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Abstract. The size effect observed in nano-sized structures is considered in the proposed 

advanced continuum model for heat transfer. It is important for structures, where characteristic 

microstructural length is comparable with the phonon mean free-path. This feature can be 

captured by higher-grade continuum models and/or nonlocal modelling of constitutive laws in 

continuum theories. Both these approaches can be shown equivalent under certain assumptions. 

The governing equations are given by the PDE with higher-order derivatives than in classical 

continuum models, with the response of physically conjugated field being proportional to the 

gradients of primary fields. The variational principle is applied to derive the finite-element 

formulation for the solution of a thermoelectric 2-d boundary-value problem. Due to higher-

order derivatives in gradient theory, it is necessary to use C1-continuous elements to guarantee 

the continuity of the derivatives at the element interfaces. Since it is not an easy task, a mixed 

FEM formulation is developed here.  
 

 

1 INTRODUCTION 

    The traditional way of electricity production by fossil fuel combustion should be replaced by 

a green technology. Thermoelectric materials have a potential to be utilized for this purpose 

since they are able to convert waste heat directly into electricity by the Seebeck effect [1-4]. 

However, current thermoelectric materials cannot be utilized for production of electricity 

because of their low efficiency. The thermoelectric materials should have a high electrical 

conductivity, low thermal conductivity and high Seebeck coefficient. A high temperature 

gradients required for generation of a large voltage is occurred only in materials with a low 

thermal conductivity. Some activities have been devoted to developing thermoelectric 

composites [5] since it is rather difficult to satisfy above requirements in a single-phase 

material. Unfortunately, in these approaches the Seebeck coefficient is reduced and electronic 

contribution to thermal conductivity is growing if electrical conductivity is increased [3]. In the 

second generation of thermoelectric materials it is needed mainly to understand the carrier 

transport to reduce mainly the thermal conductivity coefficient. Hochbaum et al. [6] and Boukai 
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et al. [7] have described a way to get optimal thermoelectric properties in nano-structures, 

where the thermal conductivity is reduced without affecting the high electrical conductivity. In 

macro-structures the thermal conductivity is dominated by electrons with respect to phonon 

contribution. However, in nano-sized structures the electronic part of thermal conductivity is 

less significant [8]. The thermal conductivity is reduced due to scattering of phonons. Electrons 

are smaller than the size of nanostructures and therefore, the electric conductivity is not reduced 

in thermoelectric materials. The molecular dynamics (MD) or advanced continuum models are 

required to describe complex nanoscale systems. Allen [9] has applied the nonlocal theory for 

the heat flux with temperature gradients. 

   In this paper an advanced continuum model for heat transfer in nano-sized structures is 

developed. If the phonon size is comparable to the nano-structure dimension it is needed to 

consider the size effect in a generalized continuum model. A new continuum model has to 

replace the classical Fourier heat-conduction model. The Helmholtz form of the kernel function 

in the nonlocal integral model leads to a differential equation. This idea is similar to the 

approach applied in the gradient elasticity by Lazar and Polyzos [10].  

    A reliable and accurate computational tool is needed to solve the general boundary problem 

described by the higher-order partial differential equations from the new advanced continuum 

model. The finite element method (FEM) seems to be convenient for this purpose. It has been 

applied for many problems even in gradient theories [11, 12]. It is the first effort to consider 

size effect for the heat transfer. The second spatial derivative of temperature is occurred in the 

constitutive equation of the higher-order heat flux for a coupled thermo-electric problem with 

nano-sized thermoelectric material structures. Then, the variational principle is applied to 

derive the governing equations. Due to higher-order derivatives in them, it is needed to use C1-

continuous elements in the FEM. The mixed FEM formulation is then developed to guarantee 

the required continuities on interfaces of elements.  In the mixed FEM, the C0 continuous 

interpolation is independently applied to temperature and its gradients. The constraints between 

temperature and its gradients are satisfied at the Gaussian internal points inside of elements 

[13]. The size effect on the distribution of temperature and electric potential is discussed via 

some numerical examples.  

