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Abstract. The main objective of this paper is to develop a novel boundary element technique 
for describing the three-dimensional (3D) biothermomechanical behavior of anisotropic 
biological tissues. The governing equations are studied on the basis of the dual phase lag 
bioheat transfer and Biot's theory for one- and two-temperature models. Because of the 
benefits of CQBEM, such as not being restricted by the complex shape of biological tissues 
and not requiring discretization of the interior of the treated region, it can cope with complex 
bioheat models and has low use of RAM and CPU. CQBEM is therefore a flexible and 
efficient tool for modeling the distribution of bioheat in anisotropic biological tissues and 
associated deformation. The resulting linear equations arising from CQBEM are solved by the 
generalized modified shift-splitting (GMSS) iterative method which reduces the number of 
iterations and the total time of the CPU. Numerical findings show the validity, efficacy and 
consistency of the proposed technique. 

 
 
1 INTRODUCTION 

Human body is a complicated thermal structure, Arsene d’Arsonval and Claude Bernard have been proved 
that the temperature difference between arterial blood and venous blood is due to oxygenation of blood [1]. An 
important number of research papers in bioheat transfer over the past few decades has focused on an 
understanding blood flow effect on the temperature distribution within living biological tissues. The first attempt 
to describe the temperature distribution in biological tissues with blood flow effect has been introduced by 
Pennes [2]. Askarizadeh and Ahmadikia [3] solved analytically Fourier and non-Fourier bioheat equations in 
skin tissue. Li et al. [4] established the biothermomechanical behavior in bi-layered human skin. 

Due to the nonlinearity of the bioheat equations, it is very difficult to solve them analytically [5, 6] in 
general, Therefore, many researchers have used and applied various numerical methods like finite difference 
method (FDM) [7-9], finite element method (FEM) [10] and boundary element method (BEM) [11-31]. The 
BEM is one of the numerical methods used to solve the current general problem [32-56]. Generally, Laplace-
domain fundamental solutions are easier to obtain than time-domain fundamental solutions for engineering and 
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scientific problems [57, 58]. Since the CQBEM requires Laplace-domain fundamental solutions of the problem’s 
governing equations and didn’t need unknown time-domain fundamental solutions. Therefore, it is widely used 
in scientific and engineering applications. 

The main purpose of this article is to propose a novel boundary element model for describing 
thermomechanical interactions in anisotropic biological tissues. The uncoupled governing equations are solved 
independently, where the dual phase lag bioheat transfer equation is solved first for obtaining the temperature 
distribution using the boundary element method, and then the mechanical equation has been solved using the 
CQBEM to obtain the displacement components for different temperature distributions at each time step. The 
resulting linear equations arising from BEM are solved by GMSS which reduces the number of iterations and 
total CPU time. 

 

2 FORMULATION OF THE PROBLEM 

Consider an anisotropic soft tissue occupies the region 𝛺 = 𝑥1, 𝑥2, 𝑥3 : 0 < 𝑥1 < 𝛼, 0 < 𝑥2 < 𝛽, 0 <

𝑥3 < 𝛾  with boundary Γ as shown in Fig. 1a.  
On the basis of Biot’s theory [59, 60], the governing equations that model the biothermomechanical behavior 

of anisotropic biological tissues can be expressed as 

𝛻0𝜎
0
+ 𝐹 = 𝜌𝑢 + 𝜙𝜌7 𝑢7 − 𝑢 																																																																																									(1) 

𝜁 + 𝛻0𝑞 = 0																																																																																																																																	(2) 
σ = 𝐶𝑎𝑗𝑙𝑔	𝑡𝑟	𝜖 − 𝐴𝑝 𝐼 − 𝔅	(𝑇 − 𝑇0)																																																																																(3) 

𝜖 =
1
2
𝛻𝑢0 	+ 𝛻𝑢0 0 																																																																																																											(4) 

ζ = A	tr	ϵ +
ϕR

R
P																																																																																																																						(5) 

where the equation governing fluid motion has been modeled using the rule of Darcy [61] 

𝑞 = −𝐾 𝛻	𝑝 + 𝜌7𝑢 +
𝜌W + 𝜙𝜌7

𝜙
𝑢7 − 𝑢 																																																																		(6) 

The 3D bioheat transfer equation expressed by the following dual phase lag model [62]:  

𝑐𝜌
𝜕𝑇
𝜕𝜏

+ 𝜏\
𝜕R𝑇
𝜕𝜏R

= 𝐾∇R𝑇 + 𝐾𝜏0
𝜕
𝜕𝜏

∇R𝑇 +𝑊_𝐶_ 𝑇_ − 𝑇 + 𝑄a +	𝑄b − 𝑊_𝐶_𝜏\
𝜕𝑇
𝜕𝜏
(7) 
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where the relation between the conductive temperature 𝑇 and the thermodynamic temperature 𝜙 is 𝑻 −
𝜇𝑻,ff = 𝜙 and 𝜇 is the two-temperature parameter which is also denoted the temperature discrepancy. 

