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ABSTRACT

A basic task in any gradient-based shape optimization project is the sensitivity analysis, that
is, the calculation of derivatives of objective functions and constraints with respect to domain
variations. The most fundamental issue is to give a precise meaning to “domain variations” and
how to differentiate with respect to a geometric property of this kind. The dominating strategy
in practice is to utilize transformations Tt of the domain, generated by a vector field V (usually
referred to as a “velocity”), of the form Tt = I + tV for t ∈ R. There will be one velocity field
per design variable. Integrals over the perturbed domain can then be converted, using a change
of variables in terms of Tt, into integrals over the unperturbed domain with the Jacobian of the
transformation occurring in the integrand. The transformed integral then becomes a functional
with respect to V , which may then be differentiated using standard variational calculus.

When carrying out shape sensitivity analysis in the context of a boundary-value problem for a
partial differential equation, the final expression for the directional derivative with respect to V of
an objective function or constraint comes in two different forms: as a volume integral, involving the
full field V , or as a boundary integral, involving only the normal trace of V on the boundary. In the
discrete case, after finite-element discretization, the volume form of the directional derivative turns
out to be the exact derivative of the discrete objective function, provided that the mesh is deformed
according to the velocity field used in the formula. The more convenient boundary integral form,
however, will unfortunately not be exact when using mesh deformations or remeshings due to lack
of regularity of the finite-element solution [1].

The dominating strategy for sensitivity analysis, based on domain transformations Tt = I + tV , is
thus quite closely associated with and appropriate for shape optimization using deforming meshes.
However, embedding methods such as CutFEM [3] are very attractive for shape optimization,
precisely because they do not use mesh deformation or remeshing; the computational mesh is fixed
in a hold-all domain D, the boundary to the computational domain Ω ⊂ D is allowed to cut freely
throughout D, and the computations are (in principle) carried out in D. Although a velocity
field can artificially be created by extending the movement of the boundary into Ω, no domain
transformations are actually used to change Ω when embedding methods are used. In a recent
study using CutFEM [2], we noticed the opposite properties of the volume and surface formulations
compared to the description above: the surface formulation of the directional derivative was exact
for the discrete objective function, whereas the volume formulation was not! This observation
suggests that the standard sensitivity analysis approach is not really appropriate for CutFEM and
other embedding approaches.

An alternative to the use of transformations to define shape derivatives has recently been intro-
duced by Delfour [4]. His approach generates domain variations not through velocity fields but
through dilations into Euclidean space of lower-dimensional objects like points, curves, or surfaces.
One attractive property of this approach is that it unifies the concepts of topological and shape
derivatives. Differentiation with respect to dilation of a point generates a topological derivative (the
sensitivity of a functional with respect to inclusion of a small hole). Differentiation with respect to
dilation of the boundary generates the shape derivative with respect to a uniform extension of the
boundary in the normal direction. Since no domain transformations are involved, this approach
seems more appropriate in the context of embedding methods.
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To generalize the Delfour approach to shape calculus for embedding methods such as CutFEM,
we consider here a domain Ω defined using a level set approach. That is, the domain boundary is
given as the points x satisfying φ(x) = 0, where φ is a finite-element function defined in a hold
all D ⊃ Ω using standard P 1 elements. The boundary is deformed by perturbing the level-set
function such that the points x of the perturbed boundary satisfy φt(x) = 0, where φt = φ + tw,
and where w is a standard “hat” basis function. By a generalization of the Delfour approach, the
basic integral formulas needed for shape sensitivity analysis can then be derived without the use of
domain transformations. For instance, for the objective function

J(φ) =

∫
Ω
f dV,

where f ∈ H1(D) is given, and φ is the finite-element level-set function defining Ω, the semidif-
ferential (J will only be one-sided differentiable in general) with respect to level-set perturbations
with basis function w is

dJ (φ;w) = lim
t→0+

1

t

(
J(φt)− J(φ)

)
= −

∫
∂Ω
f
w

∂nφ
dS.

Note that the formula is exact in this discrete case.

Shape sensitivity analysis of boundary integrals can also established using the same mechanism.
However, the expression for the semidifferential will be more complicated. The reason is that
a boundary defined using a level set of merely C0 finite-element functions will contain kinks;
the normal field will in general contain jump discontinuities where the boundary intersects the
mesh. The exact semidifferential will therefore involve the jumps of the normal field across element
interfaces.

These formulas for the semidifferential of volume and boundary integrals have been used to carry out
shape sensitivity analysis for an acoustics problem in the context of a CutFEM discretization. Using
the final gradient expression within a quasi-Newton algorithm, the interior shape of a compression
driver, which is the standard sound source used in acoustic horns for live audio systems, has been
successfully designed to achieve a favorable frequency response.

REFERENCES

[1] M. Berggren. A unified discrete–continuous sensitivity analysis method for shape optimization.
In W. Fitzgibbon, Y. A. Kuznetsov, P. Neittaanmäki, J. Periaux, and O. Pironneau, editors,
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