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Abstract. The theory of multi-component dry friction accounting for the coupled 

kinematics of relative motion in finite contact spots is applied to the modelling of pneumatic 

tires. The analytical models of the combined dry friction accounting for the anisotropy of the 

dry friction factors as well as the distribution of the contact pressure close to the real one are 

introduced. The exact integral relationships between the dry friction force and torque and the 

generalized velocities, i. e. the speed of sliding and angular velocity of spinning, appears as a 

result of integration over the contact spot and are too complex to be implemented analytically 

into the engineering practice. The proposed approximate models are based on the fractional 

approximations and could be interpreted as rheological models with low number of 

constitutive constants. These constants could be identified after the solution of some specific 

inverse problems with input data given by the diagrams of the dry friction forces and torque 

obtained as a result of simple physical tests. Here these inverse problem are formulated and 

solved using the perturbed  benchmark solutions of the corresponding direct problems with 

the factors obtained after the numerical solution of the contact problem for the heterogeneous 

pressurized tire. The possibility of stable solution for the inverse problems on the basis of the 

proposed approach is shown. The presented models as well as the method if constitutive 

constants identification could be applied for more detailed investigation of unsteady rolling 

regimes of pneumatics which are characterized by the non-vanishing sliding and spin. 
 

1 INTRODUCTION 

The “shimmy”, i.e. the high-amplitude coupled lateral and torsional vibrations of 

controllable nose landing gears of aircrafts is a well-studied phenomenon [1, 2]. At the same 

time the shimmy-like oscillations of rigidly fixed main landing gears is not so widely known 

and moreover not investigated in details in spite of the fact that they were often observed 

during operation of some modern aircrafts, moreover such oscillations resulted destructions of 

torque links of gears and even caused hard failures of aircrafts’ frames in some registered 

cases. The main specific features of such instable rolling regimes are the following ones: 

mailto:kireenkov.aa@mipt.ru
mailto:kireenk@ipmnet.ru
mailto:zhavoronok@iam.ras.ru


Alexey A. Kireenkov, Sergey I. Zhavoronok 

 2 

- the oscillations appear at initial stages of landings shortly after touchdown (i.e. during 

non-steady wheels rolling with longitudinal sliding); 

- the significant sliding of wheels at unstable regimes is proved by tires’ tracks at 

runaways surfaces. 

Thus, the classical shimmy model based on the non-holonomic constraint following from 

the assumption of vanishing slip and spin of a wheel [1, 2] fails evidently, therefore a 

qualitatively hew theory is required. Such a model should take into account as well dry 

friction effects as deforming of pneumatic tires. A first attempt of accounting for the finite 

dimension of the area of contact of a wheel and a road and, consequently, for the coupling 

dynamic effects of the combined kinematics of relative motion of interacting wheel of an 

landing gear and a runaway surface under the condition of intensive sliding was proposed in 

[3] where the dynamics of the asymmetric one-wheel main landing gear was studied in. It was 

shown that the shimmy phenomenon can be provoked only by dry friction forces under the 

conditions of combined kinematics. The coupled dry friction theory was further developed in 

several works [4-14]. In spite of efficiency of the approach [3] it cannot be implemented in 

the engineering practice since the Hertzian distribution of the contact pressure has almost 

nothing to do with the real one observed for severely deformed pressurized pneumatic tires 

(except very small loads). The first improved model accounting for the random distribution of 

the normal contact stresses inside of contact patches was introduced in [15]. Thus, the second 

step required to adopt the theory of coupled dry friction to the problems of rolling stability for 

pneumatic tires consists in the use of accurate approximations of the contact pressure; indeed, 

this distribution impacts significantly on the friction parameters and, consequently, on the 

rolling stability domain obtained by the appropriate computations [5, 6, 7, 13]. Such a 

distribution could be obtained on the background of the 3D finite element modelling in statics 

[16] or using geometrically nonlinear versions of quasi-3D refined shell theories [17, 18].  

