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Abstract. The Boundary Element Method (BEM) is well established as an accurate and powerful nu-
merical technique in continuum mechanics. Due to its intrinsic feature of reducing the problem’s dimen-
sionality, which allows reducing the modelling effort without compromising on the solution accuracy,
the BEM has been successfully employed for the computational homogenization of materials with com-
plex morphologies. The Virtual Element Method (VEM) has recently emerged as a powerful and robust
technique, capable of handling very general polygonal/polyhedral mesh elements. Such a property is
of interest in treating problems whose analysis domain presents complex geometric features, as it sim-
plifies the data preparation stage of the analysis. In this work, we use a coupled VEM-BEM approach
for computational homogenization of heterogeneous materials whose microstructure is characterized by
inclusions of irregular shapes embedded in a surrounding matrix.

1 INTRODUCTION

The Finite Element Method (FEM) [1] and the Boundary Element Method (BEM) [2] are numerical tech-
niques widely employed for the solution of several classes of problems in solids and materials mechanics.
FEM allows generality and relative simplicity in including complex modelling aspects, such as domain
inhomogeneity or non-linear material behaviours. BEM is known to offer pre-processing simplification
and high numerical accuracy at a relatively reduced computational cost, especially in problems requir-
ing accurate representation of surfaces. For some classes of problems exhibiting regions with different
properties, acknowledging such benefits has suggested coupling the two methods in hybrid approaches
combining their relative strengths [3, 4, 5, 6].

The Virtual Element Method (VEM) [7] extends the features of FEM to very general polygonal and poly-
hedral mesh elements, including irregular or non-convex ones. For such a reason, VEM provides appre-
ciable simplification in the data preparation stage of the analysis, especially in problems whose analysis
domain features complex geometries, e.g., computational micro-mechanics problems [8, 9, 10, 11, 12],
which may induce irregular meshes when automatic algorithms are used. BEM, on the other hand, has
also been successfully employed for the computational homogenisation of materials with complex mor-
phology or constitutive behaviour [13, 14, 15, 16].

In this contribution, we explore the capabilities of a coupled VEM-BEM numerical technique [17] for
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Figure 1: Reference model for the coupled VEM/BEM approach.

computational homogenisation of heterogeneous materials with complex microstructures. This con-
tribution is organised as follows. Section(2) briefly reviews the BEM and the lowest-order VEM for
two-dimensional linear elastic problems and gives details of the adopted coupling procedure. Section(3)
presents the hybrid procedure applied to a case study represented by a matrix with a complex-shaped
inclusion, assessing the accuracy in terms of displacements and stresses. Some concluding remarks are
eventually given in Section(5).

2 FORMULATION

Let us consider a two-dimensional linear elastic problem set in the framework of small strains. The
elastic body lies within the domain Ω ∈ R2 with its external boundary Γ. It is assumed that no body
forces act within Ω, but both tractions and/or displacements can be enforced on the boundary Γ. The
domain Ω is considered as the union of two subdomains, namely ΩB and ΩV that represent, respectively,
an irregularly shaped inclusion, representative e.g. of the transversal section of a fibre in a polymer
fibre-reinforced composite, and the surrounding matrix, representative e.g. of the polymer matrix in the
mentioned class of materials. The two subdomains share the interface S, as shown in Fig.(1), where the
considered analysis domain is drawn with its features.

In the proposed approach, BEM is used to model the inclusion while VEM is used to model the surround-
ing matrix. To this end, the domain ΩV is partitioned into a number of polygons of general shape, while
the boundary S is divided into a number of segments, which form the edges of the polygonal elements in
ΩV lying in proximity of the interface between the two subdomains.
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2.1 BEM formulation

For the BEM subdomain ΩB with boundary S, in absence of body forces and using tensor notation with
i, j = x,y, the boundary integral equation (BIE) for the displacements u j at a boundary collocation point
x0 ∈ S can be written as [2]

αi j (x0) u j (x0) =
∫

S
Gi j (x0,x) t j (x)ds−

∫
S

Hi j (x0,x) u j (x)ds (1)

where the terms αi j are functions of the geometry at the point x0, ui(x) and ti(x) are unknown displace-
ment and traction components at the integration boundary point x. The fundamental solutions Hi j(x0,x)
and Gi j(x0,x) for plane strain condition are given by

