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Abstract. In this work, we propose a lattice-particle approach to study ionic diffusion across graphite
electrodes. In our approach, we generate virtual representative volume elements (RVE) of the electrode
material based on its composition, i.e., active particles, carbon additives, and binder. Porosity is also
accounted for as an input parameter. To account for the evolution of the ionic concentration, Fickean
diffusion is considered. This problem is solved within a network of one-dimensional elements, which
is constructed upon the particles of the RVE, yielding a three-dimensional lattice. We use the central-
difference time-integration scheme to solve the transient problem within the framework of the finite
element method for the spatial discretization. One of the main advantages of our approach is that we are
able to reduce the number of degrees of freedom and thus the computational cost in comparison to the
conventional continuum-based finite element simulations. For the transport simulations, we consider Li
ions, although our approach can be also applied to other type of species, such as PF−6 anions in the case
of DIGB with LiPF6 electrolyte, for instance. Finally, we analyze the effect of microstructural features
of graphite electrodes on transport properties such as the effective diffusivity.

1 INTRODUCTION

Electrochemical storage is increasingly gaining more attention nowadays. Although it began essentially
at the level of consumer electronics, it has grown in recent years and has become a player in the dis-
tributed generation or electric vehicles as well as in large-scale applications (e.g. back-up supply at
renewable electricity sources). Li-ion batteries are one of the most significant, but not the only, tech-
nology currently being used for electrochemical storage. Nevertheless, it presents some sustainability
challenges due to market push. In this sense, the demand for this type of batteries has increased dramat-
ically and it will be very difficult to comply with future market expectations [1]. Hence, to fulfill this
goal, we need to find smarter storage devices [2].

Batteries also present certain durability concerns, and these are all related to electrochemical, mechanical,
and thermal phenomena [3], which threaten key performance indicators such as capacity, charge kinetics,
density, or durability. Although this issues are already evident at the so-called system scale, they are
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strongly linked to microstructural features at the component and material levels. These microstructural
aspects include, but are not limited to, morphological and physical properties of the electrodes. For
instance, in the case of graphite-based electrodes, as it is the case of Lithium-ion battery (LIB) anodes
or recent dual-ion graphite batteries (DIGB) electrodes, key features such as the shape of active material
(AM) particles, tortuosity, and porosity, play an important role. As a consequence, the development of
enhanced electrodes demands a better understanding of these microstructural properties along with the
underlying physics present at these scales of observation.

It is therefore crucial to have a better understanding of the degradation mechanisms limiting battery life
[4] to define specific improvement actions, such as developing tailor-made geometries, reinforcing strate-
gies or self-healing mechanisms. In fact, advanced computational tools are becoming very useful with
regard to the design of a new family of more reliable battery components which are less harmful to the
environment. For instance, high-resolution microscopy allows scanning portions of actual components
and realize virtual microstructures [5] on which we can perform numerical simulations involving elec-
trochemical, thermal, or mechanical events. This framework is suitable for evaluating the feasibility of
new designs or to gain further insight into certain issues of existing ones.

In this work, we propose a lattice-particle approach to study ionic diffusion across graphite electrodes.
In our approach, we generate virtual representative volume elements (RVE) of the electrode material
based on its composition instead of scanning actual microstructures. Although [7] deals with a similar
problem, only active particles were considered throughout the generation process, whereas we not only
consider those, but also the rest of constituents, e.g., carbon additives and binder. These particles are
placed within the RVE using the take-and-replace method until a target mix is realized [8]. Furthermore,
the RVE also accounts for porosity as an input parameter.

To account for the evolution of the ionic concentration, Fickean diffusion is considered. This problem
is solved within a network of one-dimensional elements, which is constructed upon the particles of
the RVE. We use an explicit time-integration scheme to solve the transient problem along with a finite
element (FE) discretization of the spatial problem. By using a one-dimensional framework, which is
especially suitable in the case of contacting particles, we are able to reduce the number of degrees of
freedom, reducing the computational cost in comparison to the conventional FE-based simulations.