In the current study, we assumed that ℂ = 0.66 at low frequency as measured by Bonnet and Auriault [63].  
According to Bonnet [64], the equations of motion of our problem can be expressed as follows [65] 

𝐵f𝑢j 𝑥 = 0		for		𝑥 ∈ Ω	
𝑢j 𝑥 = 𝑔n			for		𝑥 ∈ 𝛤n
𝑡j 𝑥 = 𝑔p			for		𝑥 ∈ 𝛤p

																																																																																																	(8) 

where 𝛤 = 𝛤n ∪ 𝛤p, 𝛤n ∩ 𝛤p = 𝜙, 𝐵f and 𝑡j are defined as 

𝐵f =
𝐵ft + 𝑠R 𝜌 − 𝛽𝜌7 𝐼 𝛼 − 𝛽 ∇f −𝔅∇f

𝑠 𝛼 − 𝛽 ∇f0 −	
𝛽
𝑠𝜌7

∆f +
𝑠𝜙R

𝑅
0

, 𝑡j 𝑥 = 	
𝑇ft −𝛼𝑛f 0

𝑠𝛽𝑛f0
𝛽
𝑠𝜌7

𝑛f0∇f 0

𝑢 𝑥
𝑝 𝑥
𝑇 𝑥

, 

In which 𝛽 =
yz{|}~

yz�{|(}��y}~)
 

 
 

3 BOUNDARY ELEMENT IMPLEMENTATION FOR BIOHEAT TRANSFER 
FIELD 

Through this section, our main goal is to outline a boundary element procedure for solving (7) subjected to 
the following initial and boundary conditions 

𝑇 𝑥, 0 = 𝑇� ,			
𝜕𝑇 𝑥, 𝜏
𝜕𝜏 ���

= 0																																																																																																				(9𝑎) 

𝑇 𝑥, 𝜏 = 𝑇_ 𝑥, 𝜏 	for	𝑥 ∈ Γ�																																																																																																										(9𝑏) 

𝑞_ 𝑥, 𝜏 + 𝜏\
𝜕𝑞_ 𝑥, 𝜏

𝜕𝜏
= −𝐾

𝜕𝑇 𝑥, 𝜏
𝜕𝑛

+ 𝜏0
𝜕
𝜕𝜏

𝜕𝑇 𝑥, 𝜏
𝜕𝑛

	for	𝑥 ∈ ΓR																											(9𝑐) 

Discretizing the time interval 0 ≤ 𝜏 ≤ 𝐹 into 𝐹 + 1 equal time steps ∆𝑡 > 0 with discrete times 𝜏7 = 𝑓∆𝜏 
(𝑇7 𝑥 = 𝑇(𝑥�, 𝑥R, 𝑥�, 𝑓∆𝜏)). Taking into consideration initial conditions (9a), we have 𝑇� 𝑥 = 𝑇� 𝑥 = 𝑇�. 
For transition 𝜏7�� → 𝜏7	 𝑓 ≥ 2 . Thus, equation (7) using differential quotients can be approximated as follows 
[66] 

𝑐𝜌
𝑇7 𝑥 − 𝑇7��(𝑥)

∆𝜏
+ 𝜏\

𝑇7 𝑥 − 2𝑇7�� 𝑥 + 𝑇7�R(𝑥)
∆𝜏 R = 𝐾𝛻R𝑇7 𝑥  

+
𝐾𝜏0
∆𝜏

𝛻R𝑇7 𝑥 − 𝛻R𝑇7�� 𝑥 + 𝑊_𝐶_ 𝑇_ − 𝑇7 𝑥 + 𝑄a + 𝑄b 	− 𝑊_𝐶_𝜏\
𝑇7 𝑥 − 𝑇7�� 𝑥

∆𝜏
(10) 

which can be written as follows 
∇R𝑇7 𝑥 − 𝐵𝑇7 𝑥 + 𝐶∇R𝑇7�� 𝑥 + 𝐷𝑇7�� + 𝐸𝑇7�R 𝑥 + 𝐹 = 0																																							(11) 

where 

𝐵 =
𝑐𝜌 +𝑊_𝐶_∆𝜏 ∆𝜏 + 𝜏\

𝐾∆𝜏 ∆𝜏 + 𝜏0
, 𝐶 =

𝜏0
∆𝜏 + 𝜏0

, 𝐷 =
𝑐𝜌 ∆𝜏 + 2𝜏\ + 𝑊_𝐶_𝜏\∆𝜏

𝐾∆𝜏 ∆𝜏 + 𝜏0
, 

	𝐸 = −
𝑐𝜌𝜏\

𝐾∆𝜏 ∆𝜏 + 𝜏0
, 𝐹 =

∆𝜏 𝑊_𝐶_𝑇_ + 𝑄a + 𝑄b
𝐾 ∆𝜏 + 𝜏0

. 

 
The boundary conditions (9b) and (9c) can be reexpressed as 

𝑇7 𝑥 = 𝑇_
7 𝑥 		for	𝑥 ∈ Γ�																																																																																																										(12𝑎) 

𝑍7 𝑥 = −𝐾
𝜕𝑇7 𝑥
𝜕𝑛

= 𝑤_
7 𝑥 		for	𝑥 ∈ ΓR																																																																															(12𝑏) 

where 

𝑤_
7 𝑥 =

∆𝜏
∆𝜏 + 𝜏0

𝑞_
7 𝑥 + 𝜏\

𝜕𝑞_ 𝑥, 𝜏
𝜕𝜏 ���~

− 𝐾
𝜏0

∆𝜏 + 𝜏0
𝜕𝑇7�� 𝑥

𝜕𝑛
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According to the boundary element technique of Liao [67], we can extend the technique to deal with 3D 
dual-phase lag bioheat transfer equation by considering the following partial differential equations for Φ x; P  

1 − P L Φ x; P − U x = −PA Φ x; P 																																																																															(13a) 
with the boundary conditions 

