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Abstract. Hydrogels are soft, hydrophilic materials which can absorb a large volume of solvent and

undergo finite volumetric deformations known as swelling. The swelling of a hydrogel can be a driv-

ing mechanism for complex material responses such as pattern transformation which lead to change of

periodicity as a result of a microscopic instability in periodic materials. In the present contribution, we

deal with the computational analysis of swelling-induced instabilities in periodic hydrogels. The stability

analysis based on the Bloch-Floquet theory is carried out within a transient two-field minimization-type

variational principle. The presented formulation and methodology for the stability analysis are compu-

tationally efficient, since the computations are carried out on the smallest representative volume element

of the microstructure. Within this framework, we study swelling-induced microscopic instabilities for

various perforated hydrogels. Our findings are consistent with experimental observations and show that

the so-called diamond plate patterns are the critical buckling mode for voided microstructures. Moreover,

we observe long-wavelength instabilities for certain volume fractions of voids.

1 INTRODUCTION

Hydrogels are soft, porous, hydrophilic, biocompatible materials having a polymer network structure

which is retained together as a result of existence of physical and chemical crosslinks. The polymer

network structure gives hydrogels favorable elastic behavior. Hydrogels can absorb a large volume of

water into the network of polymer chains; as a result they undergo finite volumetric deformation referred

to as swelling [1]. Since the swelling of hydrogels can be also controlled by various external stimuli

in addition to their favorable properties, these soft materials have a wide range of applications, e.g., in

the development of micro and biomedical devices [2, 3, 4]. Similarly, other important application areas

are realized by use of periodic hydrogels, where the specially designed microstructures allow obtaining

further controllable patterns and tunable responses. Here, we refer to metamaterials with negative overall

volume change under the diffusion of solvent into the system [5, 6].

Diffusion-deformation processes in hydrogels involve interaction of complex elastic and chemical pro-

cesses. This interaction can be a driving mechanism for further complex responses such as development

of instabilities and pattern transformations in soft hydrogels [7, 8]. Understanding the instabilities in the

soft materials can also have important implications for the growth of biological systems, refer to [9] for
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a review of mechanical instabilities in gels and references therein.

In the present contribution, we are interested in the investigation of instabilities, particularly pattern trans-

forming microscopic instabilities in periodic hydrogels [8, 10]. The instability analysis of equilibrium

swelling in periodic structures has been already considered in [11, 12, 5]. However, these references do

not account for the transient diffusion phenomenon. In the present contribution, our aim is to introduce a

methodology to study the pattern-transforming instabilities in periodic hydrogels based on Bloch-Floquet

wave analysis within a transient variational framework. This will allow to detect the critical instabilities

on a chosen smallest representative domain of hydrogels which we refer to as unit-cell representative

volume element (RVE). Although the computations will be on unit-cell RVE, the framework allows to

detect the critical size of periodic units of a hydrogel which can go beyond the unit-cell size. This makes

the numerical stability analysis also computationally efficient.

Our stability analysis is embedded into a minimization-type variational framework which allows to con-

sider the stability analysis in the classical energy-based sense. Additionally, the minimization nature of

the formulation has also favorable implications such as positive-definiteness until instability point and

symmetry of underlying system of equations [13, 14, 16]. Although this formulation is favorable to in-

vestigate instabilities and it is not constrained by the inf-sup condition, it also requires a discretization

using special elements such as Raviart-Thomas-type finite elements [17, 18].

In the following, we first start with the rate-type variational formulation of dissipative deformation-

diffussion processes and its implementation into a time-space discrete numerical framework. Within

the numerical framework, we consider the implementation of Bloch-Floquet-type stability analysis. Fi-

nally, we consider numerical examples based on experiments and demonstrate the capabilities of the

framework. The numerically obtained pattern formation is in line with experimental observations. We

conclude the contribution with summary and an outlook.

2 VARIATIONAL FORMULATION OF DIFFUSION-DEFORMATION PROCESSES

In this section, we focus on the continuum modeling of deformation-diffussion processes based on a

rate-type minimization principle introduced in [13, 14], see also [19, 20, 21]. Since these references

provide a detailed description of the formulation, in the following, our presentation is given in a concise

form. Within our formulation, we also account for time-space discretization of the problem, whereby we

consider the incremental stability analysis of periodic hydrogel microstructures.

