and the mass density ρs = 1.4× 103 kg/m−3.

In Fig. 4 the evolution the displacement on specific points shows a nonlinear evolution
of the solution in function of the fluid height.
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Figure 4: Evolution of transversal displacement uz (left) at the center of the plate xc =
(0.0, 0.0, 0.0) and evolution of the radial displacement ux (right) at xr = (R/2, 0.0, 0.0),
considering 200 uniformed fluid height steps with ∆h = 1.25 mm.

Those results have been obtained considering a structural mesh with three dimensional
quadratic tetrahedron.
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7.2 Reduced prestressed hydroelastic modal analysis and fluid response

Knowing the nonlinear static solution, the hydroelastic modes are computed as illus-
trated in Fig. 5. A fluid mesh have been generated for each known structural configura-
tions.

Figure 5: Methodology in two steps : (i) nonlinear static analysis and (ii) linearized
hydroelastic vibrations around the prestressed state.

At each fluid height, a modal prestressed structural basis is generated. In Fig. 6, the
linear modal basis without prestressing is illustrated to caracterize them. In our case, for
each fluid heigh step, the first 20 modes are considered for the simulation (but only 6 are
presented for sake of clarity).

Figure 6: Mode characterization in terms of circumferential waves n and radial waves m
and associated symbols for H = 0.

Knowing the structural prestressed basis, the potential of displacements associated
with each structural modes are computed with a linear system of equation. In Fig. 7
an example of fluid response is given for various liquid height. The reduced added mass
matrix is finally expressed knowing the prestressed structural basis and the associated
potential of displacement fluid responses.
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Figure 7: Fluid potential of displacement ϕ1(H) obtained as a response of the prestressed
structural mode mode (0, 1) for various fluid height.

7.3 Numerical analysis : three numerical test cases

Three test cases are analyzed here. The first one consists in evaluating only the pre-
stressed effect on the eigenfrequencies of the plate (see Fig. 8 (a)). The second one
consists in evaluating only the effect of the fluctuated fluid without prestressing (see Fig.
8 (b)). The last case take into account both effects (see in Fig. 8 (c)) and show very good
agreement with the experimental results given in [4].

Figure 8: Evolution of 6 eigenfrequencies for varying fluid height : (a) linearized pre-
stressed analysis only; (b) added mass effect only (c) prestressing and added mass effect.
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It is worth to mentioned that only the third case results are in agreement with the
results observed experimentally. The first two cases are manufactured simulations which
allow to isolate physical effects from the model. In this specific configuration, the curve
from Fig. 8 (a) show an increasing evolution of the given resonance frequencies in function
of the fluid height. For this geometry, the pressure acting on the plate have a stiffening
effect on system. On the other hand, the curve on Fig. 8 (b) shows a decrease of the
hydroelastic frequencies in function of the fluid height. Indeed, it is due to the influence of
the kinetic energy of the fluid displaced on the structural dynamic behavior. It is observed
that for the modes (1, 1) and (2, 1), the eigenfrequencies curves reach a plateau in function
of H. For those modes, it seems that the fluid potential of displacement fluctuations
remains near the fluid structure interface. Finally, the last case shows a decreasing and
then an increasing evolution of the natural hydroelastic frequencies (except for the mode
(0, 0) which have an opposite behavior). This is in very good agreement with the the
observations from the literature which validate the model developed for the computation
of prestressed hydroelastic vibrations.

8 Conclusion and perspectives

In this paper, a projection-based reduced order model for prestressed hydroelastic vi-
brations have been presented. First the linearized dynamic fluid-structure interaction
problem around a prestressed state have been developed. Then, a projection of the prob-
lem on an associated prestressed modal basis lead to the expression of the problem in
terms of generalized coordinates. The computation of a reduced tangent and added mass
matrix allow a fast computation of the firt eigenfrequencies of the prestressed hydroelas-
tic depending of the number of prestressed dry modes considered. A balance between
the frequency range of interest and the number prestressed modes selected have to be
addressed. A numerical example shows very good agreements in comparison with Chiba
experimental studies [4]. Further investigations to construct a tangent stiffness matrix as
a finite sum of reduced operators are expected in the future.
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