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Abstract. We consider a space-time variational formulation of the second-order wave equation, where
integration by parts is also applied with respect to the time variable. Conforming tensor-product finite
element discretisations with piecewise polynomials of this space-time variational formulation require a
CFL condition to ensure stability. To overcome this restriction in the case of piecewise multilinear, con-
tinuous ansatz and test functions, a stabilisation is well-known, which leads to an unconditionally stable
space-time finite element method. In this work, we generalise this stabilisation idea from the lowest-
order case to the higher-order case, i.e. to an arbitrary polynomial degree. We give numerical examples
for a one-dimensional spatial domain, where the unconditional stability and optimal convergence rates
in space-time norms are illustrated.

1 INTRODUCTION

Standard approaches for the numerical solution of hyperbolic initial-boundary value problems are usu-
ally based on semi-discretisations in space and time, where the discretisation in space and time is split
accordingly. In contrast to these approaches, space-time methods discretise time-dependent partial dif-
ferential equations without separating the temporal and spatial directions. In this work, the homogeneous
Dirichlet problem for the second-order wave equation,

∂ttu(x, t)−∆xu(x, t) = f (x, t) for (x, t) ∈ Q = Ω× (0,T ),
u(x, t) = 0 for (x, t) ∈ Σ = ∂Ω× [0,T ],

u(x,0) = ∂tu(x,0) = 0 for x ∈Ω,

 (1)

serves as a model problem, where Ω = (0,L) is an interval for d = 1, or Ω is polygonal for d = 2, or Ω

is polyhedral for d = 3, T > 0 is a terminal time and f is a given right-hand side. To derive a space-time
variational formulation, we define the space-time Sobolev spaces

H1,1
0;0, (Q) := L2(0,T ;H1

0 (Ω))∩H1
0,(0,T ;L2(Ω))⊂ H1(Q),

H1,1
0; ,0(Q) := L2(0,T ;H1

0 (Ω))∩H1
,0(0,T ;L2(Ω))⊂ H1(Q)
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with the Hilbertian norms

‖v‖H1,1
0;0, (Q)

:= ‖v‖H1,1
0; ,0(Q)

:= |v|H1(Q) :=
(∫ T

0

∫
Ω

(
|∂tv(x, t)|2 + |∇xv(x, t)|2

)
dxdt

)1/2

,

where v∈H1
0,(0,T ;L2(Ω)) satisfies ‖v(·,0)‖L2(Ω) = 0 and w∈H1

,0(0,T ;L2(Ω)) fulfils ‖w(·,T )‖L2(Ω) = 0,
see [5] for more details. The bilinear form

a(·, ·) : H1,1
0;0, (Q)×H1,1

0; ,0(Q)→ R,

defined by the variational identity

a(u,w) :=−〈∂tu,∂tw〉L2(Q)+ 〈∇xu,∇xw〉L2(Q)

for u ∈ H1,1
0;0, (Q) and w ∈ H1,1

0; ,0(Q), is continuous, i.e. the estimate

∀u ∈ H1,1
0;0, (Q) : ∀w ∈ H1,1

0; ,0(Q) : |a(u,w)| ≤ |u|H1(Q) |w|H1(Q)

holds true due to the Cauchy-Schwarz inequality. The space-time variational formulation of (1) is to find
u ∈ H1,1

0;0, (Q) such that

∀w ∈ H1,1
0; ,0(Q) : a(u,w) = 〈 f ,w〉L2(Q), (2)

where f ∈ L2(Q) is a given right-hand side. Note that the initial condition u(·,0) = 0 is considered in the
strong sense, whereas the initial condition ∂tu(·,0) = 0 is incorporated in a weak sense. The following
existence and uniqueness theorem is proven in [1, Theorem 3.2 in Chapter IV], see also [3, 5, 8].

Theorem 1.1 For f ∈ L2(Q), a unique solution u ∈ H1,1
0;0, (Q) of the variational formulation (2) exists

and the stability estimate

|u|H1(Q) ≤
1√
2

T‖ f‖L2(Q)

holds true.

Note that the solution operator

L : L2(Q)→ H1,1
0;0, (Q), L f := u,

of Theorem 1.1 is not an isomorphism, i.e. L is not surjective, see [4, 5] for more details. In this work,
for simplicity, we only consider homogeneous initial conditions, where inhomogeneous initial conditions
can be treated analogously as in [1, 7, 8].