𝑥 ∈ 𝛤� ∶ 	𝛷 𝑥; 𝑃 = 𝑃𝑇_
7 𝑥 + 1 − 𝑃 𝑈 𝑥 																																																																														(13𝑏) 

𝑥 ∈ 𝛤R ∶ 	−𝐾
𝜕𝛷 𝑥; 𝑃

𝜕𝑛
= 𝑃𝑤_

7 𝑥 + 1 − 𝑃 −𝐾
𝜕𝑈 𝑥
𝜕𝑛

																																																			(13𝑐) 

The linear operator can be written as follows 

𝐿 𝑈 = ∇R𝑢 − 𝐵𝑢 =
𝜕R𝑢
𝜕𝑥�R

+
𝜕R𝑢
𝜕𝑥RR

+
𝜕R𝑢
𝜕𝑥�R

− 𝐵𝑢																																																																											(14𝑎) 

Using (11), the nonlinear operator can be written as 
𝐴 Φ x; P = ∇RΦ x; P − 𝐵Φ x; P + 𝐶∇R𝑇7�� 𝑥 + 𝐷𝑇7�� + 𝐸𝑇7�R 𝑥 + 𝐹													(14𝑏) 

If P = 0 then equations (13a) - (13c) can be expressed as 
𝐿 Φ x; 0 = 𝐿 𝑈(𝑥) 																																																																																																																							(15𝑎) 

and 
Φ x; 0 = 𝑈 𝑥 			for	𝑥 ∈ Γ�																																																																																																												(15𝑏) 

−𝐾
𝜕Φ x; 0
𝜕𝑛

= −𝐾
𝜕𝑈 𝑥
𝜕𝑛

		for	𝑥 ∈ ΓR																																																																																								(15𝑐) 
It is clear that the solution of (15a) with boundary conditions (15b) and (15c) corresponds to the initial 

approximation 𝑈 𝑥  as 
Φ x; 0 = 𝑈 𝑥 																																																																																																																																				(16) 

Also, if P = 1 then  
𝐴 Φ x; 1 = 0																																																																																																																																						(17𝑎) 

and 
Φ x; 1 = 𝑇_

7 𝑥 			for	𝑥 ∈ Γ�																																																																																																													(17𝑏) 

−𝐾
𝜕Φ x; 1
𝜕𝑛

= 𝑤_
7 𝑥 			for	𝑥 ∈ ΓR																																																																																																			(17𝑐) 

Also, the solution of (17a) with boundary conditions (17b) and (17c) corresponds to the unknown 
temperature 𝑇7 𝑥  as 

Φ x; 1 = 𝑇7 𝑥 																																																																																																																																				(18) 
By differentiating equations (13a) - (13c) with respect to P, we have 

−𝐿 Φ 𝑥; 𝑃 − 𝑈 𝑥 + 1 − 𝑃 𝐿
𝜕Φ x; P
𝜕𝑃

−
𝜕𝑈 𝑥
𝜕𝑃

= −𝐴 Φ 𝑥; 𝑃 − 𝑃
𝜕A Φ 𝑥; 𝑃

𝜕𝑃
		(19𝑎) 

and 
𝜕Φ x; P
𝜕𝑃

= 𝑇_
7 𝑥 +

𝜕𝑇_
7 𝑥
𝜕𝑃

− 𝑈 𝑥 + 1 − 𝑃
𝜕𝑈 𝑥
𝜕𝑃

		for	𝑥 ∈ Γ�																																														(19𝑏) 

−𝐾
𝜕
𝜕𝑛

𝜕Φ x; P
𝜕𝑃

= 𝑤_
7 𝑥 + 𝑃

𝜕𝑤_
7 𝑥
𝜕𝑃

+ 𝐾
𝜕𝑈
𝜕𝑛

		− 1 − 𝑃 𝐾
𝜕
𝜕𝑛

𝜕𝑈 𝑥
𝜕𝑃

		for	𝑥 ∈ ΓR									(19𝑐)	 

																																																					 
For 𝑃 = 0 and using (16) we have 

𝐿 𝑈 � x = −A 𝑈 𝑥 																																																																																																																									(20𝑎) 
and 
𝑈 � x = 𝑇_

7 𝑥 − 𝑈 𝑥 	for	𝑥 ∈ Γ�																																																																																																									(20𝑏) 

−𝐾
𝜕𝑈 � x
𝜕𝑛

= 𝑤_
7 𝑥 + 𝐾

𝜕𝑈 𝑥
𝜕𝑛

		for	𝑥 ∈ ΓR																																																																																(20𝑐)	 

where 

𝑈 � 𝑥 =
𝜕Φ x; P
𝜕𝑃 ���

																																																																																																																													 

Making use of (14a) and (14b), we can write (20a) in the following form 
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∇R𝑈 � 𝑥 − 𝐵𝑈 � 𝑥 + 𝑅 𝑈 𝑥 = 0																																																																																																(21) 
where 

𝑅 𝑈 𝑥 = ∇R𝑈 𝑥 − 𝐵𝑈 𝑥 + 𝐶∇R𝑇7�� 𝑥 + 𝐷𝑇7�� 𝑥 + 𝐸𝑇7�R 𝑥 + 𝐹																						 
Applying Taylor series expansion to function Φ x; 	P  about 𝑃 = 0 taking into account the first derivative  

												Φ x; P = Φ x; P +
𝜕Φ x; P
𝜕𝑃 ���

(𝑃 − 0) 