For the transport simulations, we consider Li ions, although our approach can be also applied to other
type of species, such as PF−6 anions in the case of DIGB with LiPF6 electrolyte, for instance. Finally, we
analyze the effect of microstructural features of graphite electrodes on transport properties such as the
effective diffusivity.

2 ELECTRODE MICROSTRUCTURE

Electrodes are battery components made of different materials, resulting in a complex composite mi-
crostructure in which four phases are clearly identified, namely active material, binder, additives, and
pores [6]. The active material is where ionic diffusion takes place (i.e., insertion or extraction, also refer
to as intercalation or deintercalation, respectively). Typically, Li-ion batteries use graphite as the the ac-
tive material for Li intercalation in the anode, and lithium-metal oxide, such as NMC (Ni-Mn-Co oxide),
in the cathode. In this work, we will assume a spherical shape for the active particles, whose size will
depend on the material. In order to enhance electronic transfer and bind active particles together and the
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Figure 1: SEM micrograph of graphitic anode exhibiting granluar-like material structure. Reprinted from [9].

mix to the current collectors, the so-called binder is included. Polymeric binders, such as polyvinylidene
fluoride (PVDF), are commonly used in the preparation of graphitic slurries, conforming the so-called
carbon binder domain (CBD). Also, additives such as carbon black, are included in the electrode synthe-
sis in order to improve the electrode conductivity. These particles can be considered as smaller spheres
when compared to those of the active materials. At the microscale, the electrodes resembles a granular-
like material structure with porosity ratios that can lie beyond 0.5, before compaction processes (e.g.,
calendering) are carried out.

In this work, we consider the phases described above to generate virtual microstructures of the electrodes
on which virtual tests can be carried out. Therefore, not only geometrical but also material information
of these phases are taken into account in the generation process. In the case of graphite-based electrodes,
we consider graphite APs, carbon black, and PVDF binder [10]. However, the procedure described below
can be applied to any other type of graphite-based electrode without loss of generality.

2.1 Microstructural information

Three dimensional specimens with representative information of the microstructure are generated. The
size of this representative volume element (RVE) is an input parameter of this model and must be properly
chosen. Several methods can be followed for this purpose [8, 11, 12] and basically consists in the analysis
of the variation of macroscopic properties (e.g., diffusivity) after several realizations of different sizes.

Both geometrical and physical properties of the constituents are accounted in the model as input data:

1. Active material: total volume fraction (vam), particle sizes and distribution (in the form of a sieve
curve), diffusivity (Dam).

2. Additive material: total volume fraction (vad), particle sizes and distribution, diffusivity (Dad).

3. Binder: total volume fraction (vbi), diffusivity (Dbi).

4. Porosity: total volume fraction (vp or ε).

The composition of the electrode can be given in terms of the total porosity, ε, and the volume fraction
ratios of the constituents (e.g., vam/vbi/vad).
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Figure 2: Virtual realizations of graphite anode microstructures with a) ε = 0.35, b) ε = 0.45, and c) ε = 0.55.

2.2 Microstructure generation

Once the volume fractions of the different constituents have been defined, along with their sizes, we
proceed to place them spatially within the cubic domain. As pointed out above, all the particles of both
the active material and carbon additives are assumed to be spherical. In the case of the APs, a sieve
curve, which is an input parameter, is used to generate the whole distribution of active material particles.
Carbon additives particles are modeled with single-size spheres, smaller than that of the smallest AP. All
the particles are randomly placed within the RVE following the take-and-place method [8]. The largest
particles are placed first following a probability function. Overlapping is partially accepted in large APs,
following the criterion described in the next section. Particles than cannot be placed within the RVE are
relocated at empty positions until all the particles are set. This approach can be used for both the anode
and cathode.

Figure 2 presents three different realizations of an anode of size 80 μm. The porosity was set at
ε=0.35, 0.45, and 0.55. APs of 5, 10, and 20 μm with fraction volumes of 0.5, 0.3, and 0.2 are con-
sidered. No carbon additive particles were considered in these simulations, and a volume fraction ratio
vam/vbi=0.95/0.05 was defined. Figure 3 presents three realizations for a cathode of the same size and
similar porosity values. In this case, additive particles (depicted in cyan) of 4 μm was chosen and a
volume fraction ratio of vam/vbi/vad=0.95/0.05/0.05 was defined.