2.1 Independent primary fields of the minimization formulation

Since we consider a minimization-type formulation, the constitutive state of a deformation-diffusion

phenomenon can be described by the deformation map ϕϕϕ and solvent-volume flux vector H

ϕϕϕ :

{

B0 ×T → Bt ⊂ R 3

(X, t) 7→ ϕϕϕ(X, t)
and H :

{

B0 ×T → Bt ⊂ R 3

(X, t) 7→H(X, t)
, (1)

where B0 and Bt denote the reference and current configuration of a porous material, respectively. While

the deformation map determines the position of the material points X of the whole mixture B0 in the cur-

rent configuration Bt at time t ⊂ T , the Lagrangian solvent-volume flux vector H describes the relative
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Figure 1: Description of global primary fields with corresponding boundary conditions and a local field without a

boundary condition of the two-field minimization formulation.

volume transport rate of a solvent across the area element dA of an infinitesimal part P0 ⊂ B0 w.r.t. the

motion of the mixture, refer to [22, 23] for details. Although we consider a Lagrangian formalism in the

present work, the Eulerian solvent-volume flux can be related to the Lagrangian field via

h ·da =H ·dA ⇒ H = JF−T
h. (2)

In addition to the above global fields, we also introduce the solvent-volume concentration s over an

infinitesimal part P0 ⊂ B0, see Fig. 1. The solvent-volume concentration is related to the volume-flux

vector via Gauss’ law
d

dt

∫

P0

s dV =

∫

∂P0

H ·NdA ⇒ ṡ =−Div[H ]. (3)

The equation (3) is also referred to as the balance of solvent-volume concentration [24]. Finally, we

introduce the deformation gradient of the finite strain setting

F = Grad[ϕϕϕ] with J = det[F]> 0. (4)

2.2 Constitutive functions of deformation-diffusion process

The second axiom of thermodynamics requires that the evolution of the stored energy within a part P0

does not exceed the external power acting on this part

d

dt

∫

P0

ψ dV ≤

∫

∂P0

t · ϕ̇ϕϕ dA−

∫

∂P0

µH ·N dA

︸ ︷︷ ︸

Pext (P0)

, (5)

where t = P ·N is the nominal traction vector acting on the part P0 due to the action of the rest of the

body B0\P0; µ is the chemical potential of the solvent describing the energy conducted to the part P0 as

a result of solvent-volume influx.

From the second axiom of thermodynamics (5), we can obtain the dissipation associated with the part P0

as the difference between the power of external loading and the evolution of the stored energy
∫

P0

D dV := Pext(P0)−
d

dt

∫

P0

ψ dV ≥ 0. (6)
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By localizing the latter inequality, we obtain the so-called local and conductive parts of the localized

dissipation inequality [24], which need to be satisfied separately

Dloc := P : Ḟ+µṡ− ψ̇ ≥ 0 and Ddi f :=H ·M ≥ 0, (7)

where P is the first Piola-Kirchhoff stress tensor; M = −Gradµ is the driving force of the diffusion

process. Since we assume that the relaxation time of the material is much lower than the characteristic

diffusion time of the solvent, we do not take into account any viscoelastic response of the skeleton

due to the diffusion of the solvent. Consequently, the dissipation within the current formulation can be

associated merely to the diffusion process.

From (7)1, we define the energy-storage density function ψ̂(F,s) per unit volume of the reference con-

figuration and associated energy-storage functional E(F,s) of the body B0 in the following forms

ψ̂(F,s) := ψ̂mech(F)+ ψ̂chem(s)+ ψ̂coup(J,s) ⇒ E(F,s) :=

∫

B0

ψ̂(F,s)dV, (8)

which we take into account in (7)1. As a result, we determine the first Piola-Kirchhoff stress tensor P

and chemical potential µ constitutively from the energy-storage density function ψ̂(F,s)

P = ∂Fψ̂(F,s) and µ = ∂sψ̂(F,s). (9)

The inequality (7)2 is satisfied a priori by introducing a positive, normalized and convex dissipation

density function φ̂(H) per unit volume of the reference configuration and dissipation functional D(H)
of the body B0 in the following forms

φ̂(H ;F,s) := sup
M

{M ·H− φ̂⋆(M ;F,s)} ⇒ D(H) :=

∫

B0

φ̂(H ;F,s)dV, (10)

where φ̂⋆(M) is the dual dissipation density function. As a result, we determine the diffusion-driving

forceM constitutively from the dissipation density function φ̂(H)

M = ∂
H

φ̂(H ;F,s). (11)

Both energy-storage and dissipation density functions will be given explicitly in Section 4.