2 BASIC EQUATIONS IN GRADIENT THEORY 

   Thermoelectric properties can be significantly improved in nano-structures [14]. Mainly, the 

thermal conductivity can be reduced significantly there. The thermal conductivity is reduced 

due to scattering of phonons if the size of nanostructure is smaller than phonon mean free-path. 

Since the Fourier heat conduction does not contain a size effect it is needed to consider it in an 

advanced continuum model. The first effort to consider the size effect is given by Sobolev [15] 

in the nonlocal heat transport theory. In nonlocal theory the heat flux vector is given by 

                                         ,( ) ( ) ( ) ( ) ( )i ij j

V

dV     x x y y y y ,                                        (1) 

where the temperature difference is denoted by 0T T    with the reference temperature 0T , 

ij is the thermal conductivity, and ( ) x y is a nonlocal kernel function.  

    The size effect is considered in the nonlocal kernel.  It can be selected as  
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l
 

 
                                                          (2) 

where   x y  and l is a characteristic length parameter. 

It is easy to show that the kernel function (2) satisfies the Helmholtz equation 

                                              2 21 ( ) ( )l      x y x y ,                                                  (3) 

where ( ) x y is the Dirac function. 

    For this special kernel function the integral expression (1) can be converted to the following 

nonhomogeneous Helmholtz equation 

                                       2 2

,1 i ij jl        or  2 21 il w                                          (4) 

where w is the volume density of heat source.  

   If we assume that the constitutive laws for the heat flux i  and the higher-grade heat flux ikm  

(i.e. canonically conjugated fields with , j  and , jk , respectively) are given as 

                                                              
,i ij j    ,                                                              (5) 

                                                             2

,ik ij jkm l    ,                                                          (6) 

then the governing equation (4) represents the higher-grade heat conduction theory. This theory 

can be generalized to thermoelectric materials with the following constitutive equations  

,i ij j ij jE      , 

,i ij j ik kJ s E    , 

                                                             2

,ik ij jkm l    ,                                                         (7) 

where jE  is the electric intensity vector, ijs is the electrical conductivity measured at uniform 

temperature, and ij  and ij  are Seebeck and Peltier coefficients, which are calculated via the 

Seebecks coefficients and absolute temperature as ij ijT  . 

   For an orthotropic medium in 2-d problem to be considered, the matrix forms of constitutive 

relationships (7) are given by 

                            
,1 ,11 11 1 11

,2 ,22 22 2 22

0 0

0 0

J s E

J s E

 

 

         
            

         
S E Z  ,                (8) 

                           
,1 ,11 1 1111

,2 ,22 2 2222

00

00

E

E

  

  

         
               

          
Z E κ .                      (9) 

                                  

,1111 11

,2121 222 2

,1212 11

,2222 22

0 0 0

0 0 0

0 0 0

0 0 0

m

m
l l

m

m










    
    
       
    
     

    

G .                          (10) 



First A. Author, Second B. Author and Third C. Author 

 4 

Next, the governing equations for thermoelectric materials with the above constitutive 

equations are derived. The free energy density function   contains additional term with higher-

grade heat flux with respect to the conventional theory [16]  

                                        , , ,

1 1 1 1

2 2 2 2
i i ik ik i im c J         .                                         (11) 

Then, the variation of the free energy in a domain V with boundary  is given as 

 , , ,( , ) i i ik ik i i
V V

dV m c J dV                  

   , , , , ,i i ik k i i i i i k ik i i i
V

m J c dV n n m n J d         


            

   , , , , ,i i ik ki i i i i ik k k ik i i i
V

m c J dV n m n m n J d        


                 
 