3 MATHEMATICAL MODEL OF ION DIFFUSION IN ACTIVE MATERIALS

Let us suppose that the ion diffusion process occurs within a three dimensional cube of size d, [0,d]3⊂R3

having a number of N particles. The faces of the cube whose unit normal vector is in the xxx direction will
be denoted by πZ=0 for the face of the cube in the Z = 0 plane and πZ=d for the face of the cube in the
plane Z = d.

We will use the symbols Ωi and Γi to denote the inner volume and the surface boundary of the i-th
particle. Sometimes, we will use the notation Ωi := Ωi∪Γi to refer to both, the volumen and boundary
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Figure 3: Virtual realizations of graphite cathode microstructures with a) ε = 0.35, b) ε = 0.45, and c) ε = 0.55.
Magenta particles correspond to APs and cyan particles to additive particles.

of the i-th particle, i.e. Ωi := Ωi∪Γi. Let us also call

U :=
N⋃

i=1

Ωi,

the space of the cube occupied by the particles.

In order to analyze the ion diffusion process, we apply the second Fick law expressed in terms of the heat
equation, a parabolic partial differential equation (PDE) which reads

∂c(x, t)
∂t

−∇x · (D∇xc(x, t)) = 0, x ∈U (1)

where c = c(x, t) is the Li+ concentration and D is the diffusion coefficient that may be considered
constant, although it may change with the concentration D = D(c) [13].

There are two boundary value problems based on (1) of our interest: the transient problem and the steady
state problem. On the one hand, the transient problem provides the evolution of the concentration with
time whilst the steady state problem is useful to determine the average diffusivity of the electrode.

3.1 Transient problem

For the transient problem, we shall use the Neumann boundary conditions given in terms of the conormal
derivative of the concentration, i.e., the species flux given by the following formula

JJJ(x, t) ·n :=−D
∂c
∂n

=−D∇xc(x, t) ·n

Hence, the Neumann boundary condition for the transient problem is

JJJ(x, t) ·n :=

{
J0 xxx ∈ Γi and Γi∩πZ=0 6= /0

0 else
(2)
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To obtain a uniquely solvable boundary value problem using (1) and (2), we also need the initial condition

c(x,0) = c0, ∀x ∈U. (3)

Consequently, equations (1)-(3) give an interior Neumann boundary value problem to be solved in a three
dimensional domain with smooth boundary. This problem is well-posed[14] and has as solution c(x, t)
for all x ∈U and t > 0.

3.2 Dirichlet steady-state problem

The steady-state problem for the PDE given in (1) with Dirichlet boundary conditions can be used to
estimate the average diffusivity of the electrode.

Let us note that the steady state equation for (1) is obtained as a result of removing the time-derivative
terms

−∇x · (D∇xc(x, t)) = 0, x ∈U (4)

By prescribing a two different concentrations c0 and c1 at two opposite surfaces, e.g. πZ=0 and πZ=d , we
can determine the average diffusivity of the electrode (< Dx >) in the direction of x by measuring the
corresponding reaction fluxes (Js) through these two surfaces and using the formula

< Dx >=− Js
∆c
∆x

(5)

where ∆c is the concentration gradient and ∆x the distance between the two opposite surfaces. In our
case, ∆x = d.

4 NUMERICAL DISCRETIZATION

We use finite elements for the spatial discretization and a central-difference explicit scheme for time
discretization.

4.1 Time discretization

The finite difference scheme applied to time-discretize is based on the evaluation of the concentration
rate vector at an instant t = tn using the formula

ċn =
cn+1− cn−1

2∆t
(6)

where cn+1 and cn−1 are the concentration vectors at instants tn+1 and tn−1, respectively. ∆t is the time
step size, e.g., ∆t = tn+1− tn.