2.3 Rate-type two-field minimization principle

Based on the above defined functionals in (8)2 and (10)2, we can postulate the rate-type potential func-

tional in the following form [13, 14, 15]

Π(ϕ̇ϕϕ,H) :=
d

dt
E(ϕ̇ϕϕ,H)−Pext(ϕ̇ϕϕ,H) =

∫

B0

π(ϕ̇ϕϕ,H)dV −Pext(ϕ̇ϕϕ,H), (12)

where π(ϕ̇ϕϕ,H) is the rate-type potential density of the solid-fluid mixture and defined as follows

π(ϕ̇ϕϕ,H) :=
d

dt
ψ̂(F,s)+ φ̂(H ;F,s) = ∂Fψ̂(F,s) : Ḟ−∂sψ̂(F,s)Div[H ]+ φ̂(H ;F,s), (13)
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where we have used the balance of solvent-volume concentration ṡ = −Div[H ]. The external power

applied to the body B0 is determined in the following form

Pext(ϕ̇ϕϕ,H) :=

∫

∂B0

t · ϕ̇ϕϕ dA−

∫

∂B0

µH ·N dA. (14)

Based on the potential functional (12), we state the minimization principle as follows

{ϕ̇ϕϕ⋆,H ⋆}= Arg
{

inf
ϕ̇ϕϕ∈Wϕ̇ϕϕ

inf
H∈W

H

Π(ϕ̇ϕϕ,H)
}
, (15)

where the admissible spaces for the rate of deformation and the solvent-volume flux vector are

Wϕ̇ϕϕ := {ϕ̇ϕϕ ∈ H1(B0)|ϕ̇ϕϕ = ϕ̇ϕϕD on B
ϕ̇ϕϕ
0 }

W
H

:= {H ∈ H(Div,B0)|H ·N = HD on BH
0 }

(16)

Considering the necessary condition of the variational principle at equilibrium, we obtain the Euler-

Lagrange equations

1. Balance of linear momentum Div[∂Fψ̂] = 0 in B0,

2. Inverse Fick law Grad[∂sψ̂]+∂
H

φ̂ = 0 in B0,
3. Traction boundary condition ∂Fψ̂ ·N− t = 0 on ∂B t

0,
4. Chem. potential boundary condition ∂sψ̂−µ = 0 on ∂B

µ
0 .

(17)

2.4 Time-Space discretization of the minimization principle

To implement the above variational formulation into a conforming finite-element formulation, we first

consider a time discretization using an implicit Euler scheme in a time interval τ = tn+1 − tn. As a result,

we obtain the time-discrete incremental potential functional Πτ as follows

Πτ(ϕ̇ϕϕ,H) :=

∫

B0

ψ̂(F,sn − τDiv[H ])+ τφ̂(H ;Fn,sn)dV − τPext(ϕ̇ϕϕ,H), (18)

where we drop the subscript for the variables at the current time step. Additionally, we determine the

solvent-volume concentration at time tn+1 via the discrete version of the balance of solvent-volume con-

centration, i.e., sn+1 = sn−τDiv[H ]. The admissible spaces for the deformation map and solvent-volume

flux are the discrete versions of (16). In the present contribution, we use a Raviart–Thomas-type Q2–RT0

finite-element formulation for the space discretization in line with the requirements of the admissible

spaces [17, 18]. Consequently, the discrete incremental version of the variational principle (15) is given

as

ddd⋆ = Arg
{

min
ddd

Πτ(ddd)
}
, (19)

where ddd denotes the total deformation and solvent-volume flux degrees of freedoms.
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3 STRUCTURAL STABILITY ANALYSIS OF PERIODIC HYDROGELS

In this section, we focus on the structural stability analysis of hydrogels with infinitely periodic mi-

crostructures. The effective response of such periodic microstructures can usually be determined via

computations on a suitable representative volume element (RVE). In the present work, we refer to the

smallest possible periodic RVE as the unit-cell RVE and denote it with D0. Although the uniqueness

of the solution at small strains over such a unit-cell RVE is guarantied by convexity, at large strains

convexity is physically not suitable and hence the effective response of a periodic microstructure cannot

always be determined via computations on a unit-cell RVE [25]. In particular, because of microscopic

instabilities the periodicity of the material can change which requires computations to be carried out on

the new RVE usually contained of several unit-cells.

