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Abstract. In this paper, an approach is proposed to conduct reliability analysis on an offshore jacket
considering corrosion degradation under extreme load cases. Corrosion degradation is considered as
thickness wastage of the jacket element, which is seen as time-dependent variables. One probabilistic
corrosion in literature is adopted by using different distribution models. Also, three different inspection
cases (environmental conditions) of the corrosion are studied. The reliability assessment is evaluated by
Crude Monte Carlo simulation based on the trained surrogate model. Deep neural networks are used to
train the surrogate model, because they are not limited by the distribution and dimension of variables.
The results show that using different corrosion distribution model, the probabilities of failure of the
jacket are different, even though they have the same mean and standard deviation values. In addition,
with same assumption of the distribution model in corrosion, the reliability of the jacket changes a
lot concerning different inspection cases. Furthermore, it is noted that the inspection cases have more
influences on the reliability analysis of jacket than different corrosion distribution assumptions. At the
end, two recommendations are derived from this work.

1 INTRODUCTION

In the last decade, wind energy is considered one the strong competitors of the conventional fossil fuels,
due to the technology improvements. The role of wind energy in renewable energy utilization is becom-
ing more and more important. Compared to land-based wind energy, there is more space and more stable
and higher wind speed for offshore wind energy. More and more offshore wind turbines are currently
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under construction or planned. These offshore wind turbines has been installed in deep water. Steel
jacket structures have been the main support structures, due to their higher stiffness at the footprint and
the smaller surface facing ocean loads compared to the monopiles.

Many studies have been conducted with steel jacket structures. The long-term fatigue of offshore jacket
is investigated in [1]. The fatigue of the jacket under three different load cases is evaluated. Ultimate
strength assessment of offshore jacket can be found in [2]. However, the corrosion effect is not included
in the above works. Corrosion can result in the reduction of member thickness and lead to the failure of
the jacket structure. In [3], it proposes a framework to assess the corrosion effect on the offshore jacket.
The jacket structures with corrosion effect under seismic loads is studied in [4]. Also, the time-dependent
reliability assessment of the offshore jacket is investigated in [5] considering jacket shear capacity. In
[6], the fatigue of offshore jacket with a simple corrosion model is studied. While, the jacket with corro-
sion effect under extreme load cases have not yet been considered. Moreover, multi-physics simulation
models (aerodynamics, fluid-structure interaction, corrosion degradation, etc.) are involved in offshore
wind jacket simulation and that makes the reliability analysis difficult. The reliability assessment based
on Monte Carlo simulation (MCS) is much time-consuming and the use of approximation methods like
(FORM/SORM) is also difficult, where these methods are gradient-based and the gradients of responses
are difficult to evaluate. Hence, the first solution to deal with this is to substitute the numerical model
with a metamodel, which is easier to estimate. There are many approaches like Kriging [7] and PCE
[8] but they are limited by the distribution or dimension of random variables. Therefore, deep neural
networks (DNN) are applied in this work, which have a good ability to conduct reliability assessment
[9, 10]. Thus, the reliability of jacket model considering corrosion effect under extreme load cases are
studied in this paper based on DNN.

The overview of the proposed approach is showed in Fig.1. There mainly two parts (green and blue).
The green part is to train the surrogate surrogate model with three type parameters using DNN. Latin
hypercube sampling (LHS) is used to generate the training data. The blue part is to evaluate the reliability
based on the trained surrogate model. The probabilities of failure are estimated by Crude Monte Carlo
simulation. In addition, the jacket model used in this study is referenced in Offshore Code Comparison
Collaboration Continuation (OC4) [11] as showed in Fig.2. The paper is organized as follows. In the
section 2, the corrosion model and multi-layer perception are introduced. The design load case, loads on
the jacket and limit state function are given in the section 3. The parameters selected for metamodel and
the results of training surrogate model are in the section 4. The reliability analysis results are listed in
the section 5. Conclusions and recommendations are given in the section 6.

2 MULTI-LAYER PERCEPTION AND CORROSION MODEL

2.1 Multi-layer perception

The multi-layer perception (MLP) is one common type structure in deep neural networks. The basic
structure is showed in the Fig.4. It is composed of three or more layers of neurons. The neurons of the
neighboring layers are connected by weights and the output of each neuron is as follows:

H(l)
i = f

(
n

∑
j=1

w(l)
i j H(l−1)

j +b(l)i

)
(1)
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Figure 1: Overview of reliability assessment of the jacket

Figure 2: OC4 Jacket model Figure 3: Loads on the jacket

where H(l)
i is the output of the ith neuron of the lth layer, w(l)

i j are the weights of the jth input, b(l)i is the
bias, n is the number of the neurons of the (l−1)th layer, and f () is the activation function. In this paper,
MLP trains the surrogate model using back propagation algorithm and the square errors are used as the
loss function. As for the activation function in hidden layers, the solver, the neurons in hidden layers and
the number of hidden layers, they are optimized by using hyperparameter optimization tools [12].

