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Abstract: Structural optimization over the past decades matured from an academic theoretical 
field, to an important tool in the design procedure in various engineering disciplines. Some 
commercial software applications provide some suites with optimization solutions, but they are 
focused mostly in the aeronautics, automotive and aerospace industry. High Performance Op-
timization Computing Platform (HP-OCP) is a software developed by the ISAAR-NTUA and 
provides a holistic optimization approach for civil engineering structures. More precisely, HP-
OCP is a computational suite that has the ability to integrate with several structural analysis and 
design software and provide optimization solutions. Structural optimization is mainly divided 
in three groups, sizing (or parametric), shape and topology optimization. All of them are inte-
grated in HP-OCP and the appropriate algorithms are provided in each category. Considering 
size and shape optimization, the parametric optimization module is developed, in which the 
design variables of the mathematical formulation can be the dimension of the section properties, 
the quality of the material, the coordinates of the nodes etc. In this module plenty of derivative- 
based and derivative-free algorithms are provided like the Projected Quasi-Newton, Con-
strained Optimization by Linear Approximation, Latin Hypercube Sampling etc. [1]. Consider-
ing the topology optimization module [2], the SIMP method is applied and the mathematical 
algorithms that are implemented are the Optimality Criteria and Method of Moving Asymptotes. 
HP-OCP was developed in C# programming language, making it a powerful suite that can be 
integrated with any commercial software that provide Application Programming Interface, 
batch analysis via XML files or any other type of data exchange format. In the current work the 
integration of HP-OCP with the SAP2000, ETABS and SCIA Engineering software is presented. 
Several examples considering parametric and topology optimization problems are examined. 
Remarkable cost reduction is succeeded in real-world structures, validating in this way the use-
fulness of HP-OCP not only in the research field but also in applied civil engineering problems. 

 

1. INTRODUCTION 

Engineers always strive to design efficient structural systems which must be as economic as 
possible yet strong enough to withstand the most demanding functional requirements arising 
during their service life. The traditional trial-and-error design approach is not sufficient to 

mailto:nlagaros@central.ntua.gr
http://www.veltion.ntua.gr/


Stefanos Sotiropoulos, Georgios Kazakis, Nikos Ath. Kallioras, Stavros Xynogalas, Chara. Ch. Mitropoulou, 

Stavros Chatzieleftheriou, Spyros Damikoukas, Pantelis Tsakalis and Nikos D. Lagaros 

 2 

determine economical designs satisfying also the safety criteria. Structural design optimization, 
on the other hand, provides a numerical procedure that can replace the traditional design ap-
proach with an automated one. Automatic numerical optimization algorithms have been devel-
oped in the past to meet the demands of structural design optimization. These algorithms can 
be classified in deterministic and probabilistic approaches. Heuristic and metaheuristic algo-
rithms are nature-inspired or bio-inspired search procedures and belong to the probabilistic class 
of methods. Modern metaheuristic algorithms are almost guaranteed to an efficient performance 
for a wide range of optimization problems. Loosely speaking, modern metaheuristic algorithms 
include genetic algorithms (GA) [3], simulated annealing [4], particle swarm optimization (PSO) 
[5], ant colony algorithm (ACO) [6], artificial bee colony algorithm [7], harmony search (HS) 
[8], firefly algorithm [9], pity beetle algorithm (PBA) [10] and many others. 

Some software applications in recent years have made these tools accessible to professional 
engineers, decision-makers and students outside the structural optimization research commu-
nity. These software applications, mainly focused on aerospace, aeronautical, mechanical and 
naval structural systems, have incorporated the optimization component primarily as an addi-
tional feature of the finite element software package. On the other hand, there is not a holistic 
optimization approach in terms of final design stage for real-world civil engineering structures 
such as buildings, bridges or more complex civil engineering structures. The optimized designs, 
in the case of real-world structures, should rely on accurate modelling and take into account the 
improvement of the product attributes, such as cost, weight, manufacturability and performance. 
The implementation of the optimum design formulations to real-world problems requires sig-
nificant computational effort which can only be addressed with a synergy of cutting edge tech-
nologies in the field. Therefore, the tools required for structural optimization basically must 
serve four purposes (Figure 1): (i) accurate numerical modelling of the structural system; (ii) 
structural analysis for the calculation of displacements or stresses under various loading condi-
tions, (iii) design procedure for performing the constraints checks imposed by the design codes 
and/or the design engineers and (iv) search optimization that is the automated procedure for 
searching for an optimized design that satisfies both the design requirements and economic, 
manufacturability or performance criteria. 