In the present contribution, we study stability of an equilibrium under infinitesimally small perturbations

using Bloch-Floquet theorem and observe if the uniqueness of the underlying system of equations is

maintained [26, 27, 28]. We start with the classical energy-based definition of the stability criterion [29]

∆Πτ(ddd⋆,δddd) := Πτ(ddd⋆+ εδddd)−Πτ(ddd⋆)> 0, (20)

which requires that any infinitesimal perturbations in the neighborhood of an equilibrium state ddd⋆ raise

the potential of the system. If we consider a Taylor expansion of (20) around ddd⋆

∆Πτ(ddd⋆,δddd) :=
d

dε

∣
∣
∣
∣
ε=0

Πτ(ddd⋆+ εδddd)+
1

2

d2

dε2

∣
∣
∣
∣
ε=0

Πτ(ddd⋆+ εδddd)+ ..., (21)

take into account (19) and truncate the higher-order terms, we obtain

∆Πτ(ddd⋆,δddd) =
1

2

d2

dε2

∣
∣
∣
∣
ε=0

Πτ(ddd⋆+ εδddd) =
1

2
δdddT

[
Πτ(ddd),dddddd

]

ddd⋆δddd = ΛδdddT δddd > 0. (22)

Consequently, stability of the equilibrium state ddd⋆ is associated with the positive-definiteness of the

second variation of Πτ

Λ = min
n∈N3

min
ddd

{
∆Πτ(ddd,δddd)

/
‖δddd‖2

}

{

> 0 for stable solution state ddd⋆

≤ 0 for unstable solution state ddd⋆,
(23)

which needs to be checked for all possible RVEs constructed from n ∈N
3 unit-cells in order to determine

the critical instability point accurately. Since this requires significant effort, we use the Bloch-Floquet

theory to determine the instabilities via computations over a unit-cell D0. Thus, instead of checking

instabilities for various RVE sizes, we consider perturbations having various wavelengths, which can be

expressed as follows

δddd(X) = δdddD0
(X)exp[ik ·X] with δddd+

D0
= δddd−

D0
on ∂D0 = ∂D+

0 ∪D−
0 , (24)

where k is the Bloch vector and characterizes the wavelength of perturbations. As a result, we can modify

the stabiltiy criterion (23) and obtain the final form as follows

Λ = min
ki∈[0,π]

min
ddd

{
∆Πτ(ddd,δddd)

/
‖δddd‖2

}

{

> 0 for stable solution state ddd⋆

≤ 0 for unstable solution state ddd⋆ (25)
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with the boundary conditions δddd(X+) = δddd(X−)exp[ik · (X+ −X−)] on the unit-cell RVE ∂D0. De-

pending on the critical Bloch vector components at an instability point, we differentiate local unit-cell

periodic (ki = 0), short-wavelength (ki 6= 0) and long-wavelength (ki → 0) instabilities. The latter is

usually associated with material instabilities of a corresponding homogeneous effective material [26].

4 COMPUTATIONAL STUDY OF PATTERN-TRANSFORMING INSTABILITIES

In this section, we investigate the pattern transformation of microstructures of periodic hydrogels as

a result of microscopic instabilities. Our numerical studies focus on two-dimensional perforated mi-

crostructures with circular voids H0 of different volume fractions, see Fig. 2.

Figure 2: Description of the unit-cell representative volume element and its boundary conditions, where D0 ≡
B0 ∪H0 has been considered.

The considered energy-storage (8) and dissipation potential (10) functions in the numerical setting are

given below [30, 14]

ψ̂(F,s) =
γ

2J0

[
J

2/3

0 F : F−3−2ln(JJ0)
]

︸ ︷︷ ︸

ψ̂mech(F)

+
α

J0

[

s ln
( s

1+ s

)
+

χs

1+ s

]

︸ ︷︷ ︸

ψ̂chem(s)

+
κ

2J0

(
JJ0 −1− s

)2

︸ ︷︷ ︸

ψcoup(J,s)

,

φ̂(H ;Cn,sn) =
1

2J
1/3
0 Msn

Cn : (H ⊗H).

(26)

Since (26)1 is singular at the dry state s = 0, a stress-free swollen state of a hydrogel has been chosen

Table 1: Material parameters of perforated hydrogels

Parameters Values

Shear modulus, γ/[N/mm2] 0.1
Mixing modulus, α/[N/mm2] 40.0
Flory–Huggins parameter, χ 0.1
Mobility parameter, M/[mm4/N · s] 10−4

Pre-swelling Jacobian, J0 1.01

Penalty parameter, κ/γ 10.0
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Figure 3: Influence of the shear modulus of hydrogel on the onset of instabilities (left) and corresponding critical

deformed radius of the void (right) versus volume fraction of voids f0.

