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Abstract. The application of finite element techniques for the analysis and optimization of complex
thermo-mechanical structures typically involves highly nonlinear models for material characterization,
tribological contact, large deformation, damage, etc. These nonlinearities usually call for a higher-order
Spatio-temporal discretization, including a large number of elements and time-steps in order to provide
good convergence and sufficiently accurate simulation results. This inevitably leads to many expensive
simulations in terms of cost and time if an optimization or adaption of model parameters has to be done.
In this work, a FEM simulation modeling approach is proposed, which uses radial basis function in-
terpolations (RBF) as efficient surrogate models to save FEM simulations. Also, a surrogate-assisted
optimization algorithm [3] is utilized to find the parameter setting, which would lead to maximum dam-
age in a simple tensile testing scenario involving a notched specimen with as few FEM simulations as
possible. The relatively high accuracy of the utilized surrogate models showcases promising results and
indicates the potential of surrogate models in saving time-expensive simulations.

1 INTRODUCTION

As the computational power continuously grows, simulation software rapidly evolve to become more
accurate and detailed but also more time-consuming to run.

Spethmann et al. in [19] give a comprehensive overview of the evolution of FEM-based crash simulators
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since their development in 1960 till today.

In many engineering fields finding an optimal design for large complex systems that are highly parametrized
became popular only after developing detailed, accurate simulation software replacing real experiments.
Although modern optimization heuristics [5, 20] are suitable to address high-dimensional derivative-
free optimization problems like simulation-based optimization problems, they often demand more than
affordable simulations. Surrogate-assisted optimization algorithms, aiming at reducing the number of
expensive function evaluations (in our case simulations) by replacing the real function calls with cheap
mathematical models are the state-of-the-art techniques in the field of efficient optimization. Although
in the last years a significant amount of effort is devoted to the development and evaluation of surrogate-
assisted methods with the purpose of solving real-world optimization problems, most of the utilized
evaluation benchmarks are synthetic [1, 9, 14].

Bagheri et al. [3] show promising results applying a constrained surrogate-assisted optimizer on solving
MOPTA08 [11] problem coming originally from the automotive industry, but simplified in different
ways. They use radial basis function interpolation (RBF) as surrogates. In this work we formulate
a simulation-based design optimization as a Bi-level optimization, where the goal is to find a set of
parameter setting that optimizes an objective function all over a component. We also describe how to
approach such problem efficiently with surrogate models in two stages. We test the described algorithm
on a simple damage optimization problem.

The rest of this paper is organized as follows In Sec. 2, the damage analysis of a viscoelastic tension rod
is employed as a practical example of application. Sec. 3 describes a two-staged novel method for effi-
ciently modeling FEM simulation responses and formulates the Bi-Level simulation-based optimization
problems. After describing the experimental setup in Sec. 4, the modeling and optimization results are
presented in Sec. 5. A short summary in Section 6 concludes the paper.

2 PROBLEM DESCRIPTION

In this work, we consider a two-dimensional finite element model of a simple tensile testing scenario
involving a notched specimen. Due to the symmetry of the problem, a quarter model is used. The
underlying mesh and boundary conditions are presented in Fig. 1.

The specimen is loaded uniformly by a time-dependent displacement function uy(t) = umax
Tload
·t, where umax

and Tload denote a fixed maximum displacement of the specimen and the upper bound for the loading
time-scale, respectively. By setting umax = 1mm throughout all simulations and varying the time-scale
Tload different local strain rates can be adjusted within the specimen depending on geometry and material
behavior.
The material is supposed to show viscoelastic behavior which is characteristic for polymers [17, 16],
rubber-like materials [6, 12] or biological tissue [4, 8].
Such materials are subjected to very pronounced time and temperature-dependent mechanical proper-
ties. Therefore, the analysis and understanding of damage mechanisms in viscoelastic materials are still
an object of research. In this contribution, the dissipated mechanical energy density is employed as
an indicator for accumulated damage. Therefore the damage parameter is given in N ·mm/mm3. To
guarantee the comparability of the numerical results, the spatial mesh and the temporal discretization
are kept constant throughout all simulations that served as input data for optimization. The necessary
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Figure 1: Illustration of the investigated quarter model involving displacement function uy(t) and boundary con-
ditions.