 

Figure 1. Flowchart of the HP-OCP computing platform. 

The main objective of this work is to present HP-OCP, which is a generic real-world opti-
mum design computing platform for civil structural systems. Utilizing the most developed tools 
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from the above mentioned four categories ensures that the HP-OCP platform can be utilized 
advantageously. This optimization platform is the result of a 20 year effort to develop a general 
purpose code for structural analysis and design optimization in the form of a modular standalone 
code and was developed by OptiStructure [11] and the Institute of Structural Analysis and Seis-
mic Research of the National Technical University of Athens. HP-OCP is based on the next 
generation computational procedures and it is expected to have a profound impact in optimized 
design of structural systems, leading to revolutionary changes in civil engineering design prac-
tice. HP-OCP computing platform incorporates advanced computational methods that are re-
quired for assessing the structural performance within an optimization framework, these 
methods involve a number of multidisciplinary areas in computational mechanics. 

2. PROBLEM DEFINITION 

Design optimization refers to the process of generating improved designs in terms of cost, man-
ufacturability or performance. The formulation of the problem has to be defined first that in-
cludes the selection of the design criterion (objective function), the design variables and the 
constraint functions. Structural optimization problems are characterized by various objective 
and constraint functions that are generally non-linear functions of the design variables. The 
objective functions supported by the HP-OCP platform are presented in Figure 2. It is allowed 
to use more than one objective function by introducing a weight coefficient for each one con-
sidered. These functions are usually implicit, discontinuous and non-convex. 

 

Figure 2. Objective functions. 

The optimization problems can be expressed in standard mathematical terms as a non-linear 
programming problem, which in general form can be stated as follows: 

j

i

opt (min/max)  F( )

subject to         g ( ) 0   j=1,...,m

                        s   i=1,...,nL U
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

 

s
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where s is the vector of design variables, F(s) is the objective function or the weighted sum of 
the objective functions to be optimized, ( )jg s  are the behavioural constraints imposed by the 
design codes and the design engineer, L

is  and U

is  are the lower and the upper bounds. 
Over the past three decades a remarkable progress was made in the formulation of new struc-

tural optimization problems, mainly on a deterministic and, to a lesser extent, on a probabilistic 
framework as demonstrated in a book by the authors [12]. HP-OCP supports both types of for-
mulations, deterministic and probabilistic ones. In the latter case, in addition to the deterministic 
requirements, performance criteria are also taken into consideration in connection to various 
target probabilistic constraints. There are mainly three design formulations that account for the 
probabilistic system response that are supported by the HP-OCP platform: reliability-based de-
sign optimization (RBO), robust design optimization (RDO), and the combined formulation 
denoted as reliability-based robust design optimization (RRDO). The main goal of RBO for-
mulations is to design for safety with respect to extreme events by determining design points 
that are located within a range of target probabilities. Thus, in addition to the deterministic 
constraints, probabilistic constraints are enforced which ensure an acceptable reliability perfor-
mance. The fundamental principle of RDO is to improve product quality or stabilize perfor-
mances by minimizing the effects of system’s variations without eliminating their causes. In 
the combined RRDO formulation, additional probabilistic constraints to those of RDO are con-
sidered where the maximum probability of violation of behavioural constraints should remain 
below an allowable probability of violation. 

3. THE OPTIMIZATION TOOL 

Design optimization is mainly performed by an optimizer, which is an algorithm that is used to 
search for the “best” design. In HP-OCP various metaheuristic optimization algorithms (MOA) 
are implemented that appear to be very promising as they have been implemented in various 
challenging problems with success (Figure 3). Furthermore, the cascade optimization concept 
was implemented into the computing platform. 

