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Abstract. High Intensity Focused Ultrasound (HIFU) is a non-invasive technology that can be applied
for treatment of different diseases and ablation of tumours in different parts of the body. When high
intensity ultrasound propagates through the medium bubbles can be formed, a phenomenon known as
acoustic cavitation. There are two different regimes of acoustic cavitation: stable cavitation when a
bubble just oscillates around an equilibrium state, and inertial cavitation which is accompanied by bubble
collapse. These two different regimes can be used for different biomedical applications. However, in
some cases it can also make the treatment less predictable. Therefore, fundamental understanding of
these effects is very important. In the current study theoretical investigation of the bubble dynamics in
viscoelastic medium is performed and inertial cavitation thresholds have been calculated. To describe the
bubble dynamics, Gilmore-Akulichev-Zener model has been used, which is suitable for a large bubble
oscillations and high ultrasound powers. The results showed that using the dual-frequency driving signal
the threshold value of inertial cavitation can be significantly reduced compared to single-frequency signal
mode. Large difference between frequencies in the dual-frequency signal leads to lower threshold values.
Numerical simulations also showed the dependencies of the cavitation threshold on the bubble radius.
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1 INTRODUCTION

High-intensity focused ultrasound (HIFU) therapy has been applied to treat cancer in different organs [1].
It can can be also applied for acoustic hemostasis which helps to seal a bleeding site [2]. At high negative
pressures and high temperatures bubbles can be formed in the medium [3]. This process is called acoustic
cavitationa and it often appears during HIFU treatment [4].
The cavitation process can enhance the energy delivery during HIFU therapy, it can also help in drug
and gene delivery. At low ultrasound pressures, bubbles experience stable oscillations. When pressure
reaches some critical threshold value, bubbles start to collapse. Bubble collapse is accompanied by a
big increase in temperature inside the medium and correspondingly in larger ablated volume [4, 5]. This
type of cavitation is called inertial cavitation, and, therefore, its threshold is called inertial cavitation
threshold. Another type of cavitation is called stable cavitation when bubbles just pulse about their
equilibrium radius [5]. Stable cavitation bubbles can generate some effects such as surface wave activity
and microstreaming [6]. Also, stable cavitation gives an opportunity to study, for example, multibubble
sonoluminescence [7].
In this paper we will focus on inertial cavitation since it is more dangerous and can brings additional
damages to the tissue. The inertial cavitation threshold depends on many parameters such as medium
properties (density, viscosity, elasticity, and etc.), initial bubble size, and type of ultrasound signal [8,9].
Few recent theoretical studies [9–11] demonstrated that using dual-frequency driven signal is capable to
reduce the inertial cavitation threshold in comparison with single-frequency signal mode and with using
the same power output [9].
In this study, we will investigate the inertial cavitation threshold by analyzing the dynamics of a single
bubble in soft tissue. We will use different criteria for the threshold and different types of signal (single-
and dual-frequency). Moreover, the frequency combinations will be studied to find the optimal frequency
combination which yields the minimal value of the inertial cavitation threshold. Since it is necessary to
investigate large number of parameters, we are going to use multiple GPUs to speed up the calculations.

2 CAVITATION MODELS

2.1 Bubble dynamics models

In order to numerically investigate bubble dynamics and inertial cavitation threshold in a viscoelastic
medium during HIFU therapy, in the present study Gilmore-Akulichev-Zener model [12, 13] will be
used.
Zener model is a more general linear viscoelastic model since it takes into consideration all three tissue
parameters: viscosity µ, elasticity G, and relaxation time λ [14]:

λτ̇rr + τ = 2Gγrr +2µγrr, (1)

where τrr is the stress and γrr is the strain in r direction (r is the distance from the bubble center).
Moreover, from equation (1) we also can obtain other well-known viscoelastic models [14] such as
Kelvin-Voight model (when λ = 0) or Maxwell model (when G = 0).
Keller-Miksis model is one of the most frequently used model for the description of bubble dynamics
[14–17]: (
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where R is a bubble radius, the time derivative is denoted by the dot, c∞ is sound speed, ρ∞ is the
environmental density, p∞ is the far-field pressure, pA is the time-varying sound field, pB is the pressure
from the surrounding medium on the bubble interface, pi is the internal pressure of the bubble, σ is the
surface tension, R0 is the initial bubble radius, γ is the polytropic index (we assume adiabatic behavior
here), pG is the initial pressure of non-condensible gas inside the bubble.
Keller-Miksis model can be suitable for the cases with large-amplitude oscillations, for example, for the
inertial cavitation. Integrating equation (1) from R to infinity
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and evaluating equation (1) at r = R
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Keller-Miksis-Zener model (KMZ) is obtained [14] which is described by the closed system of equations
(2)–(3) and (4)–(5).
However, KMZ model is only correct up to Mach numbers smaller than 1 [16]. Another model, suggested
by Gilmore and Akulichev [18–20], can be applied for larger amplitudes of the bubble oscillations [21].
Combining Gilmore-Akulichev model with Zener model (4)–(5), a closed system for the description
of bubble dynamics in a viscoelastic tissue can be obtained, which is called Gilmore-Akulichev-Zener
(GAZ) model and has the following form:
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where H is an enthalpy at the bubble wall, C is speed of sound at the bubble wall, B and n are special
constants of the surrounding medium [12, 13]. Please refer to [12] for a detailed derivation of GAZ
model.

