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Abstract. Numerical simulation of guided wave excitation, propagation, and diffraction in laminate
structures with local inhomogeneities (obstacles) is associated with high computational cost due to the
need for a mesh-based approximation of extended domains with a rigorous account for the radiation con-
ditions at infinity. To obtain computationally efficient solutions, hybrid numerical-analytical approaches
are currently being developed, based on linking a numerical solution in a local vicinity of the source
and/or obstacles with an explicit analytical representation in the external semi-infinite domain. However,
the developed methods are generally not widely spread because the possibility of such coupling with an
external multimode wave field is generally not provided in standard finite-element (FE) software. We
propose a scheme that allows the use of the FE software as a black box for the required correct matching
of local numerical and global analytical solutions (FEM-An). The FEM is used to obtain a set of local
numerical solutions that serve as a basis in the inner domain. These solutions satisfy the boundary con-
ditions induced by guided wave modes so that they fit correctly with the modal expansion in the outer
region. The expansion coefficients of both FE and modal decompositions are determined then from the
condition of stress and displacement continuity at the interface between the inner and outer domains.
This scheme was numerically validated against analytical solutions to test problems and FE solutions for
long waveguide sections with perfect match layer absorbing conditions at the ends (FEM - PML). Along
the way, it turned out that the FEM-PML approach gives an incorrect result in the backward-wave bands
and at high frequencies. The application of the FEM-An hybrid scheme is illustrated by examples of
Lamb wave diffraction by elastic inclusions and delaminations.

1 INTRODUCTION

The relevance of numerical investigation of guided wave (GW) diffraction by local inhomogeneities (ob-
stacles) is determined by numerous applications in such fields as mechanical engineering, non-destructive
structural health monitoring (SHM), physical acoustics, geophysics, and others. Numerical simulation is
often performed using standard (commercial) software that implements the finite element method (FEM).
Such software is considered a versatile computer modeling tool because of its applicability to objects of
various shapes, sizes, and materials and provided with a user-friendly interface, mesh generators, and
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post-processing facilities. However, its use in solving wave problems in extended domains (waveguides)
encounters specific difficulties. They associate with a rapid increase in computational costs with an in-
crease in the number of elements required for a good approximation of the oscillating wave field and the
need to satisfy the radiation conditions at infinity.

Moreover, standard FEM software applies only to a finite domain. Its use with an infinite waveguide
requires prior artificial limitation of the mesh area. For this, different types of absorbing or nonreflecting
boundary conditions are set at the artificial boundaries, intended to correctly take into account the outflow
of wave energy to infinity [1]. Among them, conditions of a perfectly matched layer (PML), which are
used in much commercial software, have become especially popular [2].

In general, this approach works well, but with the steady-state time-harmonic oscillations, many super-
fluous spectral points of the corresponding boundary value problem appear in the frequency complex
plane. Such points are inherent in restricted domains, but they are absent with the initial infinite guide.
And the larger the limited domain is, the denser these additional unnecessary spectral points lie. At fre-
quencies close to such spectral points, the FEM-PML solution can significantly differ from the desired
solution for the infinite region. Besides that, the domain limited by the absorbing boundary conditions
can include not only local inhomogeneity (scatterers), where the FEM use is essential, but also the source
and measuring points. Therefore, the computational costs can still be too large because of the increasing
number of mesh nodes needed to approximate the solution in both the diffraction zone and the entire
wave propagation path from the source to the obstacles and sensors.

To reduce the cost, one can perform a mesh FE approximation only in local areas containing inhomo-
geneity and use explicit guided wave (normal mode) representations in the external domain [3] as well
as between the source and obstacles. Coupling the local FEM solutions with the analytical expansions
gives additional equations to the FEM algebraic system required for the unknown expansion coefficients.
The coupling can be carried out in various ways, for example, by integrating analytical representations
directly into the FEM scheme in the form of special infinite [4] or scaled [5] elements. However, such
a method seems hardly possible with commercial FEM software, a ”black box” for users who cannot
access the code.