A conforming tensor-product space-time discretisation of (2) with piecewise polynomial, continuous
ansatz and test functions requires a CFL condition

ht ≤C hx (3)

with a constant C > 0, depending on the constant of a spatial inverse inequality, where ht and hx are
the mesh sizes in time and space. For a one-dimensional spatial domain Ω, i.e. d = 1, and piecewise
multilinear, continuous ansatz and test functions, the CFL condition (3) reads as

ht < hx
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for uniform meshes with uniform mesh sizes ht and hx, see [3, 5]. To overcome the CFL condition (3),
the stabilised space-time finite element method to find uh ∈

(
V 1

hx,0(Ω)⊗S1
ht
(0,T )

)
∩H1,1

0;0, (Q) such that

−〈∂tuh,∂twh〉L2(Q)+
d

∑
α=1
〈∂xα

uh,Q0
ht

∂xα
wh〉L2(Q) = 〈 f ,wh〉L2(Q) (4)

for all wh ∈
(
V 1

hx,0(Ω)⊗S1
ht
(0,T )

)
∩H1,1

0; ,0(Q) was analysed in [2, 5, 8], where

Q0
ht

: L2(Q)→ L2(Ω)⊗S0
ht
(0,T ) (5)

is the extended L2 projection on the space of the temporal piecewise constant functions and V 1
hx,0(Ω)⊗

S1
ht
(0,T ) is the space of piecewise multilinear, continuous functions, see Section 2 for the notations. The

main results for this proposed space-time finite element method (4) are the unconditional stability, i.e.
no CFL condition is needed, and the space-time error estimates with

h := max{hx,ht}, hx = max
k

hx,k, ht = max
`

ht,`,

which are summarised in the following theorem, where its proof is contained in [2, 5].

Theorem 1.2 There exists a unique solution uh ∈
(
V 1

hx,0(Ω)⊗S1
ht
(0,T )

)
∩H1,1

0;0, (Q) of (4), satisfying the
L2(Q) stability estimate

‖uh‖L2(Q) ≤
4
π

T 2‖ f‖L2(Q).

Further, let the solution u of (1) and Ω be sufficiently regular. Then, the unique solution uh ∈
(
V 1

hx,0(Ω)⊗
S1

ht
(0,T )

)
∩H1,1

0;0, (Q) of (4) fulfils the space-time error estimates

‖u−uh‖L2(Q) ≤Ch2,

|u−uh|H1(Q) ≤Ch,

where, for the H1(Q) error estimate, a spatial inverse inequality is additionally assumed.

In this work, we generalise this stabilisation idea from the linear case to the higher-order case. In greater
detail, we introduce a new stabilised space-time finite element method of tensor-product type with glob-
ally continuous ansatz and test functions, which are piecewise polynomials of an arbitrary polynomial de-
gree p, leading to unconditional stability and optimal convergence rates in the space-time norms ‖·‖L2(Q),
| · |H1(Q). In other words, the result of Theorem 1.2 is generalised to an arbitrary polynomial degree p.
The rest of the paper is organised as follows: In Section 2, notations of the used finite element spaces
and L2 projections are fixed. Section 3 introduces the new space-time finite element method. Numerical
examples for a one-dimensional spatial domain and piecewise polynomials of higher-order are presented
in Section 4. Finally, we draw some conclusions in Section 5.

2 PRELIMINARIES

In this section, notations of the used finite element spaces and L2 projections are stated. For this purpose,
let the bounded Lipschitz domain Ω⊂Rd be an interval Ω = (0,L) for d = 1, or polygonal for d = 2, or
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polyhedral for d = 3. For a tensor-product ansatz, we consider admissible decompositions

Q = Ω× [0,T ] =
Nx⋃

k=1

ωk×
Nt⋃
`=1

[t`−1, t`]

with N := Nx ·Nt space-time elements, where the time intervals τ` := (t`−1, t`) with mesh sizes ht,` =
t`− t`−1 are defined via the decomposition