2.2 Acoustic model

To model the wave propagation in a viscoelastic medium, nonlinear Westervelt equation is used:

∇
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where pA is pressure of the sound field, δ is the sound diffusion, β is the coefficient of nonlinearity. In
the current paper, we will use only linear wave propagation. Therefore, equation (9) takes the following
form:

∇
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2
∂2 pA

∂t2 +
δ

c∞
4

∂3 pA

∂t3 = 0. (10)

The effects of nonlinear propagation can be included in the model by using nonlinear Westervelt equation
(9), as it was shown in previous papers of the present authors [22, 23].
In the current study for clarity sake, the single-frequency acoustic signal is used pA(t) = A cos(2π f1 t),
whereas for the dual-frequency acoustic signal we use

pA(t) =
A√
2
[cos(2π f1 t)+ cos(2π f2 t)] , (11)

where A is the acoustic pressure amplitude, f1 and f2 are the driving acoustic frequencies. Additional
coefficient 1/

√
2 in equation (11) is necessary to ensure the same output power delivered as that of the

single-frequency signal [9].

2.3 Inertial cavitation threshold

There are different definitions of the criteria for the inertial cavitation [9,24–26]. One of the popular and
commonly used definitions of the inertial cavitation threshold is doubled bubble expansion in relation to
the initial bubble size, R≥ 2R0, was introduced by Flynn in 1975 [27]. Bubble-wall velocity can be also
used as the inertial cavitation threshold, especially the collapse velocity Ṙ ≤ −c [25, 26], where c is the
speed of sound.
In the current study, the inertial cavitation threshold is calculated using both methods, with the accuracy
of 1 kPa, for different initial bubble radius varied from 0.1 to 10 µm, and for different acoustic signal
modes: single- and dual-frequency acoustic signals.
Since the bubble dynamics in soft tissue is investigated, liver properties have been used. Values of all
parameters are presented in Table 1.

3 NUMERICAL RESULTS

To solve the systems of equations for GAZ and KMZ models, the Runge-Kutta-Dormand-Prince numer-
ical method was used with step size control and with an absolute and relative error of 10−9 [28]. This
method allows to construct the fifth-order solution. We wrote a program in C++ to build the dynamics
of the bubble. Due to a large number of investigated parameters in order to find the threshold of inertial
cavitation, we used parallel calculations on graphical processor units (4 GPUs type of Titan V) for high
performance and speed up of our calculations.

3.1 Comparison of bubble dynamics models

To test our calculations of bubble dynamics, we compared the obtained results (Figure 1) with results
from Zilonova et al [12], where the difference between the GAZ and KMZ models also was demon-
strated.
Figure 1 shows the solutions of the GAZ and KMZ equations for small (Figure 1a), medium (Figure 1b),
and high (Figure 1c) amplitude values of the acoustic signal. As in [12], at low amplitudes, the GAZ and
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Table 1: Values of the model parameters

Denotation Definition Value (or value range)
c Speed of sound in the air 340 m/s

c∞ Speed of sound in the tissue 1549 m/s
p∞ Static far-field pressure 1.013 ·105 Pa
ρ∞ Tissue density 1100 kg/m3

σ Surface tension 0.056 kg/s2

γ Polytropic index 1.4
µ Tissue viscosity 0.009 Pa·s
G Tissue elasticity 4 ·104 Pa
λ Tissue relaxation time 3 ·10−9 s
n Constant in GAZ model 7
B Constant in GAZ model

(
c2

∞ρ∞/n
)
− p∞

A Acoustic pressure amplitude ≥ 1kPa
f1 First or alone acoustic frequency 1; 1.5; 3; 3.5 MHz
f2 Second acoustic frequency [0.01;5 ]MHz
R0 Initial bubble radius [0.1;10 ]µm
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Figure 1: Comparison of GAZ and KMZ models for different values of ultrasound signal amplitude ( f1 = 1 MHz):
a) A = 1 MPa, R0 = 1µm; b) A = 3 MPa, R0 = 1µm; c) A = 8 MPa, R0 = 4µm

KMZ models give similar results (Figure 1a–b). At high amplitudes, the difference in results of GAZ and
KMZ models becomes significant: different maximum values of the bubble radius, as well as different
bubble collapse time (Figure 1c). These differences are explained by the fact that the Gilmore-Akulichev
model can be applied for Mach numbers greater than one (and less than 2.2 [12]), while the Keller-Miksis
model can only be used for Mach numbers less than one. Therefore, in this paper, we will use the GAZ
model for further investigation of the inertial cavitation threshold.