Gi j(x0,x) =C1 (C2 δi j lnr− r,i r, j)

Hi j(x0,x) =
C3

r
[nk r,k (C4 δi j +2r,i r, j)−C4 (r,i n j− r, j ni)]

(2)

where r = |x−x0| is the Euclidean distance between the points x0 and x, the indicial notation f,i = ∂ f/∂xi

is adopted to refer to differentiation, ni are components of the outward unit normal vector to the boundary
S at the generic smooth point x. The coefficients C1, C2, C3 and C4 are given by

C1 =−
1+ν

4π(1−ν)E
, C2 = 3−4ν, C3 =−

1
4π(1−ν)

, C4 = 1−2ν, (3)

with E and ν denoting respectively the Young’s modulus and the Poisson’s ratio of the isotropic material
within the subdomain ΩB.

The numerical solution of Eq.(1) is based on the discretisation of S and the successive approximation of
the boundary displacement and traction components in terms of shape functions and nodal values. More
specifically, S is subdivided into m straight segments ∆Sk, and two nodes are associated with the extremes
of each segment; each node carries two components of displacements and two components of tractions.
Since S is considered smooth, so that a tangent to it can be associated to any x ∈ S, the existence of a
unique value of traction at each node is ensured.

Both displacement and traction components are assumed to be globally continuous over S and to vary
linearly over each boundary segment ∆Sk according to

u(ξ) = N(ξ) uk, t(ξ) = N(ξ) tk (4)

where N(ξ) ∈R2×4 is the matrix collecting 1D linear shape functions for the boundary segment ∆Sk, ex-
pressed as function of the natural coordinate ξ, and uk, tk ∈R4×1 collect, respectively, nodal components
of displacements and tractions associated with the boundary segment ∆Sk.

Eq.(1), collocated at the generic boundary node p, may be rewritten in matrix notation as

αup =
m

∑
q=1

[∫
∆Sq

Gpq(ξ)N(ξ)J(ξ)dξ

]
tq−

m

∑
q=1

[∫
∆Sq

Hpq(ξ)N(ξ)J(ξ)dξ

]
uq (5)

where α ∈ R2×2 is a matrix depending on the geometry of the boundary at the considered collocation
point p, smooth in this case, up ∈R2×1 collects the components of displacements at the node p, uq and tq
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are nodal displacements and tractions associated with ∆Sq, as in Eq.(4), and J(ξ) indicates the absolute
value of the Jacobian of the transformation between segment local and natural coordinates.

After integration and appropriate algebraic manipulations, we can rewrite Eq.(5) in compact form as

HpUB = GpTB (6)

where Hp,Gp ∈ R2×2m denote the rectangular matrices obtained by collocating at the node p and inte-
gration over the whole boundary S while UB,TB ∈ R2m×1 collect the components of displacements and
tractions for all the nodes identified on the boundary S, with the superscript B introduced to highlight
that such quantities are associated with the BEM domain. Writing Eq.(6) ∀p ∈ [1, ...,m], we obtain the
set of linear algebraic equations

HUB = GTB (7)

where H,G ∈ R2m×2m collect the coefficient obtained from the integration of Eq.(5) written for all the
collocation points. Since the BEM subdomain identifies an inclusion in the analysed domain, both UB

and TB are unknown quantities that must be determined by interfacing Eq.(7) with the equations obtained
by the numerical model of the complementary matrix domain.