Thus, the concentration at time step tn+1 is approximated as cn+1 = cn−1+2∆t ċn. Let us remark that for-
ward Euler scheme is used for the first iteration (n = 1), thus, c1 = c0+∆t ċ0, with ċ0 = M−1

d [q0−Kdc0].
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4.2 Space discretization

It is well known that the explicit discretization of time along with the space discretization using the finite
element method to (1) leads to the following system of linear equations [15]

Mdċ+Kdc = q (7)

where Md is the so-called capacity matrix, Kd is the diffusion matrix, c is the concentration vector, ċ is
the concentration rate vector, and q is the flux vector.

4.3 Lattice-particle formulation

The spatial discretization of the domain Ω is based on the lattice-particle approach [16]. The domain
is discretized into a network of one-dimensional flow elements connecting the centroids of the particles
of the microstructure. Each 1D flow element has its own capacity and diffusion matrix, that depends on
the relative distances of the particles. The particles interaction is established a priori using Delaunay’s
triangulation [8], resulting in a 3D mesh. An internal parameter β is used to control overlapping between
large particles. The binder is modeled as a meniscus formed between particles up to a certain distance
[6], and its behavior is lumped into the element matrices.

For any element of the mesh, the diffusion element matrix reads as:

Kd,e =
DeAe

Le

[
1 −1
−1 1

]
(8)

where De is the element diffusion coefficient, Ae is the element cross-section, and Le is the length of the
element e which is directly obtained from the Delaunay’s triangulation. De and Ae depend on the particle
interaction, and is described below.

On the other hand, the capacity element matrix reads as:

Md,e =
AeLe

ω

[
2 1
1 2

]
(9)

being ω a dimensional factor used in this type of network models. In the case of 3D lattices, ω = 3 [17].

Definition of element properties

The definition of the element properties De and Ae depends on the distance between two interacting
particles i and j, Le, and their respective diameters, di and d j. We define the meniscus length, lm, as the
gap existing between two interacting particles, lm = Le− di/2− d j/2. Thus, depending on the value of
lm, three cases can be identified:

(i) lm < 0. In this case, particles overlap (Figure 4a). This is only possible for large particles (i.e.,
active material particle). Therefore, the element diffusivity is that of the active material, De = Dam.
The cross-section of the element is defined in terms of the intersection radius, h. Thus, Ae = πh2.
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Figure 4: Possible particle interactions: a) overlapping (lm ≤ 0), b) binding 0 ≤ lm ≤ lth, and c) no interaction
lm > lth.

(ii) 0 ≤ lm ≤ lth, where lth is an interaction threshold until which particles are binded (Figure 4b).
In this case, two phases are present: active material and binder. We assume a serial coupling
(resistance analogy) of the phases interacting:

(
DeAe

Le

)−1

=

(
2DamAe

di

)−1

+

(
DbiAm

lm

)−1

+

(
2DamAe

d j

)−1

(10)

where Dbi is the diffusivity of the binder. The area of the meniscus, Am, is obtained from volume
averaging and its volume fraction, Vf ,bi. The values of diffusivity are set according to literature
[18, 19, 20].

In this case, the element cross-section is defined as in conventional dicrete element method [8],

Ae = min
(

πd2
i

4 ,
πd2

j
4

)
.

(iii) lm > lth. When the meniscus length of a preliminary particle interaction (i.e., that obtained directly
from the Delaunay’s triangulation) is larger than the interaction threshold (Figure 4c), no actual
physical interaction between the particles takes place. Thus the element is removed from the mesh.

5 IMPLEMENTATION

5.1 Transient problem

Making use of equations 8 and 9, we can assembly the global capacity and diffusion matrices, Md and Kd,
respectively, which are required to solve equation 7 within the FE framework. Moreover, we approximate
the concentration rate at instant tn as:

ċn = M−1
d [qn−Kdcn] (11)

The nodes of the mesh correspond to the centroids of the particles. At each node we define one degree
of freedom, i.e., average concentration of the particle, c. Therefore, the number of degrees of freedom of
the system equals the total number of particles.