0 = t0 < t1 < t2 < · · ·< tNt−1 < tNt = T

of the time interval (0,T ). The maximal and the minimal time mesh sizes are denoted by ht := ht,max :=
max` ht,` and ht,min := min` ht,`, respectively. For the spatial domain Ω, we consider a shape-regular
sequence (Tν)ν∈N of admissible decompositions

Tν := {ωk ⊂ Rd : k = 1, . . . ,Nx}

of Ω into finite elements ωk ⊂ Rd with mesh sizes hx,k, the maximal mesh size hx := hx,max := maxk hx,k
and the minimal mesh size hx,min := mink hx,k. The spatial elements ωk are intervals for d = 1, triangles
or quadrilaterals for d = 2, and tetrahedra or hexahedra for d = 3. Next, for a fixed polynomial degree
p ∈ N, we introduce the finite element space

Qp
h(Q) :=V p

hx,0(Ω)⊗Sp
ht
(0,T )

of piecewise polynomial, continuous functions, i.e.

V p
hx,0(Ω) :=V p

hx
(Ω)∩H1

0 (Ω)⊂ H1
0 (Ω), Sp

ht
(0,T )⊂ H1(0,T )

with V p
hx
(Ω) ∈

{
Sp

hx
(Ω),Qp

hx
(Ω)
}

. Here,

Sp
ht
(0,T ) :=

{
vht ∈C[0,T ] : ∀` ∈ {1, . . . ,Nt} : vht |τ` ∈ Pp(τ`)

}
denotes the space of piecewise polynomial, continuous functions on intervals, where Pp(A) is the space
of polynomials on a subset A⊂ Rd of global degree at most p. Analogously,

Sp
hx
(Ω) :=

{
vhx ∈C(Ω) : ∀ω ∈ Tν : vhx|ω ∈ Pp(ω)

}
is the space of piecewise polynomial, continuous functions on intervals (d = 1), triangles (d = 2), or
tetrahedra (d = 3). Moreover,

Qp
hx
(Ω) :=

{
vhx ∈C(Ω) : ∀ω ∈ Tν : vhx|ω ∈Qp(ω)

}
is the space of piecewise polynomial, continuous functions on intervals (d = 1), quadrilaterals (d = 2),
or hexahedra (d = 3), where Qp(A) is the space of polynomials on a subset A⊂ Rd of degree at most p
in each variable. The temporal nodal basis functions of Sp

ht
(0,T ) are denoted by ϕ

p
n for n = 0, . . . , pNt ,

and ψ
p
j , j = 1, . . . ,Mx, are the spatial nodal basis functions of V p

hx,0(Ω), i.e.

Sp
ht
(0,T ) = span{ϕp

n}
pNt
n=0 and V p

hx,0(Ω) = span{ψp
j }

Mx
j=1.
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For the stabilisation of the new space-time finite element method, we also need the spaces of piecewise
polynomial, discontinuous functions

Sq,disc
ht

(0,T ) :=
{

vht ∈ L1(0,T ) : ∀` ∈ {1, . . . ,Nt} : vht |τ` ∈ Pq(τ`)
}
,

where q ∈ N0 is a fixed polynomial degree. For a given function v ∈ L2(Q), the extended L2 projection
Qq,disc

ht
v∈ L2(Ω)⊗Sq,disc

ht
(0,T ) on the space L2(Ω)⊗Sq,disc

ht
(0,T ) of piecewise polynomial, discontinuous

functions with respect to the time variable is defined by〈
Qq,disc

ht
v,vht

〉
L2(Q)

= 〈v,vht 〉L2(Q)

for all vht ∈ L2(Ω)⊗Sq,disc
ht

(0,T ), satisfying the stability estimate

‖Qq,disc
ht

v‖L2(Q) ≤ ‖v‖L2(Q). (6)

Note that Q0
ht
= Q0,disc

ht
is the extended L2 projection (5) on the space of the temporal piecewise constant

functions L2(Ω)⊗ S0
ht
(0,T ) = L2(Ω)⊗ S0,disc

ht
(0,T ). Analogously, for a solely time-dependent function

w ∈ L2(0,T ), we denote Qq,disc
ht

w ∈ Sq,disc
ht

(0,T ) as the L2(0,T ) projection on the space Sq,disc
ht

(0,T ) of
piecewise polynomial, discontinuous functions, defined by〈

Qq,disc
ht

w,wht

〉
L2(0,T )

= 〈w,wht 〉L2(0,T )

for all wht ∈ Sq,disc
ht

(0,T ). We use the same notation Qq,disc
ht

for solely time-dependent functions and
functions, which depend on (x, t), since for a function v ∈ L2(Q) with v(x, t) = z(x)w(t), z ∈ L2(Ω),
w ∈ L2(0,T ), the equality

Qq,disc
ht

v(x, t) = z(x)Qq,disc
ht

w(t), (x, t) ∈ Q,

holds true.