= Φ x; P + 𝑈 � 𝑥 𝑃																																																																																																															 
For P = 1, we obtain 
 Φ x; 1 = Φ x; 0 + 𝑈 � 𝑥  
Using (16) and (18), this means 
 𝑇7(𝑥) = U(x) + 𝑈 � 𝑥  
In order to obtain 𝑈(𝑥), we follow the following iterative rule [68] 

𝑇�
7 𝑥 = 𝑇���

7 𝑥 + 𝑚𝑈 � 𝑥 , 𝑘 = 1, 2, 3, … . , 𝐾																																																																						(22𝑎) 
where 𝑇�

7 𝑥 = 𝑇7�� 𝑥 , 𝑚 and 𝐾 are respectively iterative parameter and iterations number. 
Now, we use the boundary element technique for each transition 𝜏7�� → 𝜏7 to solve 
∇R𝑈 � 𝑥 − 𝐵𝑈 � 𝑥 + 𝑅 𝑇���

7 𝑥 = 0																																																																																															(22𝑏) 
with boundary conditions (20b) and (20c) and then calculate the temperature using (22a) 
For equation (22b), the corresponding boundary integral equation can be written as [62] 

𝐵 𝜉 𝑈 � 𝜉 − 𝑇∗ 𝜉, 𝑥
¥

𝜕𝑈 � 𝑥
𝜕𝑛

𝑑Γ = −
𝜕𝑇∗ 𝜉, 𝑥

𝜕𝑛
𝑈 � 𝑥

¥
𝑑Γ + 𝑅 𝑇���

7 𝑥 𝑇∗ 𝜉, 𝑥
§

𝑑Ω			(23) 

where, 𝐵 𝜉 	 0 < 𝐵 𝜉 < 1 	is	the	point	location − dependent	coefficient, Γ = 	Γ� ∪ 	ΓR.  
Equation (23) can be written as 

𝐵 𝜉 𝑈 � 𝜉 +
1
𝐾

𝑇∗ 𝜉, 𝑥
¥

𝑤 � 𝑥 𝑑Γ =
1
𝐾

𝑞∗ 𝜉, 𝑥
¥

𝑈 � 𝑥 𝑑Γ + 𝑅 𝑇���
7 (𝑥) 𝑇∗ 𝜉, 𝑥

§
𝑑Ω			(24𝑎) 

The 3D fundamental solutions of temperature 𝑇∗ 𝜉, 𝑥  and heat flux 𝑞∗ 𝜉, 𝑥  are respectively 

𝑇∗ 𝜉, 𝑥 =
1
4𝜋𝑟

exp −𝑟 𝐵 																																																																																																									(24𝑏) 

𝑞∗ 𝜉, 𝑥 =
𝐾𝑑
4𝜋𝑟R

exp −𝑟 𝐵
1
𝑟
+ 𝐵 ,										𝑑 = 𝑥t − 𝜉t cos 𝛼t

�

t��

																														(24𝑐) 

where r denotes the distance from the source point ξ to the field point 𝑥. 
If the boundary Γ is discretized into 𝑁 boundary elements and the domain Ω is discretized into 𝐿 internal 

elements, Eq. (24a) can be approximated as follows  

𝐺µ¶

p

¶��

𝑤 � 𝑥¶ = 𝐻µ¶

p

¶��

𝑈 � 𝑥¶ + 𝑃µ¸

¹

¸��

𝑅 𝑇���
7 𝑥¸ 																																																			(25) 

where 

𝐺µ¶ =
1
𝐾

𝑇∗ 𝜉µ, 𝑥
¥º

𝑑Γ¶, 𝐻µ¶ =
𝑞∗ 𝜉µ, 𝑥

¥º
𝑑Γ¶,				𝑖 ≠ 𝑗

−0.5,																								𝑖 = 𝑗
, 𝑃µ¸ = 𝑇∗ 𝜉µ, 𝑥

§º
𝑑Ω¶ 

Using the boundary conditions (20b) and (20c) into (25), we obtain the unknowns 𝑤 �  and 𝑈 �  on the 
boundary. Then, the values 𝑈 � 𝜉µ  can be calculated as follows 

𝑈 � 𝜉µ = 𝐻µ¶

p

¶��

𝑈 � 𝑥¶ − 𝐺µ¶

p

¶��

𝑤 � 𝑥¶ + 𝑃µ¸

p

¶��

𝑅 𝑇���
7 𝑥¸ 																																	(26) 

Thus, with the temperature 𝑇 determined, the remaining task is to solve the poroelastic 
problem (8). 
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4 BOUNDARY ELEMENT IMPLEMENTATION FOR THE POROELASTIC 
FIELDS 

The representation formula for problem (8) which describes the unknown field 𝑢j inside the domain is  
𝑢j 𝑥 = 𝑉𝑡j

¾
𝑥 − 𝐾𝑢j

¾
𝑥 	for	𝑥 ∈ 𝜴																																																																											(27) 

where the integral operators are 

𝑉𝑡j
¾
𝑥 = 𝑈0 𝑦 − 𝑥 𝑡j 𝑦

.

Á

𝑑𝑠Â																																																																																											(28) 

𝐾𝑢j
¾
𝑥 = 𝑇Â𝑈

0
.