Nevertheless, we have developed a hybrid numerical-analytical scheme that uses standard FEM software
only at the scatterers [6]. This scheme is based on the prior calculation of FEM solutions in the local
subdomain with the boundary conditions induced by normal modes supported by the outer part of the
waveguide. These FEM solutions are then used as a basis to match with the expansion in terms of guided
waves propagating in the external domain. This GW expansion can be considered as a multimode infinite
element that enables correct accounting for the wave energy outflow to infinity without introducing artifi-
cial absorbing boundary conditions. In this paper, we briefly repeat the scheme’s description (Section 2)
with the examples of its analytical and numerical verification and illustrate it with some numerical exam-
ples for elastic waveguides with multiple inclusions and layered structures with interface delaminations
(Section 3).
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2 FEM-ANALYTIC HYBRID SCHEME

2.1 Mathematical framework

To give an idea of the local-global numeric-analytic approach (FEM-An), let us consider an isotropic
layered elastic waveguide D : |x| < ∞, |y| < ∞, −H < z < 0, with a local area Din : |x| < a containing
different types of inhomogeneities (cracks, voids, inclusions, surface irregularities, etc., Fig.1). The
geometry and material properties are independent of y: u=(ux,uz)= (u,w) and x=(x,z) (2D statement).
The steady-state time-harmonic oscillations u(x,ω)e−iωt can be caused by some source (e.g., surface load
or volume force) located in Din or by an incident guided wave u0(x)e−iωt = a0(z)ei(ζ0x−ωt) coming from
a remote source or infinity.

x

z

Figure 1: Elastic layered waveguide with inhomogeneities localized in the domain Din : |x| ≤ a; the external
domains D± are homogeneous in x direction; domain DF : |x|< b is for FEM solution.

The complex displacement amplitude u obeys the governing Navier-Lamé equation

(λ+µ)∇ ·divu+µ∆u+ρω
2u = 0. (1)

in each sublayer Dm : |x| < ∞, zm+1 ≤ z ≤ zm of the total domain D =
M⋃

m=1
Dm, m = 1,2, . . . ,M, and

satisfies the conditions of stress and displacement continuity at the interfaces z = zm; M is the number of
sublayers. The outer sides z = 0 and z =−H are stress-free except a possible local area of external load-
ing. The Lamé constants λ and µ, and the density ρ are piece-wise constant functions of the transversal
variable z.

The external domains D−: x < −a, and D+: x > a, do not contain scatterers. Therefore, the wave field
usc scattered in the domain Din can be represent here in terms of travelling and evanescent guided waves
(normal modes):

usc(x,z) =
∞

∑
n=1

{
c−n a−n (z)e

−iζn(x+a), x <−a

c+n a+n (z)e
iζn(x−a), x > a

(2)

Here c±n are unknown expansion coefficients, a±n (z) are normal-mode eigenforms, and ζn are real and
complex wavenumbers. Several first wavenumbers are purely real (Imζn = 0, n = 1,2, . . . ,Nr), they
yield traveling guided waves. The others are complex ones arranged in ascending order of the imaginary
parts (Imζn+1 ≥ Imζn, n > Nr). They yield evanescent modes that exponentially decay with the distance:

|a±n e±iζn(x∓a)| ∼ O
(

e−Imζnr
)
, r = |x|−a→ ∞.
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Therefore, to provide the required accuracy outside some area DF : |x| < b, which includes the location
of inhomogeneity (a < b, Din ⊂ DF ), one can keep only a limited number of N terms in expansion (2)
(all real and a few first complex wavenumbers ζn).

In accordance with expansion (2), the stress vector σ(x) = (σxx,τxz) = (σ,τ), which will be needed below
for the boundary conditions on the waveguide’s cross-section x = const, is also represented in terms of
GWs:

σsc(x,z) =
∞

∑
n=1

{
c−n b−n (z)e

−iζn(x+a), x <−a

c+n b+
n (z)e

iζn(x−a), x > a.
(3)

The normal mode eigenforms b±n (z) are expressed via a±n (z) in conformity with the stress component
representation:

σxx = σ = λdivu+2µ
∂w
∂z

, τxz = τ = µ(
∂u
∂x

+
∂w
∂z

).