                           , , ,i i ik ki i i
V

m c J dV P p Q d       


            
 ,                 (12) 

where P , Q  and   are independent boundary densities conjugated to /p   n ,   and  , 

respectively, and  

                                                     k i ikP n n m ,   k kQ n J ,                                                     (13)  

                                        , ( ) ( )c c
j i ik k

c

n m


  


     


x x x
τ

                                    (14) 

                                                                k i ikn m                                                                (15) 

with  being the heat flux, and in  and i the Cartesian component of the unit normal and  

tangent vectors on  . If the boundary is not smooth it is needed to consider also the jump at a 

corner on the oriented boundary contour  , defined as ( ) : ( 0) ( 0)c c c     x x x .                                                                                                                                                  

The work of the external “forces”  , ,P Q  is given by 

                                      

P Q

W d P pd Q d   

  

       .                                     (16) 

The Joule heating is created inside the thermoelectric body 

                                                 gen i i
V

Q E J dV   .                                                              (17) 

Governing equations are obtained from the first thermodynamic law 

                                                0genU Q W     .                                                            (18) 

Substituting (12), (16) and  (17) into (18) we obtain the following governing equations  
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                            , ,( ) ( )i i ik ik i im c E J    x x ,     , ( ) 0i iJ x .                                          (19) 

3 MIXED FEM FORMULATION 

The virtual work for a body with Joule heating inside can be written as  

   ,i , ,

P Q

i ik ik i i i i
V V

m J c dV E J dV d P pd Q d         

  

               .   (20) 

For derivation of the FEM equations, vanishing variations of primary fields have to be 

considered on the corresponding parts of boundary: 0
V


 
 , 0

PV
p
 

 , 0
QV


 

 . 

The mixed FEM is developed, where the C0 continuous interpolation is applied independently 

for both temperature and temperature gradients. Due to existing constraints between these fields 

it is needed to satisfy them by collocation at selected internal points of the finite elements [13]. 

The C0 continuous interpolation of temperature and electric potential in each element are 

applied 

 1 2,   N q  

                                                             1 2,    N q ,                                                     (21) 

where q  and q  are the nodal temperature and electric potential, respectively, with N and 

N being their shape functions. 

The normal derivatives of the temperature, electric intensity vector and temperature gradients 

are obtained from (21) as:  

 1 1 2 2 1 2( , )sp n n        B q  

         
1 1

1 2
2 2

( , )
E

E
   

   
       

   
E B q  ,             

,1 1
1 2

,2 2

( , ) 


  



   
     

  
ε B q  ,            (22) 

with 1 2 1 2( , ) ( , )    B B . 

In the mixed FEM with temperature gradients it is needed to have also an independent 

approximation of ε :  

                                                           1 2ˆ ,In
  ε A α ,                                                      (23) 

where  are undetermined coefficients defined separately for each component of the 

temperature gradient. 

Now, the 4-node quadrilateral element are considered with the polynomial function matrix  

                                                     1 2 1 2 1 2, 1      A .                                         (24) 

The collocation of two-independent approximations of temperature gradients, ε  given by (22) 

and (23), is performed at Gauss quadrature points 1 2( , )c c c ξ                                                                                     

                                                          ( ) ( )c c
  A ξ α B ξ q .                                                 (25) 

It follows directly from (25) that 

                                                         
1( ) ( )c c

  
α A ξ B ξ q  .                                                (26) 

The final expression for the independent approximation of ε  is given by 
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                                                          1 3ˆ ( , )In
  ε A Lq ,                                                   (27) 

where  1( ) ( )c c
 
L A ξ B ξ .       