Á

𝑦 − 𝑥 𝑢j 𝑦 	𝑑𝑠Â																																																																																(29) 

For anisotropic case, we used anisotropic fundamental solutions which proposed by Wang and Achenbach 
[32, 33], but for comparison purposes with other methods which are special cases of our general and complex 
study, we defined the Laplace domain fundamental solution 𝑈 𝑟  and the corresponding traction  𝑇Â as [65]. 

𝑈 𝑟 =
𝑈{ 𝑟 𝑈7 𝑟 0
𝑃{

0
(𝑟) 𝑃7(𝑟) 0

,			𝑇Â =
𝑇Ât 𝑠𝛼𝑛Â 0

−𝛽𝑛Â0
𝛽
𝑠𝜌7

𝑛Â0∇ 0
			with			𝑟 ≔ 𝑦 − 𝑥 						(30) 

where the solid displacement fundamental solution 𝑈{ 𝑟  can be written as 

𝑈{ 𝑟 =
1

4𝜋𝑟 𝜌 − 𝛽𝜌7
ℝ�

𝑘ÆR − 𝑘RR

𝑘�R − 𝑘RR
𝑒��Èb − ℝR

𝑘ÆR − 𝑘�R

𝑘�R − 𝑘RR
𝑒��zb + 𝐼𝑘�R − ℝ� 𝑒��Éb 					(31) 

with 

ℝ¶ =
3∇Â𝑟∇Â0𝑟 − 𝐼

𝑟R
+ 𝑘¶

3∇Â𝑟∇Â0𝑟 − 𝐼
𝑟

+ 𝑘¶R∇Â𝑟∇Â0𝑟																																																																								(32) 
which can be expressed as [61] 

𝑈{ 𝑟 =
1

4𝜋𝜇𝑟 𝜆 + 2𝜇
𝜆 + 𝜇 ∇Â𝑟∇Â0𝑟 + 𝐼 𝜆 + 3𝜇 + 𝑂(𝑟�)																																																(33) 

For the regularization, the displacement fundamental solution  𝑈{ 𝑟  for a solid is dismantled into singular 
𝑈{{ 𝑟  and regular UÌÍ r  parts, respectively, as follows 

𝑈{ 𝑟 = 𝑈{{ 𝑟 + 𝑈b{ 𝑟 		with		𝑟 ≔ 𝑦 − 𝑥 			 

=
1
𝜇
𝐼∆Â −	

𝜆 + 𝜇
𝜆 + 2𝜇

∇Â∇Â0 ∆Â𝑥 𝑟 	−
1
𝜇

𝑘�R + 𝑘RR ∆Â − 𝑘�R𝑘RR 𝐼 − 𝑘�R + 𝑘RR − 𝑘ÆR −
𝑘�R𝑘RR

𝑘�R
∇Â∇Â0 𝑥 𝑟 			(34) 

	where 

𝑥 𝑟 =
1
4𝜋𝑟

𝑒��Èb

𝑘RR − 𝑘�R 𝑘�R − 𝑘�R
+

𝑒��zb

𝑘RR − 𝑘�R 𝑘RR − 𝑘�R
+

𝑒��Éb

𝑘�R − 𝑘�R 𝑘RR − 𝑘�R
 

																													= −
1

𝑘�R − 𝑘RR 𝑘�R − 𝑘�R 𝑘�R − 𝑘RR
+ 𝑂 𝑟R 																																																											(35) 

Also, the remaining parts of the fundamental solution 𝑈 𝑟  can be defined as 

𝑈7 𝑟 =
𝜌7 𝛼 − 𝛽 ∇Â𝑟

4𝜋𝑟𝛽 𝜆 + 2𝜇 𝑘�R − 𝑘RR
𝑘� +

1
𝑟
𝑒��Èb − 𝑘R +

1
𝑟
𝑒��zb = 𝑂 𝑟� 																								(36) 

𝑃{ 𝑟 =
𝑈7 𝑟
𝑠

= 𝑂 𝑟� 																																																																																																																													(37) 

𝑃7 𝑟 =
𝑠𝜌7

4𝜋𝑟𝛽 𝑘�R − 𝑘RR
𝑘�R − 𝑘ÆR 𝑒��Èb − 𝑘RR − 𝑘ÆR 𝑒��zb =

𝑠𝜌7

4𝜋𝑟𝛽
+ 𝑂 𝑟� 																										(38) 

where 𝑘�	, 𝑘R	, 𝑘�	and	𝑘Æ = 𝑘�
Î

Ï�RÎ
  are given in [61],  𝑈{{ 𝑟  are of 𝑂(𝑟��) and 𝑈b{ 𝑟  are of 𝑂(𝑟�) 

where the following limiting process 𝑥 ∈ 𝛺 → 𝑥 ∈ 𝛤 is performed on (28) to obtain 

lim
f∈𝛺→f∈Á	

𝑉𝑡j
¾
𝑥 = 𝑉𝑥j 𝑥 ≔ 𝑈0

.

Á

𝑦 − 𝑥 𝑡j 𝑦 𝑑𝑠Â																																																	(39) 
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Also, we perform the following limiting process 𝑥 ∈ 𝛺 → 𝑥 ∈ 𝛤 on (29) to have [67] 
lim

f∈𝛺→f∈Á	
𝐾𝑢j

¾
𝑥 = −𝐼 𝑥 + 𝐶 𝑥 𝑢j 𝑥 + 𝐾𝑢j 𝑥 																																																			(40) 

where 

𝐶 𝑥 = 𝑙𝑖𝑚
Ñ→�

𝑇Â𝑈
0
𝑦 − 𝑥

.