The wavenumbers ζn are roots of the characteristic (dispersion) equation for the waveguide considered,
and the eigenforms an are eigensolutions in the Fourier transform domain associated with these roots.
Conventionally, they are calculated using the modal analysis technique, but we traditionally obtain them
from the Green’s matrix based integral representation of the force-generated solution in the intact waveg-
uide [6]:

u = k ∗q =
∫
Ω

k(x−ξ,z)q(ξ)dξ =
1

2π

∫
Γ

K(α,z)Q(α)e−iαxdα.

This equality gives the wavefield u(x) generated by a surface load q(x) as a convolution of the Green’s
matrix k and vector q or, alternatively, in the form of inverse path Fourier integral of their Fourier sym-
bols: K(α,z) = F [k(x,z)] and Q(α) = F [q(x)]; F is the Fourier transform operator with respect to
the x variable. The roots ζn coincides with the poles of the matrix K elements, and the residues from
these poles to constant factors coincide with the corresponding eigensolutions. Therefore, the residue
technique applied to the path integral in Eq. (3) reduces it to the sums of form (2), in which

a±n =∓iresK(α,z)Q(α)
∣∣∣
α=∓ζn

.

This way of obtaining expansion (2) is more convenient for us because we have elaborated and computer
implemented a series of fast and numerically stable algorithms of matrix K calculation for multilayered,
functionally graded, anisotropic, porous, cylindrical, and other elastic wavequides (e.g., [7-9]). Thus, the
described below hybrid scheme FEM-An can be implemented for all such waveguides.

2.2 General scheme

Given representation (2), a general solution in the entire infinite domain can be sought in the following
form

u(x)≈ uN(x) =


u0(x)+u−sc,N(x), x≤−b,

uF(x), |x| ≤ b,

u+
sc,N(x), x≥ b.

(4)
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Here u0 is an incident wavefield, u±sc,N are first N terms of expansion (2), and uF = (uF ,wF) is a FEM
solution in the local area DF . For definiteness, we assume that the incident wave u0 comes from the left;
if the source is located in DF , then u0 ≡ 0. The number of terms N and the borders x = ±b should be
chosen so that the contribution of the discarded terms does not exceed a certain specified error ε. The
stress field σ(x) ≈ σN(x) is of the same structure as uN with representation (3) for σ

±
sc,N in the exterior

domains D± and a FEM obtained field σF = (σF ,τF) in DF .

The artificial boundary x = ±b should not spoil the continuity of the displacement and stress vectors
u(x) and σ(x). That is, the equalities

(u0 +u−sc)|x=−b = uF |x=−b, uF |x=b = u+
sc|x=b (5)

(σ0 +σ
−
sc)|x=−b = σF |x=−b, σF |x=b = σ

+
sc|x=b, (6)

must be satisfied. However, the scattered fields u±sc and σ±sc are determined up to unknown coefficients
c±n . Therefore, it is not possible to compute and set the arrays of input data at the boundaries, which are
required for the FEM packages to work. To use FEM, the values c±n have to be already obtained, which
is impossible before the values of uF and σF are calculated. In addition, the FEM computation requires
to specify only two functions on the border ∂DF out of four components of the vector-functions usc and
σsc that appear in conditions (5) and (6). That is, the FEM problem is overdetermined, and to form the
input data, one can only use either conditions (5) or (6).

To avoid these difficulties, we have formulated 2N +1 auxiliary FEM problems with the boundary con-
ditions induced by u0 and each of the modal eigenforms separately. And the total FEM solution uF is
taken in the form of linear combination of the auxiliary FEM solutions u±F,n with the same expansion
coefficients c±n :

uF(x) = uF,0(x)+
N

∑
n=1

[
c+n u+

F,n(x)+ c−n u−F,n(x)
]
, |x| ≤ b. (7)

(and similarly for σF ).