Finally, the derivatives of the temperature gradients η  are given as  

                    1 1 * *
1 2 1 2 1 2

2 2

ˆ ˆ , , ,In Ïn
        

    
      

    
η ε A α A α A Lq .                  (28) 

Substituting above approximations into the functional (20) and taking into account that 

variations q  and  q are arbitrary, we obtain the following two nonlinear ordinary 

differential equations  

     ( ) ( )* 2 *
1 2( ) ( ) ( ) ( , ) ( ) ( )

k kT T T T

V V

dV l dV           B ξ ZB ξ q B ξ κ B L A ξ GA ξ L q  

 ( )
( ) ( )

p

kT T T
s

V

c dV d Pd  

 

      N ξ N ξ q N B  

        ( 1) ( 1) ( 1)
1 2( ) ( ) ( ) ( , )

T
k k kT T

V

dV        
  N ξ q B ξ SB ξ q Z B q                              (29) 

       ( ) ( )
1 2( ) ( ) ( , )

Q

k kT T

V

dV Qd     


    B ξ SB ξ q Z B q N ,                                     (30) 

which should be solved iteratively, with starting values    (0)
0 q ,    (0)

0 q . 

4 NUMERICAL REULTS 

An infinite strip is analysed with the following boundary conditions (Fig. 1): 

0 0(0) 0T T    ,  0( ) LL T T   ,   (0) 0 ( )L    ,    0(0)   ,    ( ) LL  .       

                             
Figure 1: An infinite strip with boundary conditions on x1=0 and x1=L.  

x
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x
2
 


,1
=0 

=T
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=
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  
,1
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=
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Isotropic material properties are considered with  -Seebeck coefficient, s-electric current 

conductivity and  -heat conduction coefficient, where the constitutive relationships are 

simplified to 

, ,i i iJ s s       

2
, , ,( )i i i i isT sT TJ              . 

The thermoelectric material, Bi2Te3, is considered in the numerical example. It has the 

following material constants [17] with isotropic properties: 

               
51.1 10 /s Am V  ,        

4 2/ 2 10 V /s KAm      ,      1.6 /W Km   .          (31) 

Characteristic length for the selected material structure is 95 10l m  . 

This 1-D problem can be solved numerically as a 2-D problem with the height of the strip H=5L. 

Numerical results for the induced electric potential for various ratio l/L are presented in Fig. 2. 

One can observe that with increasing ratio l/L the induced potential grows. It is due to the 

reduced thermal conduction value in the smaller structures. 

 

 

Figure 2: Variation of electric potential vs. the strip width 

 

The thermoelectric conversion efficiency is given by the dimensionless figure of merit  ZT [18]:  

2sT
ZT




  . 

In the higher-grade theory, the value of heat conduction coefficient can be assessed as 
2( / )l L    , where L  is a characteristic linear dimension of the thermoelectric body. 
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Hence, the assessment of the figure of merit of thermoelectric conversion efficiency in higher-

grade thermoelectricity overcomes that in classical thermoelectricity 

2 2

2( / )

sT sT
ZT

l L

 

  
 


. 

 The variation of merit of conversation efficiency along the strip thickness is presented in Fig. 

3. One can observe a significant enhancement on the ZT parameter if the thickness is 

decreasing.  

 

 

Figure 3:  Variation of conversion efficiency ZT with different ratio /l L  

 

5 CONCLUSIONS 

Optimal thermoelectric properties with a high conversion efficiency can be obtained in nano-

structures, where the thermal conductivity is reduced without affecting the high electrical 

conductivity. A new continuum model has to replace the classical Fourier heat conduction 

model in nano-sized structures, where a size effect is observed. 

The expression for the higher-grade heat flux is derived from the nonlocal models with a special 

kernel function. Then, the principle of the virtual works is applied to derive the governing 

equations. These PDEs have higher-order derivatives than in classical continuum models with 

the response of physically conjugated field being proportional to gradients of primary fields. 

The FEM equations are derived too. Due to higher-order derivatives in gradient theory, the 

mixed FEM formulation is developed here. The C0 continuous interpolation is independently 

applied for temperature and its gradients.  
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The influence of the size effect is investigated for an infinite strip (1-D problem). The 

conversion efficiency parameter is significantly enhanced if the thickness of the strip is reduced.  
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