2.2 VEM formulation

We use the lowest-order VEM for linear two-dimensional elastostatics problems to model the subdomain
ΩV, which is discretised with general polygonal elements, including highly distorted or non-convex ele-
ments. For a general virtual element E, the element degrees of freedom are the values of the displacement
components at each of its n vertex, which are collected into the vector uE . Analogously to what is done
in standard FEM, it is assumed that the displacements field u within the element is given by

u = N(η) uE (8)

where N(η) is the generic matrix containing the virtual shape functions Nv (η) associated with each ver-
tex v. In the VEM approach, such shape functions are known only on the element edges of E, where they
are globally continuous linear polynomials. Since the shape functions, Nv (η) are not explicitly known
within the polygonal element, an explicit expression for the strains is not available. An approximated
constant strain field επ is assumed within each element, which can be computed from the degrees of
freedom uE as

επ = ΠE uE (9)

where ΠE ∈ R3×2n is the matrix representation of a projection operator, defined as [18]

ΠE =
1

AE

n

∑
v=1

∫
ev

NE
v N(η) ds (10)

where AE is the area of the polygonal element E, bounded by its n edges ev and

NE
v =

nx 0
0 ny

ny nx

 (11)
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is the matrix containing the components nx and ny of the outward unit normal vector over each edge. The
integrals appearing at the right-hand side of Eq.(10), which are carried out over the element edges, are
exactly computable, since the restriction of the virtual shape functions Nv to such edges are piecewise
linear polynomials.

The VEM elemental stiffness matrix KE is the sum of two terms

KE = Kc
E +Ks

E . (12)

The first term is given by
Kc

E = AE Π
T
E CΠE , (13)

where C represents the material stiffness tensor in Voigt notation. Since the approximate strains επ are
assumed constant within the element, while the displacements u are piecewise linear on the element
edges, in general, επ are not compatible with the nodal degrees of freedom uE . The computation of the
discrete internal strain energy, using only the approximate constant strains επ, may lead to zero-energy
modes not associated with rigid body motion. A stabilisation strategy is employed to ensure the proper
rank of the KE by introducing the stabilisation matrix Ks

E which be computed as in Ref.[19].

The equivalent nodal forces FE are computed as in the standard FEM from specified tractions t̄ over the
element boundary ∂E =

⋃
ev, i.e.

FE =
∫

∂E
NT(η) t̄ds. (14)

Once the elemental matrices are built, the assembly of the VEM global matrices can be performed fol-
lowing standard FE procedures, to obtain the following sets of equations for the VEM subdomain

KV UV = FV (15)

where KV, UV and FV are, respectively, the stiffness matrix, the nodal displacement vector and the force
vector for the VEM subdomain, with the superscript V introduced to identify quantities related with the
VEM domain.

2.3 Coupling procedure

To couple the virtual and the boundary element methods, the BEM subdomain is treated as a macro-
finite element, and the traction-displacement equations associated with it are transformed into force-
displacement equations and assembled with the VEM equations, already expressed in terms of nodal
forces and displacements. Finally, equilibrium and compatibility are enforced along the common inter-
face between the VEM subdomain and the BEM subdomain.

The vectors UV and FV appearing in Eq.(15) collect the displacement and nodal force components of all
the VEM nodes in the considered domain. Since only some of such nodes belong to the interface S, it is
possible to partition the vectors as

UV =

[
UV

S
UV

D

]
, FV =

[
FV

S
FV

D

]
, (16)

where the subscript S and D refer, respectively, to the interface nodes and to the remaining the nodes of
the remaining analysis domain. Therefore, we may rewrite Eq.(15) as
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[
KSS KSD

KDS KDD

][
UV

S
UV

D

]
=

[
FV

S
FV

D

]
, (17)

Along S, the nodal displacements and forces must then satisfy the compatibility and equilibrium condi-
tions

UB = UV
S , FB +FV

S = 0, (18)

which have been written considering that no external nodal forces act on the nodes belonging to S. The
displacement compatibility equations can be readily written, as the same displacement components ap-
pear in both the BEM and VEM equations. On the contrary, while nodal forces appear in Eq.(15), related
to the VEM domain, tractions appear in Eq.(7), related to the BEM domain, so that it is necessary to
retrieve consistent nodal forces from BEM tractions, before writing the equilibrium equations appearing
in Eq.(18). This may be done, for a generic boundary element node, by resorting to appropriate energetic
considerations. In the adopted scheme, two-node piecewise linear boundary elements are used so that a
generic node always lies at the conjunction of two contiguous boundary elements. If the generic node i
lies between the boundary elements ∆Sk and ∆Sk+1, then, for a virtual displacement δu(xi)≡ δui of the
node i, the unknown nodal force FB

i will perform a work that should be energetically equivalent to the
work performed by the tractions acting on the two contiguous boundary elements. Thus, the following
equivalence holds