Â∈¾: Â�f �Ñ

𝑑𝑠Â																																																																																				(41) 

where the double layer operator is 

𝐾𝑢j 𝑥 = lim
Ñ→�

𝑇Â𝑈
0
𝑦 − 𝑥

.

Â�f ÒÑ

𝑢j 𝑦 𝑑𝑠Â																																																																				(42) 

Using equations (39) - (42), the Laplace domain boundary integral equation can be expressed as 
𝐶 𝑥 	𝑢j	 𝑥 = 𝑉𝑡j 𝑥 − 𝐾𝑢j 𝑥 																																																																																									(43) 

Applying inverse Laplace transformation to obtain the following boundary integral equation  
𝐶 𝑥 𝑢j 𝑥	, 𝑡 = 𝑉 ∗ 𝑡j 𝑥	, 𝑡 − 𝐾𝑢j 𝑥	, 𝑡 																																																																										(44) 

According to [65] The poroelastodynamic fundamental solution can be expressed as follows 

𝑇Â𝑈
0
= 	

𝑇Ât 𝑠𝛼𝑛Â

−𝛽𝑛Â0
𝛽
𝑠𝜌�

7 𝑛Â
0∇Â

𝑈{ 𝑈7

𝑃{
0

𝑃7

0

=
𝑇{ 𝑇7

𝑄{
0

𝑄7

0

																																					(45) 

According to Stokes theorem, the differentiable vector field a(𝑦) with 𝑦 ∈ 𝛤 can be written as 

∇Â×	a, 𝑛Â	
.

Á

𝑑𝑠Â = − a, 𝑣

,

ÕÁ

𝑑𝛾Â 	= − a, 𝑣

,

y

𝑑𝛾Â = 0																																																					(46) 

where	𝑣 is the unit tangent vector along 𝜕𝛤, we can express (46) as follows  

𝑛Â×∇Â, a	
.

Á

𝑑𝑠Â = 0																																																																																																																						(47) 

According to [65], we can use (47) to derive the following formula 

𝑀Â	a	
.

Á

𝑑𝑠Â = 0,𝑀Â = ∇Â∇Â0
0
− ∇Â∇Â0																																																																																					(48) 

By applying formula (48) to a vector a = 𝑣𝑢 we have [70] 

𝑀Â	𝑣
.

Á

𝑢𝑑𝑠Â = − 𝑣 𝑀Â		𝑢

,

Á

𝑑𝑠Â																																																																																													(49) 

𝑀Â	𝑣
0

.

Á

𝑢𝑑𝑠Â = 𝑣0
.

Á

𝑀Â	𝑢 𝑑𝑠Â																																																																																													(50) 

Using (34) and (45), we can write 𝑇{ as follows 
𝑇{

0
= 𝑇Ât 𝑈{µ×j{ + 𝑈btj{

0
+ 𝑠𝛼𝑃{𝑛Â0 = 𝑇Ât	𝑈{µ×j{ 0

+ 𝑂 𝑟� 																																	(51) 
Using the same representation of  𝑇Ât  as in [65], we can write 

𝑇{
0
= 𝜆 + 2𝜇 𝑛Â∇Â0𝑈{µ×j{ − 𝜇 𝑛Â× ∇Â×𝑈{µ×j{ + 2𝜇𝑀Â𝑢{µ×j{ + 𝑜 𝑟� 																				(52) 

which can be written using (34) in the form 
𝑇{

0
= 𝑀Â∆ÂR𝑋 + 𝐼 n0∇Â ∆ÂR𝑋 + 2𝜇 𝑀Â𝑈{µ×j{ 0

+ 𝑜 𝑟� 																																																													(53)  
Applying definition (29) to Eq. (53), we get 
𝑘𝑢

Ω
{
𝑥 = 𝑀Â∆ÂR𝑋 𝑢 + 𝐼 𝑛0∇Â ∆ÂR𝑋 𝑢 + 2𝜇 𝑀Â𝑈{µ×j{ 0

𝑢 + 𝑂 𝑟� 𝑢 𝑑𝑠Â
.
┌ 																	(54)  

Applying (49) to the first term and applying (50) to the third term on the right-hand side of (54), also, making 
use of the Duffy transformation and a standard Gaussian quadrature rule, we obtain [69] 
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𝐾𝑢
Ω
{
𝑥 = −∆ÂR𝑋 𝑀Â𝑢 + 𝐼 𝑛0∇Â ∆ÂR𝑥 𝑢 + 2𝜇𝑈{{ 𝑀Â𝑢 + 𝑂 𝑟� 𝑢 𝑑𝑠Â

.

┌

										(55) 

The second term in the right side of (55) has been manipulated to get 
𝑛0∇Â ∆ÂR𝑥 𝑟 =

𝑛0∇ÂÜ
4𝜋𝑟R

+ 𝑂 𝑟� 																																																																																																(56) 
where 

𝐶{ 𝑥 = 𝐼 𝑥 	𝑐	 𝑥 			with			𝑐 𝑥 =
𝜙 𝑥
4𝜋

																																																																																					(57) 
According to [65], the solid related part of the limit (32) can be reexpressed as follows 

lim
¾∋f→f∈Á

𝐾𝑢
¾
{
𝑥 = −𝐼 𝑥 −1 + 𝑐 𝑥 𝑢 𝑥 + 𝐾𝑢

{
𝑥 																																																					(58) 

By augmenting 𝑈{{ to 𝑈{ and using (50) we obtain a more efficient form of (55) as follows 

𝐾𝑢
¾
{
𝑥 = −∆ÂR𝑥 𝑀Â𝑢 + 𝐼 𝑛0∇Â ∆ÂR𝑥 𝑢 + 2𝜇𝑈{ 𝑀Â𝑢 + 𝑂 𝑟� 𝑢

.