Figure 4: Buckling mode for a hydrogel with voids having f0 = 30% volume fraction. Left: unbuckled state and

right: buckled state.

as the reference state which is characterized by the pre-swelling parameter J0 and initial condition s(t =
0) = s0, see, for example, [19, 20, 21, 14]. The description of material parameters of the model as well

as their values are provided in Table 1.

As we consider periodic microstructures, we apply periodic boundary conditions for the fluctuations of

the deformation field and Dirichlet boundary conditions for the fluctuations of the solvent-volume flux

on the outer boundary of the RVE, see [31]

[[φφφ]] = F(t) · [[X]] and [[H ]] = 0 on ∂B0, (27)

where F = 1
|D0|

∫

D0
F dV is the applied effective deformation gradient with D0 = B0 ∪H0; [[(·)]] denotes

jump of a variable (·) across the RVE boundary, see Fig. 2. In the present contribution, we choose F = 1.

On the inner boundary ∂H0 of the RVE, we apply the following traction and chemical potential boundary
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conditions

t = 0 and µ = µN(t) on ∂H0. (28)

where the prescribed chemical potential µN is increased from the chemical potential of pre-swollen state

µN(t = 0) = µ0 to µN(t = 1) = 0 within 1.0 second. The considered solvent loading condition via the

surface of the void resembles the loading from experimental works, e.g., refer to [8].

In Fig. 3, we illustrate the critical effective first Piola-Kirchhoff stresses P11 as well as the deformed

critical radius of a material point (0,rvoid =
√

( f0|D0|)/π =
√

f0/π) for various volume fractions f0

of the voids. The origin of the coordinate sytem is considered at the center of the unit-cell RVE. The

plots include the shear modulus of the hydrogels to be in the range γ = {0.005,0.01,0.05,0.1} N/mm2.

From this numerical example, we observed that the critical effective stresses are strongly dependent on

the shear modulus. The ratio of the critical stresses between two hydrogels with fixed void volume

fraction are found to differ by the ratio of shear moduli of these microstructures. This is the reason for

the independence of the critical radius of the voids from the shear modulus of the hydrogels. In most

cases in this example, we observe short-wavelength instabilities yielding pattern transformations which

can be captured by an enlarged RVE contained of 2× 2 unit-cells. In Fig. 4, we illustrate this buckling

mode for a hydrogel microstructure with voids of f0 = 30% volume fraction. The material parameters

of the problem have been given in Table 1. The observed diamond plate pattern is in agreement with the

experiments [7, 8]. Furthermore, we detected long-wavelength instabilities (k → 0) when the voids have

the volume fractions of f0 = 10% and f0 = 15%.
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Figure 5: Influence of the Florry-Huggins parameter of hydrogel on the onset of instabilities (left) and correspond-

ing critical deformed radius of the voids (right) versus volume fraction of voids f0.

In Fig. 5, we also study the influence of the Flory–Huggings parameters χ on the onset of instabilities.

The parameter is considered to be in the range χ = {0.1,0.2,0.3,0.4,0.8,1.2}. The remaining material

parameters can be found in Table 1. We observe that this parameter has a strong influence on the critical

effective stresses. Nevertheless, we also observe marginal influence on the deformed critical radius of

the void at the respective instability point. Similar to the previous case, we again detect mostly short-

wavelength instabilities leading to the change of periodicity of the hydrogel microstructures. The new

periodicity can be captured by an enlarged RVE of 2× 2 unit-cells, see Fig. 4. The long-wavelength
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instabilities (k → 0) correspond to the microstructures with voids having f0 = 10% and f0 = 15%.

5 SUMMARY

The present work has investigated the development of instabilities in periodic hydrogels within a minimization-

based two-field formulation. The variational setting is implemented into a conforming finite-element

formulation whereby we consider computational stability analysis using Bloch-Floquet theorem. In the

current contribution, our studies considers under diffusion of the solvent through the surface of voids.

The investigations account for various void volume fractions and shear moduli. Our results and observed

pattern transformations are in good agreement with experimental data. In future studies we will consider

the investigation of periodic hydrogels in two dimensions as well as in three dimensions.
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