δuT
i FB

i =
k+1

∑
j=k

∫
∆S j

δuT(ξ) t(ξ)J(ξ)dξ, (19)

which, recalling the interpolation expressed in Eq.(4), may be written as

δuT
i FB

i =
k+1

∑
j=k

δu j,T
[∫

∆S j

N(ξ)T N(ξ)J(ξ)dξ

]
t j =

k+1

∑
j=k

δu j,TM jt j, (20)

where M j ∈R4×4 stem from the integration over the considered elements of the shape functions matrices,
while the vectors δu j, t j ∈R4×1 collect the components of displacements of the two end nodes belonging
to the element j, so that

δuk =

[
δui−1
δui

]
=

[
0

δui

]
, δuk+1 =

[
δui

δui+1

]
=

[
δui

0

]
. (21)

Taking into account Eqs.(21), Eq.(20) may be rewritten

δuT
i FB

i = δuT
i

k+1

∑
j=k

M̃ jt j ⇒ FB
i =

k+1

∑
j=k

M̃ jt j (22)

where M̃ j ∈ R2×4 is the sub-matrix extracted from M j selecting the appropriate rows corresponding to
the displacements associated with the node i. It is important to realise that Eq.(22) allows expressing FB

i
in terms of the traction components associated with the two elements containing the node i; for two-node
linear boundary elements such expression could be written as

FB
i =

i+1

∑
k=i−1

Mktk (23)
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where tk collects the components of tractions of the node k. Once Eq.(23) is written for all the boundary
element nodes belonging to S, the nodal forces FB appearing in the equilibrium equations, Eq.(18), can
be expressed in terms of the boundary tractions TB appearing in Eq.(7) as

FB = MTB, (24)

where FB,TB ∈R2m×1 and M∈R2m×2m, with m expressing the total number of boundary nodes/elements.

Exploiting Eq.(24), Eq.(7) can be written in a form to be used in conjunction with the VEM equations;
in particular, remembering that TB = G−1 HUB, it is possible to write

FB = MTB =
(
MG−1 H

)
UB = KB UB. (25)

Considering the interface conditions in Eqs.(18), we can now combine the BEM equilibrium equations
in Eq.25 with the VEM equilibrium equations Eq.17 to obtain the final set of equations for the coupled
system [

KSS +KB KSD

KDS KDD

][
UV

S
UV

D

]
=

[
0

FV
D

]
, (26)

3 NUMERICAL TESTS

In this Section, we report a numerical application of the hybrid VEM/BEM formulation for the computa-
tional homogenisation problem of a composite material reinforced with fibres whose transversal section
presents a more complex shape than the traditional standard one.

The problem consists of several steps, which include: (a) a random generation of a certain number of
artificial digital samples of the considered material, referred to as unit cells; (b) the generation of a
finite element discretisation of the analysis domain; (c) the simulation of the micro-scale response of the
samples; (d) the computation of the ensemble averages, over the set of considered samples, of suitable
volume averaged quantities (stress in the present case); (e) the estimation of the macroscopic transverse
mechanical properties of the material.

The present test’s unit cells are generated by randomly scattering a given number of inclusions having
the same transversal section in a square domain. All the inclusions of a given sample present the same
size but have a random orientation. The number of inclusions is determined by the parameter δ = L

r ,
where L is the unit cell’s side length and r is the radius of the circle that circumscribes the inclusion.
Fig.(2) shows an example of a random generated microstructure with δ = 35.

The composite constituents are assumed to be isotropic in the analysis plane x2− x3, and their material
constants are given in Table 1, in terms of transverse Young’s modulus E22 and transverse shear modulus
G23. Given the Poisson random distribution of fibres within the unit cell, the composite is considered
isotropic at the macroscopic level, and its transverse behaviour can be entirely defined by two elastic
modula: the plane strain bulk modulus K̄23 and the transverse shear modulus Ḡ23.