3.1 Genetic Algorithms 

Genetic algorithms is probably the best-known evolutionary algorithm, receiving substantial 
attention. The first attempt to use evolutionary algorithms took place in the sixties by a team of 
biologists [13] and was focused in building a computer program that would simulate the process 
of evolution in nature. However, the GA model implemented refers to a model introduced and 
studied by Holland and co-workers [14]. In the basic genetic algorithm, each member of this 
population will be a binary or a real valued string, which is sometimes referred to as a genotype 
or, alternatively, as a chromosome. The three main steps of the basic GA: (i) Initialization. The 
first step in the implementation of any genetic algorithm is to generate an initial population. In 
most cases the initial population is generated randomly. After creating the initial population, 
each member of the population is evaluated by computing the representative objective and con-
straint functions and comparing it with the other members of the population. (ii) Selection. Se-
lection operator is applied to the current population to create an intermediate one. In the first 
generation the initial population is considered as the intermediate one, while in the next gener-
ations this population is created by the application of the selection operator. (iii) Generation 
(Crossover-Mutation). In order to create the next generation crossover and mutation operators 
are applied to the intermediate population to create the next population. Crossover is a repro-
duction operator, which forms a new chromosome by combining parts of each of the two pa-
rental chromosomes. Mutation is a reproduction operator that forms a new chromosome by 
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making (usually small) alterations to the values of genes in a copy of a single parent chromo-
some. The process of going from the current population to the next population constitutes one 
generation in the evolution process of a genetic algorithm. If the termination criteria are satis-
fied the procedure stops otherwise returns to the selection step.  
 

 
(a) 

 
(b) 

Figure 3. Optimizer (a) selection of the optimization procedure and (b) the parameters of the selected optimizer 

3.2 Evolution Strategies 

Evolution strategies (ES) are population based, probabilistic, direct search optimization algo-
rithms gleaned from principles of Darwinian evolution [15]. Starting with an initial population 
of μ candidate designs, an offspring population of λ designs is created from the parents using 
variation operators. Depending on the manner in which the variation and selection operators 
are designed and the spaces in which they act, different classes of ES have been proposed. In 
the ES algorithm employed in this study, each member of the population is equipped with a set 
of parameters: 

γd

c σ

d c d c

nn

d

n n n

c

[( , , ( , , )] (Ι ,Ι )

Ι =D R

Ι =R R [ π,π] a

+

+

= ) 



  −

a s γ s σ α

 (2) 

where sd and sc are the vectors of discrete and continuous design variables defined in the discrete 
and continuous design sets 𝐷𝑛𝑑  and 𝑅𝑛𝑐, respectively. Vectors γ, σ and α are the distribution 
parameter vectors taking values in 

n n n
,  and [ , ] ,aR R 

+ + −   respectively. Vector γ corresponds 
to the variances of the Poisson distribution. Vector σn

R +σ  corresponds to the standard devia-
tions (1  nσ  nc) of the normal distribution. Vector

n
[ π,π] a −α  is related to the inclination 

angles (nα = (nc-nσ/2)(nσ-1)) defining linearly correlated mutations of the continuous design 
variables sc, where n = nd + nc is the total number of design variables.  

Let P(t) = {a1,…,aμ} denotes a population of individuals at the tth generation. The genetic 
operators used in the ES method are denoted by the following mappings: 
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μ d c d c

rec :  (Ι ,Ι ) (Ι ,Ι )  (recombination)

mut :  (Ι ,Ι ) (Ι ,Ι )  (mutation)

sel  :  (Ι ,Ι ) (Ι ,Ι )  (selection, k {λ, μ+λ})

→

→

→ 

 (3) 

A single iteration of the ES, which is a step from the population ( )
P t

p
 to the next parent pop-

ulation ( )P t+1

p
 is modelled by the mapping 

μ μ

ES d c t d c t+1opt  :  (Ι ,Ι ) (Ι ,Ι )→  (4) 

 At the beginning of the procedure in generation t = 0 the initial parent population ( )
P t

p
, com-

posed by μ design vectors, is generated randomly. The next steps correspond to the main part 
of the ES algorithm, where λ offspring vectors are generated by means of recombination and 
mutation. Dl is a sub-population with two members selected from the parent population of the 
current generation ( )

P t

p
 which is used by the recombination operator. 

3.3 Particle Swarm Optimization 

In particle swarm optimization [5], multiple candidate solutions coexist and collaborate simul-
taneously. Each solution is called “a particle” having a position and a velocity in the multidi-
mensional design space while a population of particles is called a swarm. A particle “flies” in 
the problem search space looking for the optimal position. As “time” passes through its quest, 
a particle adjusts its velocity and position according to its own “experience” as well as the 
experience of other (neighbouring) particles. A particle's experience is built by tracking and 
memorizing the best position encountered. A PSO system combines local search (through self-
experience) with global search (through neighbouring experience), attempting to balance ex-
ploration and exploitation. Each particle maintains its two basic characteristics, velocity and 
position, in the multi-dimensional search space that are updated as follows: 