Á

𝑑𝑠Â																(59) 

Discretizing the time interval 0 ≤ 𝑡 ≤ 𝑇 into 𝑁 + 1 equal time steps ∆𝑡 > 0 with discrete times 𝑡× = 𝑛∆𝑡. 
The convolution quadrature method numerically approximates the following convolution integral 

𝑓 ∗ 𝑔 𝑡 = 𝑓 𝑡 − 𝜏 𝑔 𝜏
�

�

𝑑𝜏		for			𝑡 ∈ 0	, 𝑇 																																																																					(60) 

by the finite sum 

𝑓 ∗ 𝑔 𝑡× ≈ 𝜔×��∆�
×

���

𝑓 𝑔 𝑡� 																																																																																																		(61) 

The integration weights 𝜔× are calculated with Cauchy’s integral formula of Lubich [71, 72] as follows 

𝜔×∆� 𝑓 ≔
1
2𝜋𝑖

𝑓
𝛾 𝑧
∆𝑡

𝑧� ×�� 𝑑𝑧
á �â

																																																																																						(62) 

Now, by using the polar coordinate transformation 𝑧 = 𝑅𝑒�µã and the trapezoidal rule with L + 1 equal 
steps, the integral (62) can be approximated as follows 

𝜔×∆� 𝑓 ≈
𝑅��

𝐿 + 1
𝑓

¹

ℓ�å

𝑠ℓ 𝜁	ℓ×						with		𝜁 = 𝑒
Ræµ
¹��		𝑎𝑛𝑑		𝑠ℓ =

𝛾 𝑅𝜁�ℓ

∆𝑡
																																(63) 

By substituting Eq. (63) into Eq. (61), we obtain 

𝑓 ∗ 𝑔 𝑡× ≈
𝑅� ×��

𝑁 + 1

p

���

𝑓
p

ℓ��

𝑠ℓ 𝜁ℓ ×�� 𝑔 𝑡� 	≈
𝑅�×

𝑁 + 1
𝑓

p

ℓ��

𝑠ℓ 𝑔 𝑠ℓ 𝜁ℓ×												(64) 

wiith  

𝑔 𝑠ℓ = 𝑅�
p

���

𝑔 𝑡� 𝜁�ℓ�.																																																																																																															(65) 

By applying the procedure [70] to the convolution operator of our problem (44), we obtain  
𝐶 𝑥 𝑢j 𝑥, 𝑡 = 𝑣 ∗ 𝑡j 𝑥, 𝑡 − 𝑘 ∗ 𝑢j 𝑥, 𝑡 																																																																										(66) 

which can be expressed as  
𝐶 𝑥 𝑢j 𝑥, 𝑠ℓ = 𝑣𝑡j 𝑥, 𝑠ℓ − 𝑘𝑢j 𝑥, 𝑠ℓ ,			ℓ = 0…… . . 𝑁																																														(67) 

Let the boundary 𝛤 = 𝜕𝛺 is discretized into 𝑁t surface triangles boundary elements 𝜏t as (Fig. 2a) 

𝛤 ≈ 𝛤ℎ = 𝜏𝑒

𝑵𝒆

𝑒=1

																																																																																																																																	 (68) 
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Now, we define the following subspaces on 𝛤ê as 
𝑆ê 𝑘 𝛤p	,ê ≔ 𝑠𝑝𝑎𝑛 𝜑µí 𝑘 µ��

𝕚 , 𝛼 ≥ 1																																																																																(69) 
𝑆ê 𝑘 𝛤n	,ê ≔ 𝑠𝑝𝑎𝑛 𝜓¶

ð 𝑘
¶��

𝕛
, 𝛽 ≥ 0																																																																																(70) 

where the unknown Neumann datum is approximated with 𝕚 continuous polynomial shape functions 𝜑µí 𝑘  
and time dependent coefficients. Also, the unknown Dirichlet datum is approximated with 𝕛 piecewise 
discontinuous polynomial shape functions 𝜓¶

ð 𝑘  and time dependent coefficients as follows 

𝑢j 𝑘 𝑥 ≈ 𝑢ê
j 𝑘 𝑥 = 𝑢ê	,µ

j 𝑘 𝜑µí
𝕚

µ��

𝑘 𝑥 ∈ 𝑆ê 𝑘 𝛤p	,ê 																																																	(71) 

𝑡j 𝑘 𝑥 ≈ 𝑡ê
j 𝑘 𝑥 = 𝑡ê	,¶

j
𝕛

¶��

𝑘 𝜓¶
ð 𝑘 𝑥 ∈ 𝑆ê 𝑘 𝛤n	,ê 																																																			(72) 

where 𝑘 = 1, 2, 3, 4 are the poroelastic degrees of freedom, 𝑖 = 1, … , 𝐼 are the collocation points on the on 
the Neuman boundary and 𝑗 = 1, … , 𝐽 are the collocation points on the Dirichlet boundary. 