For calculating FEM solutions u±F,n, one can use the displacement boundary conditions a±n eiζn(b−a) in-
duced at the boundaries x =±b by the normal modes propagating in the exterior domains D± (with zero
displacements at the opposite end). In such a case, conditions (5) of displacement continuity are satisfied
automatically, and the total field uN(x) visually looks smooth. However, it cannot correctly meet the con-
dition of wave energy radiation to infinity because the Umov-Poynting vector, specifying time-averaged
wave energy transfer in a time-harmonic field, include both displacement and stress components. To
keep energy balance, the stress field must be also continuous. To meet conditions (6) of stress continuity,
one can use the remaining 2N degrees of freedom provided by the coefficients c±n . The discretization of
these boundary conditions can be performed in various ways, e.g., by equating at N nodes on each side
or using the Galerkin method. In the latter, it is advantageous to take components of the same normal
modes a±n and b±n as projectors and use the property of normal modes’ orthogonality [10]:

(am,x,bn,x)− (bm,z,an,z) = 0, m 6= n, where ( f ,g) =
0∫

−H

f (z)g(z)dz.

To use orthogonality, the FEM problems should be with mixed boundary conditions (one displacement
component and one stress component, say σF,n = bn,x and wF,n = an,z at one end and zero at the other).
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Such discretization reduces the problem to a linear algebraic system with respect to the vector of un-
known coefficients c = (c−1 ,c

−
2 , ...,c

−
N ,c

+
1 ,c

+
2 , ...,c

+
n ). The orthogonality provides a diagonal matrix-

block D in the system’s matrix A, which makes it well-conditioned:

Ac = f. (8)

A = B+D, f = f0 + fF ,

B =

[
B−1 B+

1
B−2 B+

2

]
,

b±1,nm = (u±F,m,b
−
n,x)− (τ±F,m,a

−
n,z), x =−b,

b±2,nm = (u±F,m,b
+
n,x)− (τ±F,m,a

+
n,z), x = b.

D = diag(d−1 ,d
−
2 , ...,d

−
N ,d

+
1 ,d

+
2 , ...,d

+
N ), d±m =−

[
(a±m,x,b

±
m,x)− (b±m,z,a

±
m,z)
]

eiζmr

Vector f0 is almost a null vector except for the component f0,m =
[
(a+m,x,b

−
m,x)− (a−m,z,b

+
m,z)
]

eiζmr, where
m: ζm = ζ0 in the incident wave u0. The components of vector fF = ( f−F,1, ..., f−F,N , f+F,1, ..., f+F,N) are
f±F,n = (uF,0,b±n,x)− (τF,0,a±n,z) at x =±b.

3 NUMERICAL EXAMPLES

3.1 FEM-An verification

Applicability of the FEM-An scheme was first demonstrated with an analytically solvable test case [6].
The waveguide was taken in the form of a homogeneous elastic layer with a flexible but inextensible thin
patch bonded to the surface (Fig.2). The obstacle is modelled by zero tangential displacement (ux = 0)
and normal stresses (σzz = 0) in the contact area |x| ≤ a, z = 0. The rest of the guide’d surface is stress-
free except a point x0 = (x0,0) at which a pin-force load τxz = δ(x− x0) is applied.

Figure 2: Geometry of test examples.

This is a classical elastic waveguide, which supports the antisymmetric and symmetric Lamb waves An

and Sn. The real and complex branches Reζn(ω) and Imζn(ω) of several first Lamb modes are shown in
Fig. 3. Here, the dimensionless wavenumbers ζn are functions of the dimensionless angular frequency
ω = 2π f H/cs, where f is dimensional frequency, H is the guide’s thickness, and cs is the shear-wave
velocity in the elastic material. This dimensionless form is based on the three basis units: length l0 = H,
velocity c0 = cs, and density ρ0 = ρ. It is also used in the examples of subsection 3.2 below.

The geometry of the test problem allows reducing it to the Wiener-Hopf integral equation for the un-
known contact stresses τxz = q(x), |x| ≤ a, z = 0. The right-hand side of this equation f (x) =−u0(x,0).
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Figure 3: Real (solid lines) and imaginary (dashed lines) parts of the dimensionless Lamb wave dispersion curves;
Poisson’s ratio ν = 0.34.