( ) ( )Pb, Gb
1 1 2 2( 1) ( ) ( ) ( )+ = + − + −j j j j jt w t c t c tv v r s s r s s  (5) 

( 1) ( ) ( 1)+ = + +j j jt t ts s v

 

(6) 

where vj(t) denotes the velocity vector of particle j at time t, sj(t) represents the position vector 
of particle j at time t, vector sPb,j is the personal best ever position of the jth particle, and vector 
sGb is the global best location found by the entire swarm. The acceleration coefficients c1 and 
c2 indicate the degree of confidence in the best solution found by the individual particle (c1 - 
cognitive parameter) and by the whole swarm (c2 - social parameter), respectively, while r1 and 
r2 are two random vectors uniformly distributed in the interval [0,1]. 

3.4 Differential Evolution 

In 1995, Storn and Price [16] proposed a new floating point evolutionary algorithm for global 
optimization and named it differential evolution (DE), by implementing a special kind operator 
which sought to create new offsprings from parent chromosomes. DE is a relatively novel par-
allel direct search method which utilizes a population of NP parameter vectors si,g (i=1,..,NP) 
for each generation g, in a recent study [17] a state of the art review on DE is presented. DE 
generates new vectors by adding the weighted difference vector between two population mem-
bers to a third member. If the resulting vector corresponds to a better objective function value 
than a population member, the newly generated vector replaces this member. The comparison 
is performed between the newly generated vector and all the members of the population ex-
cluding the three ones used for its generation. Furthermore, the best parameter vector sbest,g is 
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evaluated in every generation in order to keep track of the progress achieved during the optimi-
zation process. According to the variant implemented, a donor vector vi,g+1 is generated first 
according to: 

1 2 3, 1 , , ,( - )+ = + i g r g r g r gFv s s s  (7) 

before the computation of the ith parameter vector si,g+1. This step is equivalent to the mutation 
operator step of genetic algorithms or evolution strategies. Integers r1, r2 and r3 are chosen 
randomly from the interval [1,NP] while i r1, r2 and r3. F is a real constant value, called mu-
tation factor, which controls the amplification of the differential variation 

2 3, ,( - )r g r gs s  and is 
defined in the range [0,2]. In the next step the crossover operator is applied by generating the 
trial vector ui,g+1 = [u1,i,g+1,u2,i,g+1,…,uD,i,g+1]

T which is defined from the elements of the vector 
si,g and the elements of the donor vector vi,g+1 whose elements enter the trial vector with proba-
bility CR as follows: 

, , 1 ,
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  rand  or 
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+

+

 =
= 

 

= =
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i NP j n
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where , [0,1],j i randrand U I  is a random integer from [1,2,...,n] that
 
ensures that , 1 ,+ i g i gv s . The 

last step of the generation procedure is the implementation of the selection operator where the 
vector si,g, is compared to the trial vector ui,g+1: 

, 1 , 1 ,

, 1

,

 if ( ) ( )

 otherwise

1,2,...,

+ +

+


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
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u u s
s
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3.5 Ant Colony Optimization Algorithm 

The ant colony optimization algorithm [6] is a search algorithm inspired by studying the behav-
iour of ant colonies in their natural environment. In ACO, a colony of artificial ants searches 
for the best path inside a weighted graph. Consider a population of m ants; initially, the ants are 
randomly positioned on different nodes of the graph. At each step, ant k follows a random action 
choice rule, called random proportional rule, in order to decide which of the nodes will be vis-
ited next. While defining the route, ant k positioned at node i, maintains a memory Mk contain-
ing all nodes previously visited. This memory is used for defining the feasible neighbourhood 
Nk

i that contains the nodes that have not been visited by ant k yet. The probability with which 
ant k, positioned at node i, chooses to move to node j is defined as follows: 

( )
, ,

,

, ,

( ) ( )
, if  

( ) ( )
k
i

i j i jk k

i j i

i i

p j

 

 

 

 



= 


N

N  
(10) 

where τi,j is the amount of pheromone between nodes i and j, α is a parameter controlling the 
influence of pheromone τi,j, ηi,j is a heuristic information that is available a priori, denoting the 
desirability of the path between nodes i and j and it given by the following expression: 