3 NEW STABILISED SPACE-TIME FINITE ELEMENT METHOD

In this section, we introduce a new stabilised space-time finite element method with continuous ansatz
and test functions, which are piecewise polynomials of arbitrary polynomial degree p ∈ N with respect
to the spatial variable and the temporal variable. For this purpose, we fix a polynomial degree p ∈N and
we introduce the perturbed bilinear form

ah(·, ·) : Qp
h(Q)∩H1,1

0;0, (Q)×Qp
h(Q)∩H1,1

0; ,0(Q)→ R

by defining

ah(uh,wh) :=−〈∂tuh,∂twh〉L2(Q)+
d

∑
α=1
〈∂xα

uh,Q
p−1,disc
ht

∂xα
wh〉L2(Q)

for uh ∈ Qp
h(Q)∩H1,1

0;0, (Q), wh ∈ Qp
h(Q)∩H1,1

0; ,0(Q). Note that the function ∂xα
wh, α = 1, . . . ,d, fulfils

∂xα
wh ∈ L2(Ω)⊗Sp

ht
(0,T ),
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i.e. ∂xα
wh is still a piecewise polynomial of degree p with respect to the temporal variable. The perturbed

bilinear form ah(·, ·) is continuous since the Cauchy-Schwarz inequality and the L2(Q) stability (6) of
Qp−1,disc

ht
yield

|ah(uh,wh)| ≤ |uh|H1(Q) |wh|H1(Q)

for all uh ∈ Qp
h(Q)∩H1,1

0;0, (Q), wh ∈ Qp
h(Q)∩H1,1

0; ,0(Q). The perturbed variational formulation, corre-

sponding to (2), is to find uh ∈ Qp
h(Q)∩H1,1

0;0, (Q) such that

∀wh ∈ Qp
h(Q)∩H1,1

0; ,0(Q) : ah(uh,wh) = 〈 f ,wh〉L2(Q). (7)

This perturbed variational formulation (7) coincides with the perturbed variational formulation (4) for
p = 1. In other words, the new perturbed variational formulation (7) is a generalisation of the perturbed
variational formulation (4) from p= 1 to arbitrary p∈N. The numerical analysis, i.e. an analogous result
as Theorem 1.2, of the perturbed variational formulation (7) is far beyond the scope of this contribution,
we refer to [6].

The discrete variational formulation (7) is equivalent to the linear system

Khu = f (8)

with the system matrix
Kh :=−Aht ⊗Mhx + M̃ht ⊗Ahx ∈ RMx·pNt×Mx·pNt ,

where Mhx , Ahx ∈RMx×Mx are the mass and stiffness matrix with respect to the spatial variable, which are
given by

Mhx [i, j] = 〈ψp
j ,ψ

p
i 〉L2(Ω), i, j = 1, . . . ,Mx,

Ahx [i, j] = 〈∇xψ
p
j ,∇xψ

p
i 〉L2(Ω), i, j = 1, . . . ,Mx,

and M̃ht , Aht ∈ RpNt×pNt are the perturbed mass and stiffness matrix with respect to temporal variable,
which are defined by

M̃ht [n,m] = 〈ϕp
m,Q

p−1,disc
ht

ϕ
p
n〉L2(0,T ), n = 0, . . . , pNt −1, m = 1, . . . , pNt ,

Aht [n,m] = 〈∂tϕ
p
m,∂tϕ

p
n〉L2(0,T ), n = 0, . . . , pNt −1, m = 1, . . . , pNt .