Let us note that the 3D finite element simulation of the nonlinear dynamics of landing 

gears remains too resource consumptive even today to be implemented into the engineering 

practice at preliminary design stages; it is no doubt required at final ones when most of 

possible effects (e.g. tire friction heating, mass loss, etc.) should be accounted, but the simple 

models with few degrees of freedom like [1] are required to predict which effects have to be 

studied before the detailed quantitative dynamic analysis will be performed [19]. Thus, the 

development of a simplified shimmy model accounting as well for the dry friction with 

combined kinematics as for the deformed state is a topical problem. Indeed, some attempts of 

use of of the coupled dry friction theory with quasi-rigid wheel model and Hertz’s solution for 

the contact pressure allowed not only to calculate the dry friction forces and torque but to 

estimate also the effects of the dry friction on the dynamics as it was made in [4,5,7-10]. One 

of first attempts of accounting for the contact pressure distribution close to real ones was 

made in [7]; the finite element solution was approximated by the Legendre polynomials, then 

the model coefficients were computed analytically. The coefficients definition remained the 

drawback limiting the practical use of the model [7]. The technique of experimental definition 

of these coefficients was presented in [19]. The validation procedure proposed below consists 

in two main stages: at the first one the coefficients are calculated using analytical formulae 

[4,5,7,9] with aid of numerical simulation of the contact pressure distribution, then these 

coefficients are defined from the numerical dependence for dry friction torque and force 

components on the slip and spin velocities. 
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2 GENERAL MODEL OF THE COUPLED DRY FRICTION 

For a general case, let us consider the orthotropic dry friction given by the tensor f  defined 

within its principal components f  and f , and the Cartesian frame Oxy  attached to the 

centroid of the area S  of contact of a wheel and a road; we consider below only axially 

symmetric contact areas having the average radius R ; the appropriate base vectors 1e  and  2e  

are collinear to the principal axes of f . Finally, let us assume the static contact pressure 

distribution, 0 0( , ) ( ),x yx y    , be symmetric with respect to the center O  of the area S .   

Let the motion of a wheel be defined by the longitudinal velocity 0 1vv e  (i.e. along the 

axis O  of the global rest frame; for more details, see [5] and [7]), the angular velocity of 

rolling 2r  ω e , and the velocity of spinning  . The presence of a thread of any real tire is  

modeled by the different dry friction factors f  along the tread and f  across it.  The rolling 

friction is defined by the vector d  representing the shift of the gravity center of the contact 

area S  with respect to its geometric center O , therefore the deformed contact pressure 

distribution could be introduced as 0( , ) ( , )(1 )x yx y x y k x k y      [14] where xk   and  yk  are 

projections of the vector d  on axes x  and y . We could define hence the friction-induced 

tangent strain at arbitrary point M S  as follows: 

  0 1 2, , , .x y x






    τ rf ω
v

v v r e ye
v

  (1) 

The resultant force vector can be determined by integration of the relationship (1) over the 

contact area S  and represented as a sum 1 2T T T e e  of the longitudinal friction force T   

and the lateral one denoted as T . It was shown [9] that the lateral friction appears under the 

conditions of simultaneous slip and spin due to the coupling effects. The orthogonal 

transformation of rotation on the angle   gives the new frame attached to the contact area, 

cos sin , sin cosx y x y       , and enables to obtain the resultant integration over the 

fixed domain [9], therefore the appropriate expressions can be simplified keeping in mind that 

integrals will be zero for symmetric integration domains and odd integrand function by one of 

the arguments. As a result, for 1   we obtain for the friction force and torque 

0

2 2 2 2

(1 )( ( sin cos ))

2 ( sin cos ) ( )

x y

G

k x k y v x y dxdy
F f

v v x y x y

     


     
   (2) 

2 2

0

2 2 2 2

( ) ( sin cos )