,

,

1
i j

i jd
 =  (11) 

while in Eq. (11) β is a parameter controlling the influence of the path’s desirability ηi,j. Ac-
cording to Eq. (12), the heuristic desirability of moving from node i to node j is inversely 
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proportional to the distance between nodes i and j. The probability of choosing a particular 
connection i,j increases with the value of the pheromone trail τi,j and the heuristic information 
value ηi,j. When all ants have completed their routes, the pheromone concentration for each 
connection between i and j nodes, is updated for the next iteration t+1 as follows: 

( ), , ,

1

( 1) 1 ( ) ( ), ( , )
m

k

i j i j i j

k

t t t i j   
=

+ = −  +    A  (12) 

where ρ is the rate of pheromone evaporation, A is the set of paths (edges or connections) that 
fully connects the set of nodes and Δτk

i,j(t) is the amount of pheromone ant k has deposited on 
connections it has visited during its tour Tk and it is given by: 

,

if connection ( , ) belongs to 
( )

0 otherwise

k

kk

i j

Q
i j

L




 = 



T
T  (13) 

The coefficient ρ must be less than 1.0 in order to avoid unlimited accumulation of trail [4], 
while Q is constant. In general, connections used by many ants and are parts of short tours, 
receive more pheromone due to more deposition and less evaporation and are therefore more 
likely to be chosen by ants in future iterations of the algorithm. 

4. GRAPHICAL USER INTERFACE, OPERATING SYSTEM AND DEVELOPMENT 

The solution of real-world structural optimization problems can only be achieved with a syn-
ergy of the following actions during the numerical simulation and design procedure: (i) Using 
accurate and computationally-efficient models for the numerical modelling of the physical 
problem; (ii) Applying reliable and efficient metaheuristic optimization algorithms for improv-
ing the design procedure; (iii) Rational modelling of the system uncertainties (in the case of 
probabilistic formulation of the design problem) and (iv) Exploiting recent high performance 
computing (HPC) technology of workstations. 

4.1 High Performance Computing Component 

The use of MOA in structural optimization requires a number of FE structural analyses for the 
evaluation of the objective and constraint functions at each optimization step. An important 
characteristic of MOA that differs from other conventional optimization algorithms is that in 
place of a single design point the MOA work simultaneously with a population of design points 
in the space of variables. This allows for a straightforward implementation of the optimization 
procedure in parallel computer environments (natural parallelization). Since a number of FE 
analyses of the structure can be performed independently and concurrently, a complete finite 
element analysis can be allocated to a processor without the need for inter-processor commu-
nication during the solution phase. Therefore, the parallelization of the metaheuristics is based 
on the fundamental premise that each individual in the population of the offsprings represents 
an independent unit of all design variables and therefore its function evaluation can be done 
independently and concurrently. 

4.2 Graphical User Interface and Operating System 

HP-OCP is based on object-oriented general-purpose code written in C# and specifically de-
veloped for the optimum design of civil engineering structures while it is the official simulation 
platform of the HP-OCP Intelligence Inc., CSI Engineering and the Institute of Structural 
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Analysis and Seismic Research of the National Technical University of Athens. HP-OCP comes 
with a graphical user interface (GUI). GUI is highly configurable and allows tailoring to spe-
cific applications. It is also designed to communicate with third party software via an open 
application programming interface (OAPI) which must be capable to receive sets of input pa-
rameters from the GUI, determine the associated response, assess and return it to the optimiza-
tion component. HP-OCP is easy to use and easy to integrate into any system. Combining a 
familiar Windows-based interface with a simple menu-driven system, HP-OCP integrates 
quickly into most existing environments. HP-OCP is compatible with the most popular operat-
ing systems, including Windows 95/98/ME/NT/2000/XP/7/8/10. Furthermore, HP-OCP can 
also be installed on UNIX platforms. 

5. APPLICATION TESTS 

In order to present all the capabilities of HP-OCP, a wide range of different types of test cases 
is conducted and the results are illustrated in this section. In particular, two real-world building 
structures are optimized, the static analysis and design are performed in ETABS v18 and SCIA 
Engineer software, respectively by means of the Parametric Design Optimization Module of 
HP-OCP. Additionally, two topology optimization problems that are performed with the inte-
gration of HP-OCP with SAP2000 are shown, presenting the computational tools of the corre-
sponding Topology Optimization Module.  