geometric structure and numerical solution of the fully coupled thermo-mechanical model equations are
elaborated using the commercial finite element calculation software ABAQUS and the post-processing.
In this context, ABAQUS can be regarded as a standard finite element software since it is used worldwide
by engineers and researchers for various types of engineering thermo-mechanical problems, cf. [7]. In
the scope of this contribution, variations of loading time-scale and temperature in each experiment are
simulated, and their effect on the characteristics of damage accumulation within the specimen body is
investigated. Hereby, the loading time directly affects the local strain rates, and the applied temperature
level has a substantial impact on creep and relaxation processes.

3 METHODS

The demanding challenge with the expensive function evaluation is often addressed by usage of surrogate-
assisted algorithms. Surrogate-assisted optimizers aim at saving expensive simulation runs by replacing
the real functions with cheap and fast mathematical models. A large family of surrogate-assisted op-
timization frameworks can be conceptualized, as shown in Fig. 2. After the initialization, often there
are three main steps: modeling, optimization, and evaluation. Some surrogate-assisted optimizers are
equipped with a parameter tuning block, which adjusts the optimizer’s hyperparameters gradually based
on the information gained about the problem in each iteration. These steps will repeat in a loop as long
as the budget is not exhausted.

Initialization
phase I:
modeling

phase II:
optimization

phase III:
evaluation

adjusting
parameters

Figure 2: Surrogate-assisted optimization flowchart.

SACOBRA [3] and EGO [10] are two surrogate assisted optimizers being investigated in this work.
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SACOBRA is specifically designed for constrained optimization problems, uses RBF surrogates and
benefits from self-adjusting functionalities. More details about SACOBRA can be found in [3, 2]. EGO
addresses unconstrained optimization problems and uses Kriging surrogates [13]. Both algorithms can
be adjusted to address Bi-level optimization problems described in 3.2.

3.1 FEM Simulation Modeling (FSM)

This section introduces our surrogate-assisted approach, the so-called FSM, to approximate FEM-simulation
results based on very few FEM simulations. Our approach has three main phases.

phase I: building surrogate models for n nodes based on the m simulation results with parameter settings
p j, f or j = 1, ...,m

phase II: predicting the objective value for a new parameter setting p∗ at all n nodes based on the n
surrogate models built during the phase I

phase III: fitting a model on the surface of the component based on the predicted values in phase II,

RBF interpolations are used as surrogates in phase I and phase III. It is worthy to mention that the n
nodes taken into account for the modeling in phase I can be a subset of all nodes. The model error can
be minimized by taking the best subset of nodes into account.

3.2 Optimizing Simulation-Based Problems

Simulation-based optimization tasks can be formulated as Bi-level optimization problems. The goal is
to find a design parameter setting p, which optimizes an objective function all over the component. In
general a simulation-based optimization problem can be formulated as follows:

max
x∈X, p∈P

F(x,p), x ∈ [lx,ux]⊂ Rdx , (1)
p ∈ [lp,up]⊂ Rdp ,

subject to x ∈ argmax
y∈X

f (y,p),

where X is the geometrical search space of the problem with the lower bound lx and upper bound ux

and P is the parametric search space of the problem bounded between lp and lp. dx is the dimension
of the geometrical space, which is 2 for 2D surfaces or 3 for 3D spaces of the component. dp is the
dimension of the parameter space, referring to the number of simulation parameters. The goal is to find
the optimal parameter setting p∗, which maximizes function F at the node where the maximum value
of function f is located. Maximization problems at each level can be transformed into minimization by
negating the objective function without loss of generality. Expensive Bi-level optimization problems can
be addressed with surrogate-assisted methods [15]. However, this work’s test problem can be simplified
to a more straightforward optimization problem. The node with the maximum objective value is always
at a fixed location in the notch root regardless of the parameter setting’s choice p, but this is not the case
all the time. Therefore, the optimization problem that we deal with in this work can be formulated as
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follows:

max
p∈P

Fx∗(p), p ∈ [lp,up]⊂ Rdp , (2)

x∗ = argmax
y∈X

f (y,p) ∀ p (3)