2 ( sin cos ) ( )G

x y v x y dxdy
M f

v v x y x y


     


     
  (3) 

0

2 2 2 2

( cos sin )

2 ( sin cos ) ( )G

x y dxdy
F f

v v x y x y


   


     
  (4) 

The model defined by integral formulae (2-4) is interpreted as “exact” one. 
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3 APPROXIMATE MODEL OF THE COUPLED DRY FRICTION FOR A TIRE 

The formulae approximating (2-4) for the longitudinal dry friction force, the lateral 

dry friction force, and finally for the dry friction torque could be written as follows [7, 19]: 

0 0 0

2 2 2 2 2 21
4

, ,
2

x
C

F v k M u M u
F F M

v au u mv u mv
  

  
  (5) 

Here the following factors are introduced: 

2 1 2 1 3 2

0 02 , 2 , 2N R A F fR A M fR A        (6) 

0 3
2 0 3 3

1 2

0 0

1 1 1 1 1 1
; .

2 2

A A
fR A fR A

F A M Aa m
        (7) 

 
1

0

0

, .m m r
A d

R
          

4 CONTACT PRESSURE IN THE SPOT OF TIRE-ROAD CONTACT 

Let us consider a typical pneumatic tire (e. g. see [14, 7]) with the boost pressure 200p   

kPa and loaded by a vertical force. To obtain the contact pressure distribution as well as the 

contact spot diameter, the finite element simulation analogous to the one presented by the 

authors of [14] was performed. The solution presented below  (100 nodes along the contact 

spot diameter) corresponds to the maximum vertical deformation of the tire at the center of 

the contact spot equal to 0.040   m, and the corresponding contact area diameter is equal to 

0.087R   m. The numerically obtained distribution of the dimensionless contact pressure 

/p P p  is strictly heterogeneous with local maxima near the contact spot boundary of and 

the minimum near its center (Figure 1).  

To implement the approximate model of the dry coupled friction the analytical 

interpolation of this pressure distribution is required. Accounting for the symmetry of the 

contact pressure distribution, let us use the following formula: 

 
0

, [ 1,1 .cos ,],
N

k

k

p a k x x N


        (8) 

The seventh order approximation (i. e. 7N  ) is used below; the corresponding 

coefficients are shown in the Table 1. 
 

Table 1: Coefficients of the trigonometric approximation of the numerical solution for the contact 

pressure   

  
0a   1a   2a   3a   4a   5a   6a   7a   

0.848 0.685 0.398 -0.831 0.230 0.161 -0.027 -0.133 0.101 
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The approximated pressure is shown on the Figure 1 by the solid line. One could conclude 

that the approximation (8) with the coefficients given by the Table 1 offers a good 

approximation of the numerical solution; it seems to be better than the polynomial 

interpolation used in [7]. 

 

Figure 1: Contact pressure distribution along the contact spot:  

finite element simulation, trigonometric approximation 

Let us assume hence the shape of the contact spot be close to a circle (accordingly to the 

numerical solution [14]), and let us consider the rolling defined by the angular velocity 
y  

(see also [19]). Thus, the deformation of the contact pressure distribution could be taken into 

account by introducing the rolling correction factor 
xk : 

  1

0 , 1 x y yp p r k x


        (9) 

Here x  is the dimensionless coordinate along the contact spot while 
xk  is the value of the 

shift of the gravity center of the contact pressure distribution due to the rolling. 

Let us consider hence the contact pressure distribution corresponding to the steady-state 

rolling along the Ox  axis. The numerically obtained solution is shown below on the Figure 2. 

The following formulae (see [19]) could be used for the rolling correction factor:  

 

   

1 1
3

2

0

2 1 2 1

1 2 2

0 0 0 0

, , , ,

, cos , , .x

x x
xx
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s s

R s r r dr s
s s

s R r r drd s R r rdrd



 

 

    

        

 

   

 (10) 
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Figure 2: Contact pressure distribution along the contact spot:  

finite element simulation, trigonometric approximation 

 

Given the pressure distribution (Figure 2) and using (10) we obtain 0.14xk  . 