Here, the nodal basis function ϕ
p
0 corresponds to the vertex t0 = 0 and the nodal basis function ϕ

p
pNt

corresponds to the vertex tNt = T . As the L2(0,T ) projection Qp−1,disc
ht

can be computed locally, i.e.
on each temporal element τ` for ` = 1, . . . ,Nt , the assembling of the perturbed mass matrix M̃ht can be
realised, as for the classical mass matrix, via local matrices.

4 NUMERICAL EXAMPLES

In this section, numerical examples for the new space-time finite element method (7) are given. For this
purpose, we consider the hyperbolic initial-boundary value problem (1) in the one-dimensional spatial
domain Ω := (0,1) with the terminal time T = 10, i.e. the rectangular space-time domain

Q := Ω× (0,T ) := (0,1)× (0,10). (9)
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As exact solutions, we choose

u1(x, t) = t2 sin(10πx)sin(t x), (10)

u2(x, t) = t2(T − t)9/5
√

t + x2 +1sin(πx) (11)

for (x, t) ∈ Q. The spatial domain Ω = (0,1) is decomposed into nonuniform elements with the vertices

x0 = 0, x1 = 1/4, x2 = 1, (12)

whereas the temporal domain (0,T ) = (0,10) is decomposed into nonuniform elements with the vertices

t0 = 0, t1 = T/8, t2 = T/4, t3 = T. (13)

We apply a uniform refinement strategy for the meshes (12), (13), which do not fulfil the CFL condition
(3) at least for piecewise multilinear, continuous functions, i.e. p = 1. Additionally, we choose p = 1 for
Table 1, p = 2 for Table 2, and p = 6 for Table 3, where the number of the degrees of freedom is denoted
by

dof = Mx · p ·Nt .

The global linear system (8) is solved by a direct solver, where the appearing integrals to compute the
related right-hand side are calculated by using high-order quadrature rules.

In the case of piecewise multilinear, continuous functions, i.e. p= 1, the numerical results for the smooth
solution u1 in (10) are given in Table 1, where we observe unconditional stability, quadratic convergence
in ‖ · ‖L2(Q) and linear convergence in | · |H1(Q), as predicted by Theorem 1.2.

Table 1: Numerical results of the Galerkin finite element discretisation (7) for p = 1 for the space-time cylinder
(9) for the smooth function u1 in (10) for a uniform refinement strategy with the starting meshes (12), (13).

dof hx,max hx,min ht,max ht,min ‖u1−u1,h‖L2(Q) eoc |u1−u1,h|H1(Q) eoc
3 0.7500 0.2500 7.5000 1.2500 9.4e+01 - 2.2e+03 -

18 0.3750 0.1250 3.7500 0.6250 8.7e+01 0.1 2.2e+03 0.0
84 0.1875 0.0625 1.8750 0.3125 7.7e+01 0.2 2.0e+03 0.1

360 0.0938 0.0312 0.9375 0.1562 4.5e+01 0.8 1.7e+03 0.3
1488 0.0469 0.0156 0.4688 0.0781 1.3e+01 1.8 9.3e+02 0.8
6048 0.0234 0.0078 0.2344 0.0391 3.5e+00 1.9 4.9e+02 0.9

24384 0.0117 0.0039 0.1172 0.0195 8.8e-01 2.0 2.5e+02 1.0
97920 0.0059 0.0020 0.0586 0.0098 2.2e-01 2.0 1.2e+02 1.0

392448 0.0029 0.0010 0.0293 0.0049 5.6e-02 2.0 6.1e+01 1.0
1571328 0.0015 0.0005 0.0146 0.0024 1.4e-02 2.0 3.1e+01 1.0
6288384 0.0007 0.0002 0.0073 0.0012 3.5e-03 2.0 1.5e+01 1.0

25159680 0.0004 0.0001 0.0037 0.0006 8.7e-04 2.0 7.7e+00 1.0

For p = 2 and p = 6, the results for the smooth solution u1 in (10) are stated in Table 2 and Table 3,
respectively, where we illustrate that the new space-time finite element method (7) is unconditionally
stable and the convergence rates with respect to the space-time norms ‖ ·‖L2(Q), | · |H1(Q) are as expected.
Moreover, a comparison of Table 1, Table 2 and Table 3 show that a polynomial degree p> 1 is advisable
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since the numbers of the degrees of freedom are much lower for p > 1 than for p = 1 when a fixed
accuracy is desired. For example, we need dof = 25159680 degrees of freedom for p = 1, dof = 392448
degrees of freedom for p = 2 and dof = 13680 degrees of freedom for p = 6 to receive the error in
| · |H1(Q) within a comparable range.