4 EXPERIMENTAL SETUP

Every simulation of the described case study returns damage values for 240 fixed nodes on a 2D surface.
The variable parameters are: loading time-scale and temperature. The loading time-scale values vary in
the range of [0.5,3.5]s and temperature varies in the range [80,120]◦C. Using vectorized RBF models
from the SACOBRA package available on CRAN1, we can model all 240 nodes efficiently in one call.

In order to evaluate the quality of the surrogate models generated by our FSM algorithm (as described in
Sec. 3.1), we make use of the relative error Eq. (4).

Er =

∣∣ f (x)− f̂ (x)
∣∣

| fmax|
·100 (4)

The value for fmax is set to 1.5, since our experiments have shown that the damage values will not exceed
this value.

The max damage optimization is done by using the SACOBRA optimization framework implemented
in R. The initial design size of 6 and 10 are both tested. Every optimization is repeated 5 times with
independently initialized deign points, using the Latin hypercube sampling method (LHS). SACOBRA
results are compared with an implementation of EGO from the DiceOptim package in R.

5 RESULTS

A surrogate-assisted optimizer essentially needs surrogate models which are good enough to direct the
search toward the optimum. However, it is important to emphasize that the aim of surrogates is not
providing extremely accurate models but models which contain information about the optimum direction
and can gradually improve in the interesting region.

To evaluate the quality of our surrogates, we built different models varying the size of the training set and
evaluated the models on 500 unseen parameter settings. As shown in Fig. 3 the medians of model errors
drop as the training size grows. However if the training population is selected completely randomly the
worst case scenario errors remain as large as 4%.

The large relative errors correspond to parameter settings with boundary values or parameter settings in
the region with sparse samples. Identifying these regions and adding these points to the training set can
improve the models’ overall quality. This is being done automatically during the optimization steps with
EGO as well as SACOBRA.

Fig. 4 shows the performance of different approached for maximizing the damage for the problem de-
scribed in Sec. 2 for 5 independently initialized runs. The first six simulations in SACOBRA6 and EGO
belong to the initialization phase. SACOBRA10 has initilization phase of ten simulations. After the

1https://cran.r-project.org/web/packages/SACOBRA
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Figure 3: The relative error of the models built by means of the FSM Algorithm. The training size, meaning the
number of simulations results passed to the FSM algorithm is varied and the model quality is evaluated for 500
unseen parameter settings. Left plot: in each experiment 20 randomly selected parameter settings are added to the
training population. Right plot: In each experiment the 20 parameter settings, which had the largest relative error
in the former experiment are added to the training population.

initialization phase, SACOBRA10 and SACOBRA6 only require four and seven more simulations to
converge to the optimum, respectively. It can be shown that EGO faces an early stagnation. Moreover,
one of the 5 runs with EGO crashed due to numerical instabilities and the curve shown in Fig. 4 is
only related to the 4 remaining EGO runs. Therefore we can say that SACOBRA outperforms the EGO
algorithm [10, 18].
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Figure 4: Optimization results for the tensile testing problem.
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6 CONCLUSION

The main contribution of this work is to introduce FSM, a two-staged modeling approach for efficiently
modeling FEM simulations. Also we have shown that RBF surrogates can provide reasonable accuracy.
We utilized a tensile testing problem as a use case and we have shown that SACOBRA outperforms EGO
in terms of stability and optimization results.

For future work we are planing to take Bi-level optimization problems with more complex scenarios into
account, including problems with larger parameter spaces, constrained Bi-level optimization problems
and even Multi-objective Bi-level optimization problems.
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