The solution to such an integral equation can be obtained semi-analytically by the method of factoriza-
tion [11] or using the residue technique that reduces it to a system of linear algebraic equations [13].
Thus, it made it possible to compare the three approaches:
a) by solving integral equation (”exact” solution Int-Eq);
b) by using standard FEM package with PML absorbing conditions (FEM-PML);
c) by using the hybrid scheme FEM-An.

The characteristic feature of the Lamb wave dispersion properties is the presence of so-called backward
GWs with the opposite phase and group velocities. The backward waves are associated with the parts of
dispersion curve with a negative slope, e.g., the part S∗1 of the branch S1 in the frequency range 5.75<ω<
6.28, and the beginning of the A2 curve in a small cutoff vicinity (Fig. 3). The three approaches above
show good agreement at all frequencies except for the backward mode bands. In the latter, the FEM-
An and Int-Eq results keep coinciding with each other, whereas the FEM-PML exhibits a considerable
deviation. This is illustrated by the example of frequency dependence of the transmission coefficient
κ+ = E+/E0 (Fig. 4) [6]. Here E+ is the time-averaged wave energy transferred to infinity behind
the obstacle by the field u+

sc, and E0 is the total time-averaged power supplied by the point source at
x0 =−5; the obstacle is of half-width a = 1, and the half-width of the FEM area DF is b = 10 for FEM-
PML and b = 4 for FEM-An. Since the Int-Eq results are exact, the FEM-PML deviations indicate the
inapplicability of standard FEM packages to infinite waveguide at the backward-mode ranges, even if it
is reduced to a finite domain by correct absorbing boundary conditions.

As an additional example aimed to show that the FEM-PML method fails at the backward mode fre-
quencies not only for the wave energy transfer through the area of inhomogeneity, Figs. 5 – 6 display
numerical results for the case when the surface patch works as a piezoelectric actuator (PWAS [12]).
Under a vertically polarised time-harmonic driven electric field, the bonded to the surface piezoelectric
patch stretches and contracts generating GWs. Figure 5 depicts the frequency dependence of the total
wave power E0 supplied into the guide by this source with a constant driven voltage and carried to infinity
by the traveling GWs. These dimensional results are obtained for an aluminium plate of thickness H = 1
mm, cs = 3132 m/s, ρ = 2700 kg/m3, and ν = 0.34. The dimensionless dispersion curves of Fig. 3 are
applicable in this case with the frequency unit (multiplier) f0 = cs/H = 3.132 MHz. The range 0≤ f ≤ 4
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Figure 4: Transmission coefficient κ+(ω): exact solution Int-Eq (solid line), FEM-PML (dashed line), and FEM-
An (markers).

MHz of Fig. 5 corresponds to the dimensionless range 0≤ ω≤ 8.025 of Fig. 3, and the backward mode
band is 2.87 < f < 3.13 (MHz).

Indeed, one can see that, at these frequencies, the FEM-PML dashed line is very different from the
FEM-An solid line. Besides, unlike Fig. 4, the differences are also noticeable at some other frequencies.
Apparently, the half-width b = 6 mm selected for the FEM area DF in both approaches was not large
enough to proper simulate the infinite guide by the FEM-PML method. At the same time, the FEM-An
is insensitive to the DF size if a sufficient number of modes N is retained in the fields u±sc.

Figure 5: Source energy E0( f ) supplied from the piezoelectric patch to the substrate under constant amplitude
voltage calculated by FEM-An (solid line) and FEM-PML (dashed line).

The FEM-PML inapplicability at the backward-mode frequencies affects not only the description of
energy transfer but also other wave field characteristics. For example, the patterns of oscillation ampli-
tude |u(x,z)| under the piezopatch coincide at a regular frequency (Fig. 6a,c) and visually differ at the
backward-mode range (Fig. 6b,d).