2.2 Corrosion model

In this work, the uniform corrosion is considered, which is most common form of corrosion and is
uniformly distributed on the surface. The uniform corrosion can be simulated with a good approximation
by a nonlinear function according to the studies [13, 14, 15]. The nonlinear function can be defined as
following:

W (t) = A(t− tpt)
B (2)
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Figure 4: Multi-layer perception structures

where W (t) is the thickness wastage in millimetres, t is the lifetime and tpt is the corrosion protection
time in years. A and B are two parameters that depend on the marine and environmental conditions. Our
focus is mainly on the time after corrosion protection. Therefore, the protection time is ignored in this
study. Additionally, the standard deviation of the thickness wastage is given by [15, 16].

σW (t) = 0.67 W(t) (3)

Furthermore, the two parameters, A and B should be precisely determined. The following Table.1
adopted from [3] gives three inspection cases. In this paper, only the corrosion in the splash zone is
considered, where the corrosion is the most severe. The splash zone are defined following the reference
[17] as depicted in Fig.2.

Table 1: Corrosion inspection cases and parameters

Inspection case (IC)
Splash zone area
A(mm) B

1. Not performed 0.3 1
2. Severe corrosion 0.3 0.823
3. No significant corrosion 0.252 0.823

3 DESIGN LOAD CASES, LOADS AND LIMIT STATE FUNCTION

3.1 Design load cases

In the standard codes IEC 61400-3 [18], 32 DLCs (design load cases) are defined covering various
operational modes of the turbine such as normal operation, shut down and 50-years extreme conditions.
They can be mainly categorized into two major groups namely ultimate and fatigue DLCs. Basically, the
typical load cases applied in structural design of OWT is the fatigue load under normal sea conditions and
the ultimate load under 50-year extreme condition [19]. All the DLCs should be carefully considered in
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design of the jacket. While, in this paper, our focus is mainly on the ultimate DLCs. The 50-year return
period is generally considered as a critical ultimate load case as showed in Table.2, which is mostly
considered to correspond to the parked turbine, under the 50-year EWM (extreme wind model) with a
50-years RWH (reduced wave height) and ECM (extreme current model) as described in DLC6.1b IEC
61400-3 [18].

Table 2: Design load case

Load cases Wind condition Wave conditions
Ultimate load case
DLC.6.1b

EWM:Vg50
RWH: 1.32 * Hs50
ECM: Vc,ex

3.2 Loads

OWT jacket support structures are generally exposed to complex and variable loads. These loads can
roughly categorized into two groups as illustrated in Fig.3. The loads applied on the top of jacket are
from wind turbine including aerodynamic loads and inertia / gravitational loads. The others are the hy-
drodynamic loads including the wave and current loads. The details are listed in the following subsection.

3.2.1 Loads from wind turbine

The loads from wind turbine mainly consist of aerodynamic and inertia loads. Aerodynamic loads are
transferred from the rotor. Inertial load is mainly due to the mass of the RNA (rotor-nacelle assembly).
The above loads are among the most important load sources to be considered in the reliability assessment
of the support structure. They can be simulated from the wind turbine tools like FAST [20] and HAWC2
[21]. In this study, the loads applied on the top of jacket top are directly extracted from the WindPACT
(Wind Partnership for Advanced Technologies) report on Turbine Rotor Design Study [22] as listed in
Table.3.

Table 3: Loads applied on the top of the jacket

Load case Thrust force (kN) Inertia/gravitional force (kN) Bending moment(kN-m)
Ultimate load case 12440 1928 223500

3.2.2 Hydrodynamic loads

Hydrodynamic loads mainly consist of wave and current loads. It is critical to properly estimate the wave
load, because waves will cause a significant force on the jacket. The choice of wave theory to apply to
the model depends on the site characteristics. The decision of wave theory is also dependent on the ratio
of the height to diameter of the structural member. When the diameter of the structure is less than one
fifth of the wave length, Morrison’s equation can be applied for the wave force estimation [23]:

Fwave (z) =
1
4

ρwπD2CMu̇(z, t)+
1
2

ρwDCDu(z, t)|u(z, t)| (4)

where D and ρw are the diameter of jacket members and the density of the water with a typical value of
1025 kg/m3, CM and CD are the coefficient of inertia and drag of the jacket members respectively, and
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their corresponding values are 1.6 and 1.0 respectively, according to [24]. u̇(z, t) and u(z, t) are respec-
tively horizontal acceleration and velocity of water particles, which can be obtained from linear/Airy
wave theory. z and t are respectively the reference depth and time.