5.1 Parametric Module 

In Figure 4(a) a test case of the parametric module that was studied in ETABS.v18 of CSi 
America, is shown. The structure is a 3-story school concrete building. This building consists 
of 378 frames, 92 shells, 15 section properties. The plan dimensions are 32.6×8.75 m2 and the 
plan area is equal to 275 𝑚2. The height of the first floor is equal to 3.5 m, while the height of 
the second and third floor is equal to 3.25m. Three types of concrete material are used: the 
C20/25, C25/30 and C30/37. The loads applied correspond to the self-weight, dead and live 
load and earthquake loading. The design combination and the design check are performed ac-
cording to the Eurocode 2 and 8. A cascade technique is applied where both LHS and PQN 
algorithms are used and a cost reduction of 14.31% is succeed after 209 iterations. 
 

 
(a) (b) 

Figure 4. Parametric optimization by means of HP-OCP integrated with (a) ETABS.v18, and (b) SCIA Engineer 

v19. 

 
In Figure 4(b) the test case that was studied by means of HP-OCP integrated with SCIA Engi-
neer of the Nemetschek Group, is illustrated. The initial design was provided by Nemetschek 
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and part of the structure to be optimized are the beams on the roof of the structure noted with 
pink dotted lines. All the beams have the same cross section which is a I cross section with 
varying height from H1 (minimum height) in the middle to H2 (maximum height). The loading 
combination applied was a combination extracted from the LRFD code containing self-weight, 
wind and snow loads and the design capacity check is a LRFD verification check as well. The 
Haunch variable represents the position of the minimum height as a percentage of the beam 
length. The other design variables represent all the beam cross section dimensions except the 
web thickness. The algorithm chosen to perform the optimization was the PQN algorithm. Both 
the objective function as well as the constraint are computed directly by the SCIA Engineer 
software and the HP-OCP is providing the mathematical algorithm. The final values of the 
design variables after the optimization procedure can be seen on Table 1. The reduction of the 
objective function was 6.59% and was found after 94 iterations. The maximum capacity viola-
tion of the proposed optimal design is near its limit of 1, more accurate at 0.98. 

Table 1. SCIA optimization test case – design variables (dimensions in mm). 

Design variables 𝐻1 𝐻2 𝐵1 𝐵2 𝑡𝑏 𝑡𝑠 

Initial design 610 915 305 305 16 16 

Final design 666 789 263 283 9.6 9.6 

5.2 Topology Optimization Module 

In the following two topology optimization test cases that are applied with the integration of 
HP-OCP with SAP2000 are presented. The functionality of the filter scheme, the non-optimized 
feature and the multiple load case problem is highlighted. More precisely, in Figure 5(a) the 
bridge problem is illustrated.  
 

 
(a) (b) 

Figure 5. Topology optimization in SAP2000 for (a) bridge problem and (b) MRF test case 

 
At the bottom left and right the structure is supported and at the top a distributed load is applied. 
Additionally, at the top of the bridge two rows of elements are predefined in the x direction that 
it is needed to exist for sure. The structure is discretized with 120 elements in the horizontal 
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direction and 40 in the vertical. 500 different properties are used in order to apply the SIMP 
method, the volume fraction was set to 0.3 and the radius filter to 3. Finally, the limit of the 
density that we set for deleting the elements was 0.5. In Figure 5b an MRF test case is presented. 
The mesh of the structure is 40 elements in the horizontal direction and 200 in the vertical. This 
is a multiple load case problem as we can see that 5 loads in each side are applied. The rest of 
the parameters remain the same except, of the limit of the density that we set for deleting the 
elements, that was set to 0.2. 

6. CONCLUSIONS 

The features and the capabilities of the structural optimization computing platform developed 
by OptiStructure and the Institute of Structural Analysis and Seismic Research of the National 
Technical University of Athens, are reviewed in the current study. The theoretical background 
of the methods incorporated in the HP-OCP computing platform and their efficiency is given 
special attention. A special topic in this context is the applicability in real-world civil structural 
systems; in this direction five real-world application examples are used to illustrate the capa-
bilities of the HP-OCP computing platform.  

The optimization platform is the result of a 20 year effort to develop a general purpose code 
for structural analysis and design optimization in the form of a modular standalone code. HP-
OCP is a general-purpose structural optimization code written in C#. Its strength is certainly 
the broad range of built-in capabilities. It performs structural optimization by a range of eight 
well-known metaheuristic optimization algorithms while in the case of a probabilistic formula-
tion reliability analysis for structural components and general systems is carried out by the first 
order reliability method and the Monte Carlo simulation procedure. Therefore, it can be said 
that HP-OCP offers a bright future in bringing optimization methods into the mainstream of 
structural engineering practice. 
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