3.2 Multiple inclusions

With its increased accuracy compared to standard FEM and significantly lower computational expenses,
the FEM-An is a useful tool for fast parametric analysis of wave phenomena in elastic structures with
complicated local obstacles. The next numerical example is for an elastic plate with a set of equidistant
inclusions (Fig. 7). With an infinite number of such identical obstacles, the structure becomes a phononic
crystal featured by pass and stop (or gap) bands. In the former, a traveling wave u0 passes without
reflection, and in the latter, it is completely blocked . The FEM-An-based parametric analysis allows
monitoring the pass and gap bands’ formation as the number of obstacles N increases.

The plots of the transmission coefficients κ+(ω) = E+/E0 in Fig. 8 illustrate such a formation of the
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PML

Figure 6: Displacement amplitudes |u(x,z)| under the piezopatch actuator: at the regular frequency f = 0.15 MHz
(left, (a), (c)), and the backward mode frequency f = 2.9 MHz (right, (b), (d)); FEM-An – top (a), (b), FEM-PML
– bottom (c), (d).

x

d2a

z y

0

Figure 7: Elastic plate with equidistant inclusions.

pass and gap frequency ranges for the A0 and S0 incidence (left and right subplots, respectively). The
guide’s dimensionless properties are the same as above (H = 1, cs = 1, ρ = 1) while the elastic rectangle
inclusions are specified by the parameters: ν = 0.3, cs = 2, ρ2 = 1.57, 2a = 0.6, and d = 2; E0 is the total
energy carried by the incident wave u0 through the guide’s cross-section before the obstacles, and E+

is its part remaining behind them. As expected, the pass and gap bands visually appear as N increases,
similarly as it was demonstrated with a simpler 1D guide with periodic point-wise defects [14].

3.3 Disbonds in laminate plates

The examples above were for a homogeneous elastic layer. To demonstrate the FEM-An practical appli-
cability to multilayered structures, let us consider a typical GW-SHM problem of delamination detection
in laminate composite plates [12]. Their locating and size estimates are based on the study of GW diffrac-
tion by an interface crack (Fig. 9). As an example, Fig. 10 depicts the variation of the frequency pattern of
the transmission coefficient κ+( f ) as the crack half-width a varies from 2.5 to 7.5 mm. The plate is com-
posed of four sublayers of thickness h = 0.575 mm (the total thickness H = 2.3 mm), two external and
two inner sublayers are of the same material properties: ν1 = 0.323, cs,1 = 1026 m/s, ρ1 = 1522 kg/m3

and ν2 = 0.247, cs,2 = 2514 m/s, ρ2 = 1522 kg/m3 for the former and latter, respectively. The crack is
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Figure 8: Transmission coefficient κ+(ω) for the A0 (left) and S0 (right) Lamb waves incident on N rectangle
inclusions.

between the first and second sublayers. As in the previous example, the figure depicts the transmission
of the A0 and S0 fundamental Lamb modes (left and right subplots). The curves of A0 transmission are
featured by sharp dips indicating abrupt blocking of A0 propagation by the crack at specific resonance
frequencies, which values depend on the crack’s size. Thus, the allocation of scattering resonance fre-
quencies extracted from the experimentally obtained GW frequency response can serve as additional
information to estimate delamination severity. With the S0 incidence (Fig. 10, right), the resonance dips
and peaks are not very visible. Nevertheless, to estimate the crack size, one can use the range of S0 full
passing 0 < f < f0, which shrinks from f0 ≈ 200 to f0 ≈ 75 (kHz) as the half-width a increases from 2.5
to 7.5 (mm).

D
in

D
F

a-a-b b
u
0

u
sc

u
sc

+

u
FD

x

z

Figure 9: Multilayered structure with an interface delamination.
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Figure 10: The change of frequency patterns of the transmission coefficient κ( f ) for the A0 (left) and S0 (right)
guided wave incident on the delamination of varying half-width a.

4 CONCLUSION

The main idea of the local-global numerical-analytical scheme FEM-An is described, verified, and illus-
trated by numerical examples for multiple obstacles and multilayered waveguide structures.
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