Current can induce a drag load acting on the jacket structure. The current velocity can be estimated using
an exponential profile as follows [18]:

uc(z) = uMSL

(
d + z

d

) 1
7

(5)

where uMSL is the current velocity at mean sea level (MSL), d is the depth of water and z is the reference
depth. Usually, for simplicity, the direction of current and wave are assumed to be aligned. In this paper,
both wave and current loads are defined in ANSYS ocean loading module [25] by giving the related wave
and current parameters such as wave height, wave period and current velocity at MSL.

3.3 Limit state function

As mentioned above, this work focuses on the ultimate load case. Hence, only ultimate limit state is
considered in this paper. The performance function of the ultimate state based on the Vons-Mises stress
is given by:

gu(x) = σallow −σmax (6)

where σallow is the allowable stress with a value of 323 Mpa for steel S355 considering safety factor
of 1.1 in [23] and σmax is the maximum Von-Mises stress simulated or calculated by the finite element
analysis tools. x represents all the random parameters.

4 PARAMETER SELECTION AND SURROGATE MODEL

4.1 Parameter selection

For the random parameters, there are mainly three types as showed in the Table.4. The first is the loads
(Fx, Fz, My) from the wind turbines. The second is the wave (Hs, T p) and current parameters (Cmsl).
The third type is the thickness parameters (Tgrey, Tblue) of jacket members. Here, the mean values of wave
and current parameters in 50-year return period are referenced in [17]. The loads from wind turbines and
wave and current parameters are assumed to follow normal distribution with standard deviation equal to
10% of their mean values as done in [26]. As for the thickness parameters Tgrey and Tblue, they represents
respectively the thickness of braces in splash zone with grey color and the thickness of legs in splash
zone with blue color as showed in Fig.2. Here, the thickness of members are considered as random
variables instead of the corrosion wastage, because different corrosion distributions will be considered.
In addition, the original thickness of braces and legs in the splash zone are 20 mm and 35 mm. Corrosion
degradation will cause the thickness wastage of jacket members. Therefore, for training the surrogate
model process, it is better to assume that the thickness parameters follow the uniform distribution with
lower bound (open interval) equal to 0 and upper bound equal to original thickness. In this case, the
trained surrogate model may have good capacity to predict the corrosion effect.
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Table 4: Stochastic parameters in reliability assessment

Stochastic variables
Mean
(Lower bound)

Standard deviation
(Upper bound)

Distribution

Fx–Thrust force (kN) 12440 1244 Normal
Fz–Inertia force (kN) 1928 192.8 Normal
My–Bending moment (kN ∗m) 223500 22350 Normal
Hs–Wave height (m) 10.34 1.034 Normal
T p–Wave period (s) 10.87 1.087 Normal
Cmsl–Current velocity (m/s) 1.2 0.12 Normal
Tgrey–Thickness of braces (mm) 0 20 Uniform
Tblue–Thickness of legs (mm) 0 35 Uniform

4.2 Surrogate model

For training process with MLP, all the parameters as listed in Table.4 are considered as inputs and the
maximum stress in static analysis simulated by ANSYS is the output. Moreover, one criterion is used to
evaluate the surrogate model. That is the mean absolute percentage error (MAPE), given by:

MAPE =
1
n

i=n

∑
i=1

∣∣∣∣yi− ŷi

yi

∣∣∣∣∗100% (7)

where yi and ŷi are the actual value and predicted value and n is the total number of samples. The training
process is by increasing training data set until the criterion MAPE is less than the predefined value (0.1
in this paper). In this study, total 5000 training samples are used to training the surrogate model. The
number of test data equals to 10% of that in the training data. Other 3 validation data sets (each including
1000 simulations) are used for validation process. The training results and validation results are showed
in Table.5. The predicted values and true values of test data set and validation data set 1 are plotted in
Fig.5.

Table 5: Surrogate model training results

Validation data
set

Traning data
MAPE (%)

Test data
MAPE (%)

Validation data
MAPE (%)

Pf pre Pf actual

1
0.0261 0.025

0.0443 0.017 0.017
2 0.0428 0.001 0.001
3 0.0253 0.103 0.103

As showed in Table.5 and Fig.5, the trained surrogate model achieve to predict the unknown validation
data set. All the MAPEs of three validation data sets are less 0.1%. Also, the predicted probabilities
(Pf pre) of failure of validation data sets are equal to the true probabilities (Pf actual) of failure of
validation data sets.
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(a) Test data (b) Validation data set 1

Figure 5: Comparison results between predicted values and true values

5 RESULTS AND COMPARISONS

The design life of the OC4 jacket is about 20 years. The 20 years are divided into 20 time nodes with
each interval equal to one year. A reliability analysis is performed each year. Due to a lack of corrosion
measurement, two probabilistic corrosion models are considered, Gamma and Lognormal distributions
respectively. For these two distributions, the mean and the standard deviation take the same values, as
shown in Table.1. Additionally, the three inspection cases of corrosion in the table are also investigated.
To evaluate reliability of the jacket in each year, one million samples are generated for each year and
each inspection case (IC) with each corrosion model by using Monte Carle simulation. The maixmum
stresses of jacket are estimated by the trained surrogate model in section 4.2. The probabilities of failure
(Pfs) are evaluated based on the limit state function in section 3.3.