3.2 Comparison of single- and dual-frequency signal modes

When a second wave is added to the dual-frequency mode of an acoustic signal, the behavior of this signal
becomes not as stable as in the single-frequency mode: new peaks and new attenuations of signal appear
(Figure 2a–b). At the same time, the increase in the bubble radius values during the dual-frequency signal
mode is stronger than during the single-frequency mode, especially with the use of high frequencies
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(Figure 2d). When high frequencies are used, the influence of the dual-frequency signal mode on the
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Figure 2: Behavior of acoustic signal for single- (a) and dual-frequency mode (b). The bubble dynamics in
presence of single- and dual-frequency acoustic signal for low (c) and high frequencies (d)

bubble radius expansion is more clear (Figure 2d). Thus, for high frequencies, the application of the
dual-frequency mode can lead to a lower value of the inertial cavitation threshold.

3.3 Inertial cavitation threshold

As was shown in the previous subsection, with the use of dual-frequency driving signal the bubble size
can become larger compared to a single-frequency signal. Therefore as was already numerically shown
in previous works [9,11], the use of a dual-frequency acoustic signal can reduce the threshold of inertial
cavitation. To investigate the effect of dual-frequency excitation on the bubble dynamics two different
criteria for the inertial cavitation threshold will be used: through the radius of the bubble R ≥ 2R0 and
through the velocity of the bubble collapse Ṙ≤−c.
To determine the threshold value, the pressure value is increased using 1 kPa increment, starting with 1
kPa. We repeat this process for different initial values of the bubble radius (in the range from 0.1 to 10
µm with step size equals 0.01 µm) and for different combinations of frequencies.
Figure 3a shows the estimated threshold of inertial cavitation found using the radius criterion, whereas
Figure 3b shows the threshold determined using the velocity criterion of the bubble wall. As was men-
tioned before, in the dual-frequency mode, the threshold is lower than in the single-frequency mode,
which is clearly seen for high frequencies. With an increase of initial values of the bubble, the threshold
also starts to grow. Moreover, for low frequencies, this growth is not so sharp as for high frequencies.
Different criteria of the threshold give different results.
Using the radius as the criterion gives a smaller prediction of the threshold than when using the velocity
of the bubble collapse. Only values of the threshold for large bubbles in 10 µm are approximately the
same for both criteria. Thus, criterion with radius gives the lower limit of the threshold, and collapse
velocity criterion gives the upper limit of the threshold value [26].
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Figure 3: Predicted inertial cavitation threshold for single- and dual-frequency acoustic signal with threshold
criteria R≥ 2R0 (a) and Ṙ≤−c (b)
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Figure 4: Predicted inertial cavitation threshold (a) and all optimal frequencies which together with fixed frequency
at 3 MHz lead to lower threshold pressure (b)

3.4 Optimal frequency combinations

Since different combinations of frequencies have different effects on the behavior of the bubble, and, on
the threshold of inertial cavitation, in this paper one frequency has been fixed at 3 MHz. The value of
another frequency has been varied in the range between 10 kHz and 5 MHz with step size equals 10 kHz.
The results of all these combinations are analyzed and the frequency values that give the optimal (lowest)
threshold of inertial cavitation for all considered initial values of the bubble radius are found (Figure 4a).
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Blue dashed line represents the lowest threshold pressure for each initial radius. It means that for different
initial radius we have different optimal frequency. Thus, blue line is difficult to achieve since multiple
bubbles with different radius can appear in tissue during HIFU therapy. However, this blue line can
be used as a reference, in order to find the optimal second frequency for all bubbles sizes. This optimal
frequency is equal 0.03 MHz, and the threshold is represented by magenta line. Red line shows threshold
pressure when only one frequency is used (3 MHz).
Our results demonstrate that the big difference between two frequencies in a dual-frequency mode can
help to sufficiently decrease the inertial cavitation threshold pressure.
Figure 4b presents all frequency values for a given radius that help to achieve the minimum threshold of
inertial cavitation. One can notice that the frequency, which the most often gives the minimum threshold
pressure independent on the bubble size, is 0.02 MHz. These threshold results are represented by green
line.

4 CONCLUSIONS

- Gilmore-Akulichev-Zener model is a more general model for the investigation of bubble dynamics
and inertial cavitation threshold in soft tissue since it is applicable for high Mach numbers (M ≤
2.2).

- Inertial threshold criterion using radius R ≥ 2R0 gives the lower threshold values in comparison
with the criterion using bubble collapse velocity Ṙ≤−c.

- Dual-frequency signal mode can significantly reduce inertial cavitation threshold in comparison
with single-frequency mode especially for high values of frequency (3 MHz and greater).

- Threshold pressure value depends on the initial size of the bubble. Larger bubbles require greater
pressure to start the inertial cavitation process. Dual-frequency ultrasound signal allows to use
similar threshold pressures for both small and big bubbles, when optimal frequency combination
is chosen. The choice of large frequencies difference can help to achieve the minimum threshold
value (for example, 3 MHz and 0.03 MHz).
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