Inserting these spatial shape functions into (67), yields the following 𝑁 + 1 algebraic systems of equations 
𝑉nn	
𝑉pn	

−𝐾np											
− 𝐶 + 𝐾pp ℓ

𝑡n,ê
j

𝑢p,ê
j

ℓ

= −𝑉np
−𝑉pp

				
𝐶 + 𝐾nn
𝐾pn											 ℓ

𝑔p	,ê
j

𝑔n	,ê
j

ℓ

	ℓ = 0. . . 𝑁																									(73)	 

where the Schur complement of the block of the system matrix can be defined as follows 
𝑆pp ≔ 𝑉pn𝑉nn��𝐾np − 𝐶 + 𝐾pp 																																																																																																		(74) 

 

5 NUMERICAL RESULTS AND DISCUSSION 
Since the system of equations that arise in the boundary element analysis is dense and non-symmetric, Barra 

et al. [73] investigated that the right multi-level hierarchical preconditioner (MLHP) procedure requires less 
iterations number and CPU time than the left MLHP procedure and implemented it with the generalized minimal 
residual (GMRES) algorithm [74]. In the present work, a Krylov subspace iterative method has been used to 
solve the resulting linear systems. In order to reduce the iterations number and CPU time, a dual threshold 
incomplete LU factorization technique (ILUT) which is one of the well-known preconditioning techniques is 
implemented as a robust preconditioner for TFQMR (Transpose-free quasi minimal residual) [75] to accelerate 
the convergence of the solver TFQMR [48].  

The specific absorption rate can be expressed as [76] 
𝑄b = 𝑆�𝑃� 𝜏 𝑒�óôf																																																																																																																												(75) 

In order to explain the calculations of the proposed technique, we used the following transversely isotropic 
soft tissue parameters [77] 

The elasticity tensor 

𝐶W_¸j =

𝐶��
𝐶�R
𝐶��
0
0
0

𝐶�R
𝐶��
𝐶��
0
0
0

𝐶��
𝐶��
𝐶��
0
0
0

0
0
0
𝐶ÆÆ
0
0

0
0
0
0
𝐶ÆÆ
0

0
0
0
0
0
𝐶õõ

																																																																															(76) 

𝐶�� =
𝐸R𝑣�R − 𝐸𝐸�

(1 + 𝑣)(2𝐸𝑣�R + 𝐸�(𝑣 − 1))
, 𝐶�R = −

𝐸R𝑣�R + 𝐸𝐸�𝑣
(1 + 𝑣)(2𝐸𝑣�R + 𝐸�(𝑣 − 1))

 

𝐶�� = −
𝐸𝐸�𝑣

2𝐸𝑣�R + 𝐸�(𝑣 − 1)
, 𝐶�� = −

𝐸�R(𝑣 − 1)
2𝐸𝑣�R + 𝐸�(𝑣 − 1)

, 𝐶ÆÆ = 𝜇�, 𝐶õõ =
1
2
𝐶�� − 𝐶�R  

where 
𝑣 = 0.196, 𝑣� = 0.163, 𝜇� = 20.98	GPa, 𝐸 = 68.34	GPa, 𝐸� = 51.35	GPa, 𝑘� = 108.39	GPa, 𝑘R = −21.70	GPa 

where 𝐸 and 𝐸� are the Young’s moduli in the isotropy plane and fiber direction respectively, 𝑣 and 𝑣� are 
Poisson’s ratio in the isotropy plane and fiber direction respectively, and µ� is the shear moduli in the plane 
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perpendicular to isotropy plane. 
We used the following strongly anisotropic soft tissue parameters [78] 

v = 0.95, v� = 0.49, µ� = 20.98	GPa, E = 22	kPa, E� = 447	kPa, k� = 1243	kPa, kR = 442	kPa 
and other constants taking into consideration are as follows 
𝜌{ = 1600	𝑘𝑔/𝑚�, ρℱ = 1113	kg/m�, p = 25	MPa, ϕ = 0.15 and Q/R = 0.65. 
In the CQBEM modelling of the considered problem, the boundary has been discretized using 84 linear 

boundary elements and 404 internal points as shown in Fig. 1b. The computation was done using Matlab R2018a 
on a MacBook Pro with 2.9GHz quad-core Intel Core i7 processor and 16GB RAM. 

The results of 1T and 2T models are presented graphically in figures 2-4 which show the variation of the 
displacements 𝑢�, 𝑢R	and	𝑢� with the time 𝜏 for the CQBEM and analytical solution of [79]. It can be seen from 
these figures that the results of 2T model show more good agreement than the results of 1T model. The 
difference between analytical and numerical results due to anisotropy properties of the biological tissues 
considered in the CQBEM. It can be seen from these figures that the CQBEM results are in good agreement with 
the analytical results. Our results thus confirm that our method is efficient and accurate. 
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6 CONCLUSIONS 
The main conclusion of this paper is to develop a new boundary element technique for describing the 

biothermomechanical interactions in anisotropic biological tissues. The uncoupled governing equations are 
resolved independently, Where the dual phase lag bioheat transfer equation is resolved first for one-temperature 
and two-temperature models to obtain the temperature distribution and then the displacement distributions are 
obtained by solving the mechanical equation using the proposed CQBEM, which is a flexible and efficient 
method, since it deals with more complex shapes of biological tissues and does not involve discretization, also, it 
has low RAM and CPU usage. The resulting linear equations arising from CQBEM solution of bioheat and 
mechanical equations are solved by the GMSS method which reduces the iterations number and total CPU time. 
Numerical findings demonstrate the validity, efficacy and consistency of the proposed technique. 
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