The results of the reliability assessment with two corrosion distribution models are plotted in Fig.6 and
Fig.7. It is clear that inspection cases (environmental conditions) have great influence on the reliabil-
ity assessment of the jacket. At the first 6 years, the inspection cases seems to have little influence on
the reliability of the jacket. While, after the 6th year, the differences of Pfs with different inspection
cases appear. In addition, the results of the two corrosion models are compared in Fig.8. It is noted
that the probabilities of failure at the end of 20 years in two corrosion model are different in all the
three inspection cases. In IC1, at the beginning, the probabilities of failure of the jacket are higher with
the Lognormal distribution assumption of corrosion. However, after the 13th year, the probabilities of
failure with Gamma distribution model are greater. In IC2 and IC3, the jacket model with corrosion as-
sumption of Lognomal distribution always has bigger probabilities of failure but the differences between
two corrosion distributions are not obvious compared with IC1. Meanwhile, it should be mentioned that
the differences in different inspection cases have more effects on the reliability assessment of jacket,
compared to different corrosion distribution assumptions as showed in Fig.8. At last, the 20th year prob-
abilities of failure of the jacket in two corrosion models with three inspection cases are given in Table.6.
The corresponding coefficient of variations and 95% confidence interval are also listed in the table. All
the probabilities of failure in the 20th year are greater than the design probability of failure 0.01% [23].
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Figure 6: Reliability results with Gamma distribution corrosion model

Figure 7: Reliability results with Lognormal distribution corrosion model

Figure 8: Comparison of reliability assessment results in two corrosion models

9



Chao et al.

Table 6: Probabilities of failure in the 20th year with two corrosion models

Gamma distribution
Inspection case(IC)

Pf in the 20th
year (%)

Coefficient of
variation (%)

95% confidence interval
of Pf (%)

IC1 21.37 0.19 [21.29, 21.45]
IC2 3.54 0.52 [3.50, 3.58 ]
IC3 1.49 0.81 [1.47, 1.51]
Lognormal distribution
Inspection case(IC)

Pf in the 20th
year (%)

Coefficient of
variation (%)

95% confidence interval
of Pf (%)

IC1 18.88 0.21 [18.80, 18.96]
IC2 3.71 0.51 [3.67, 3.75]
IC3 1.89 0.72 [1.86, 1.92]

6 CONCLUSIONS AND RECOMMENDATIONS

In this paper, an approach is proposed to evaluate the reliability of failure of an OWT jacket considering
corrosion degradation under extreme load cases. The reliability assessment is based on a surrogate
model trained by deep neurons networks. The corrosion degradation is considered as time-dependant
variables. The probabilistic corrosion model is adopted in this paper by using two probability distribution
of the corrosion parameters, Lognormal and Gamma respectively. In addition, three inspection cases of
corrosion are investigated. The results show that:

1. The probabilities of failure of the jacket are slightly the same for severe corrosion and no significant
corrosion when the corrosion parameters are assumed Lognormal and Gamma probability distribution.
However, when the inspection case is not-performed and the corrosion is severer, then the probability of
failure is different regarding the gamma and lognormal distributions models.

2. With same assumption of corrosion distribution, the probabilities of failure of jacket will depend
on the inspection cases (environmental conditions). In addition, in this paper, it is also noted that the
inspection cases have more influences on the probabilities of failure, compared to different corrosion
distribution assumptions (Gamma and Lognormal distribution in this paper).

3. With two corrosion distributions studied in this work, it is found that the probabilities of failure in the
end of 20 years can reach up to 21.37% for the maximum value and 1.49% for the minimum value. More
importantly, all the probabilities in the two corrosion distributions with three inspection cases at the end
of 20th year are greater than design probabilities of failure 0.01% in [23].

From this work, two recommendations are proposed. Firstly, the extreme load cases with corrosion
degradation should be considered in design of the offshore jacket, in the view of the effect of corrosion
and the increase extreme weather conditions in recent years. Secondly, the corrosion model should be
chosen carefully, if on-site corrosion data is not available or not sufficient to estimate the future corrosion.
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