8



Jorge Marin-Montin, Carlos Fresneda-Portillo and Francisco Montero-Chacón

5.2 Steady-state problem

The steady-state problem can be also solved in order to evaluate the macroscopic diffusion coefficient of
the electrode.

To solve the steady-state problem, Kdc = q, we chose the conjugate gradient (CG) method with Jacobian
preconditioning to improve the conditioning number of the matrix. The CG method is one of the most
used iterative solvers in sparse systems of linear equations, as is the case of our study. This method
was already used by other authors for lattice modeling [21]. This implicit approach solves the system
iteratively, but when certain conditions are satisfied, it may become a fast approach, especially in the
case of evolving systems (which is the scope of our future research). For an updated overview of this
method and its application to large-scale systems, refer to [22].

6 EFFECT OF MICROSTRUCTURE ON ELECTRODE PERFORMANCE

In this section we present preliminary results of our model on two different applications. In the first
case, we evaluate the effect of porosity in the macroscopic diffusion coefficient of the electrode using
steady-state simulations, while in the second case we present the time-dependent response of virtual
microstructures under charge and discharge conditions.

For the first case, we consider the boundary conditions as described in section 5.2 and measure the effec-
tive diffusivity of the electrode (Figure 5). Four different values of porosity are accounted for, namely ε=
0.3, 0.4, 0.5, and 0.6. For the simulations, the following mix ratio is considered: vam/vbi = 0.95/0.05.
This results into different RVE realizations (6). The values obtained for the effective diffusivity are
shown in Table 6 and are in agreement with experimental observations.

Table 1: Steady-state results

ε Particles Deff (μm2/s)
0.3 2832 0.0125
0.4 2417 0.0115
0.5 2011 0.0095
0.6 1606 0.0084

The second application is the simulation of electrode discharge. For this reason, the electrode is initially
charged with a Li-ion concrentration of 30000 mol/m3. In this example we show the discharging process
of the electrode subject to at 0.5 C-rate galvonstatic conditions at one boundary. In Figure 7 we see the
evolution of the Li-ion concentration along the discharge process.

7 CONCLUSIONS

In this work, we have presented a novel lattice-particle model to analyze Li-ion diffusion, which is
a key physical mechanism to understand important performance features of a battery (e.g. charging/
discharging times and capacity fade). Most of the existing works in the literature solve this problem
using continuum finite elements. However, when it comes to microstructural modeling, high spatial
and temporal resolutions are required. Therefore, alternative simulation techniques that alleviate such
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Figure 5: Steady-state simulation of an anode: a) microstructure, b) mesh, and c) reaction fluxes.

Figure 6: RVE realizations and resulting mesh: a-e) ε = 0.3, b-f) ε = 0.4, c-g) ε = 0.5, d-h)ε = 0.6.
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Figure 7: Galvanostatic discharge (at 0.5 C-rate) of the anode: a) 500 s, b) 2000 s, c) 3500 s, and d) 7500 s.

computational demands are of great help, especially in materials design for electrodes.

As shown herein, our approach dramatically reduces the number of degrees of freedom while keeping
relevant microstructural features at the very local scale. We have used this method to study the effect
of porosity and local diffusion properties (i.e., that of active materials) in the effective diffusivity of the
electrode, which is an important parameter regarding the macroscopic behavior of the cell.This is can
be measured by means of steady-state simulations. However, we also present transient simulations of
virtual electrode microstructures of charging/discharging processes.

Regarding the numerical implementation of solving schemes, we used the Conjugate Gradient method
with Jacobian preconditioning to solve the steady-state problem and the central-difference time integra-
tion scheme to solve the transient problem.

Finally, we have focused on Li-ion diffusion in graphite electrodes. However, we plan to implement
the mechanical problem [16] in order to account for diffusion-induced damage. This will allow us to
characterize the cycling behavior and hysteresis of the electrodes. This approach can be used for both
positive and negative electrodes and in future work we will replace Li+ by PF−6 as anion.
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