Table 2: Numerical results of the Galerkin finite element discretisation (7) for p = 2 for the space-time cylinder
(9) for the smooth function u1 in (10) for a uniform refinement strategy with the starting meshes (12), (13).

dof hx,max hx,min ht,max ht,min ‖u1−u1,h‖L2(Q) eoc |u1−u1,h|H1(Q) eoc
18 0.7500 0.2500 7.5000 1.2500 4.4e+03 - 1.4e+04 -
84 0.3750 0.1250 3.7500 0.6250 7.8e+01 5.8 2.1e+03 2.8

360 0.1875 0.0625 1.8750 0.3125 4.6e+01 0.8 1.7e+03 0.3
1488 0.0938 0.0312 0.9375 0.1562 1.2e+01 2.0 7.5e+02 1.2
6048 0.0469 0.0156 0.4688 0.0781 2.6e+00 2.2 2.4e+02 1.7

24384 0.0234 0.0078 0.2344 0.0391 2.2e-01 3.6 5.7e+01 2.1
97920 0.0117 0.0039 0.1172 0.0195 2.6e-02 3.1 1.4e+01 2.0

392448 0.0059 0.0020 0.0586 0.0098 3.2e-03 3.0 3.6e+00 2.0
1571328 0.0029 0.0010 0.0293 0.0049 4.0e-04 3.0 9.0e-01 2.0
6288384 0.0015 0.0005 0.0146 0.0024 5.1e-05 3.0 2.2e-01 2.0

25159680 0.0007 0.0002 0.0073 0.0012 6.3e-06 3.0 5.6e-02 2.0

Table 3: Numerical results of the Galerkin finite element discretisation (7) for p = 6 for the space-time cylinder
(9) for the smooth function u1 in (10) for a uniform refinement strategy with the starting meshes (12), (13).

dof hx,max hx,min ht,max ht,min ‖u1−u1,h‖L2(Q) eoc |u1−u1,h|H1(Q) eoc
198 0.7500 0.2500 7.5000 1.2500 5.2e+01 - 2.0e+03 -
828 0.3750 0.1250 3.7500 0.6250 3.0e+01 0.8 1.3e+03 0.6

3384 0.1875 0.0625 1.8750 0.3125 9.0e-01 5.0 8.6e+01 3.9
13680 0.0938 0.0312 0.9375 0.1562 8.9e-03 6.7 1.7e+00 5.6
55008 0.0469 0.0156 0.4688 0.0781 8.0e-05 6.8 3.1e-02 5.8

220608 0.0234 0.0078 0.2344 0.0391 6.4e-07 7.0 4.9e-04 6.0
883584 0.0117 0.0039 0.1172 0.0195 5.0e-09 7.0 7.7e-06 6.0

For the singular solution u2 in (11), the related results are given in Table 4 for p = 1, Table 5 for p = 2
and Table 6 for p = 6, where we observe for p > 1 a reduced order of convergence in ‖ · ‖L2(Q) and in
| · |H1(Q). These convergence rates correspond to the reduced Sobolev regularity u2 ∈H23/10−ε(Q), ε > 0.

5 CONCLUSIONS

In this work, we introduced new stabilised higher-order space-time continuous Galerkin methods for the
wave equation with globally continuous ansatz and test functions, which are piecewise polynomials of
arbitrary polynomial degree. These methods are based on a space-time variational formulation, using
also integration by parts with respect to the time variable, and its discretisation of tensor-product type
with the help of a certain stabilisation. Thus, we generalised the well-known stabilisation idea from the
lowest-order case to the higher-order case, i.e. to an arbitrary polynomial degree. We gave numerical
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Table 4: Numerical results of the Galerkin finite element discretisation (7) for p = 1 for the space-time cylinder
(9) for the singular function u2 in (11) for a uniform refinement strategy with the starting meshes (12), (13).