Sets of unit cells at increasing values of the parameter δ are considered, while the fibre volume fraction
is kept constant at Vf = 0.25. For each value of δ, Ns = 50 different random sample micromorpholo-
gies are generated. As shown in Fig.(3), a mesh of arbitrary polygonal virtual elements is used for the
matrix subdomain and a mesh of linear boundary elements is adopted for the boundary of the inclusion
subdomain.
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Figure 2: Example of a random generated geometry of a unit cells employed in the computational ho-
mogenization tests. Vf = 0.25 and δ = 35.

Table 1: Material properties for epoxy matrix and glass fibres in transverse direction, as taken from
Ref.[20].

Mechanical Properties E22 [GPa] G23 [GPa]
Silenka E-glass 1200 tex fibres 74 30.8

MY750/HY917/DY063 epoxy matrix 3.35 1.24

Each unit cell is subjected to three linearly independent sets of kinematic uniform boundary conditions,
corresponding to three sets of enforced macro-strains whose general expression in Voigt notation is
ε̄ = {ε̄22, ε̄33,2ε̄23}. The expressions for the three applied macro-strains are

ε̄
1 = {1,0,0} , ε̄

2 = {0,1,0} , ε̄
3 = {0,0,1} (27)

The microstructural problem is solved under plane strain assumptions employing the proposed hybrid
scheme, and the averaged stresses are then computed as volume averages of the local micro-stress tensor
over the domain of the unit cells, as

σ̄i j =
1
Ω

∫
Ω

σi j (x)dΩ =
1
Ω

(∫
ΩV

σi j (x)dΩ+
∫

ΩB
σi j (x)dΩ

)
, (28)

where the domain integral is subdivided into contributions coming separately from the VE and BE re-
gions.
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Figure 3: Example of a VEM/BEM mesh of a unit cells employed in the computational homogenization
tests. Vf = 0.25 and δ = 20.

For a given unit cell, the computation of the averaged stresses corresponding to the three considered sets
of boundary conditions given in Eq.(27) allows populating the columns of the apparent elastic matrix
C̄m, which links averaged stresses and strains according to

σ̄ = C̄m ε̄. (29)

For each value of the parameter δ, once the components of C̄m are computed for all the Ns = 50 gener-
ated random unit cells, a macroscopic apparent constitutive matrix 〈C̄〉 is computed from the ensemble
average of the components of C̄m over the Ns samples, i.e.

〈C̄〉= 1
Ns

Ns

∑
m=1

C̄m. (30)

The apparent transverse elastic properties K̄23 and Ḡ23 associated to the considered value of δ are obtained
from the ensemble averaged matrix 〈C̄〉.
Fig.(4) shows the computed values of K̄23 and Ḡ23 versus δ, reporting both the values corresponding to
individual samples and the ensemble-averaged values. In general, the scatter of the individual values
decreases as the parameter δ increases. For δ = 45, the computed effective material properties are K̄23 =
5.89 and Ḡ23 = 2.06. These values fall within the analytical bounds predicted by the Hashin-Hill theory
[21, 22] which are, for a volume fraction Vf = 0.25, 5.72≤ KHH

23 ≤ 10.03 and 1.86≤ GHH
23 ≤ 4.25 .
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(a)

(b)

Figure 4: Apparent transverse elastic properties (a) K23 and (b) G23 as a function of the parameter δ as
computed using the hybrid virtual-boundary element technique.

4 CONCLUSIONS

A hybrid technique coupling the Virtual and Boundary Element Methods for the computational homoge-
nization of composite materials has been developed, implemented and tested by computing the transverse
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homogenised properties of a fibre-reinforced composite. It has been shown how the developed technique
may be employed to by-pass problematic aspects potentially induced by the meshing of artificial micro-
structures with random geometrical features, which may become a particularly challenging task when
the inclusions present involved shapes, and how the automatic mesh generation can be simplified and
made more robust. In this framework, the inherent advantages of the formulation are two-fold: VEM’s
capability of providing accurate results with general polygonal mesh elements mitigates potential issues
related to the quality of the mesh, avoiding the need of employing time-consuming regularisation tech-
niques; modelling each inclusion with a single BEM super-element sensibly reduces the total number of
degrees of freedom and, in turn, the overall cost of computational homogenization.
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