dof hx,max hx,min ht,max ht,min ‖u2−u2,h‖L2(Q) eoc |u2−u2,h|H1(Q) eoc
3 0.7500 0.2500 7.5000 1.2500 1.1e+03 - 4.4e+03 -

18 0.3750 0.1250 3.7500 0.6250 7.2e+02 0.6 2.9e+03 0.6
84 0.1875 0.0625 1.8750 0.3125 3.1e+02 1.2 1.4e+03 1.0

360 0.0938 0.0312 0.9375 0.1562 8.7e+01 1.8 5.6e+02 1.4
1488 0.0469 0.0156 0.4688 0.0781 2.4e+01 1.9 2.5e+02 1.2
6048 0.0234 0.0078 0.2344 0.0391 6.5e+00 1.9 1.1e+02 1.1

24384 0.0117 0.0039 0.1172 0.0195 1.6e+00 2.0 5.6e+01 1.0
97920 0.0059 0.0020 0.0586 0.0098 4.1e-01 2.0 2.8e+01 1.0

392448 0.0029 0.0010 0.0293 0.0049 1.0e-01 2.0 1.4e+01 1.0
1571328 0.0015 0.0005 0.0146 0.0024 2.6e-02 2.0 7.0e+00 1.0
6288384 0.0007 0.0002 0.0073 0.0012 6.5e-03 2.0 3.5e+00 1.0

25159680 0.0004 0.0001 0.0037 0.0006 1.6e-03 2.0 1.7e+00 1.0

Table 5: Numerical results of the Galerkin finite element discretisation (7) for p = 2 for the space-time cylinder
(9) for the singular function u2 in (11) for a uniform refinement strategy with the starting meshes (12), (13).

dof hx,max hx,min ht,max ht,min ‖u2−u2,h‖L2(Q) eoc |u2−u2,h|H1(Q) eoc
18 0.7500 0.2500 7.5000 1.2500 5.8e+02 - 1.9e+03 -
84 0.3750 0.1250 3.7500 0.6250 2.0e+02 1.6 7.4e+02 1.4

360 0.1875 0.0625 1.8750 0.3125 3.2e+01 2.6 1.7e+02 2.1
1488 0.0938 0.0312 0.9375 0.1562 2.4e+00 3.7 2.7e+01 2.6
6048 0.0469 0.0156 0.4688 0.0781 3.9e-01 2.6 6.6e+00 2.0

24384 0.0234 0.0078 0.2344 0.0391 6.4e-02 2.6 2.0e+00 1.7
97920 0.0117 0.0039 0.1172 0.0195 1.1e-02 2.5 6.7e-01 1.6

392448 0.0059 0.0020 0.0586 0.0098 2.1e-03 2.4 2.4e-01 1.5
1571328 0.0029 0.0010 0.0293 0.0049 4.0e-04 2.4 9.3e-02 1.4
6288384 0.0015 0.0005 0.0146 0.0024 7.9e-05 2.3 3.7e-02 1.3

25159680 0.0007 0.0002 0.0073 0.0012 1.6e-05 2.3 1.5e-02 1.3

Table 6: Numerical results of the Galerkin finite element discretisation (7) for p = 6 for the space-time cylinder
(9) for the singular function u2 in (11) for a uniform refinement strategy with the starting meshes (12), (13).

dof hx,max hx,min ht,max ht,min ‖u2−u2,h‖L2(Q) eoc |u2−u2,h|H1(Q) eoc
198 0.7500 0.2500 7.5000 1.2500 2.7e+00 - 1.6e+01 -
828 0.3750 0.1250 3.7500 0.6250 6.2e-01 2.1 3.5e+00 2.2

3384 0.1875 0.0625 1.8750 0.3125 8.2e-02 2.9 8.8e-01 2.0
13680 0.0938 0.0312 0.9375 0.1562 1.5e-02 2.4 3.3e-01 1.4
55008 0.0469 0.0156 0.4688 0.0781 3.0e-03 2.3 1.3e-01 1.3

220608 0.0234 0.0078 0.2344 0.0391 6.1e-04 2.3 5.3e-02 1.3
883584 0.0117 0.0039 0.1172 0.0195 1.2e-04 2.3 2.1e-02 1.3
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examples, where the unconditional stability, i.e. no CFL condition is required, and optimal convergence
rates in space-time norms were illustrated.
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