5 PARAMETER IDENTIFICATION FOR THE ONE-DIMENSIONAL MODEL OF 

THE COUPLED DRY FRICTION 

 

The factors given by (5-7) could be computed using the approximation (8) analytically: 

        

       
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

  





    




       

        


   (11) 

here ,s   are Lommel’s functions. Given boost pressure 200p  kPa and accounting for the 

formula (11), we obtain the following factors values: 
 

Table 2: Example of the construction of one table 

N , kN  
0F , kN 0M , Nm  a , m1/2  m , m  

4.48 1.34 72.25 1.307 1.724 

 

 

Let us introduce the following dimensionless variables for the dry friction model:  

1, .v u u v        (12) 
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Taking into account the formulae for the longitudinal dry friction force, lateral dry friction 

force, and the dry friction torque (5), and substituting into (5) the dimensionless variables 

(12), we obtain the one-dimensional dependencies for dry friction forces and torque [19]: 

     
1 2 1 2 1 2

2 2 2

0 0 0, 4 , .x CF F a F k M m M M m
  

             (13) 

Given 0F , 0M , xk , a  and m  (see Table 2), we obtain the diagrams for the longitudinal dry 

friction force, lateral dry friction force, and the dry friction torque (13) (see Figures 3-5): 

 

 

Figure 3: Dependence of the longitudinal friction force on the ratio between the dimensionless sliding velocity 

and spinning angular velocity,     

 

Figure 4:  Dependence of the lateral friction force on the ratio between the spinning angular velocity and 

dimensionless sliding velocity,  . 
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Figure 4: Dependence of the friction torque on the ratio between the spinning angular velocity and 

dimensionless sliding velocity,  . 

 

Let us consider hence these diagrams ( )F  , ( )F  , and ( )CM   as measured ones; thus, 

the aforementioned model factors a , m , 0M , 0F  could be determined using various 

numerical optimizations methods (e.g.  the nonlinear least squares fitting [18]) from these 

curves. The appropriate “noised” diagrams are simulated here by applying the random 

distribution with amplitude equal to 20%. The appropriate “simulated test diagrams” are 

shown above on Figures 2-4 by dotted lines. 

Thus, denoting the values of ratios between the sliding velocity and spinning angular 

velocity,   and its inverse value,  , by 
kx  while the quantities 

ky  are interpreted as 

“measured” values of the longitudinal dry friction force 
||F , lateral dry friction force F , and 

dry friction torque 
CM  (Figures 3-5), we have the following condition [19]: 

  2

1

min
N

k k

k

f x y


   (14) 

that leads to the estimates of the model factors  a , m , 0M , 0F ; the dry friction coefficient can 

be obtained as follows: 

0 .
F

f
N

  (15) 

The fitting (14) of the simulated test data results in the following values of the factors of 

the proposed coupled dry friction model obtained with 95% confidence bounds (see Table 3). 

The results shown in the Table 3 show a good correlation between the theoretical values and 

the ones obtained after the simulated experimental tests. 
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Table 3: Defined coefficients of the coupled dry friction model 

Coefficient Theoretical value “Experimental” value Confidence bounds 

f   0.3 0.301 0.2958,   0.3061 

0F  1344 1348 1325,   1371 

0M  72.25 72.63 71,19,   74.07 

a  1.030 1.024 0.8738,   1.1740 

m  1.720 1.609 1.371,   1.847 

xk   0.140 0.139 0.1376,   0.1404 

 

Let us note that the simplest model of the contact interaction of the tire with the road 

combined with the Amonton-Coulomb dry friction model cannot define neither the lateral 

force nor the dry friction torque, moreover it overestimates the dry friction force value: 

2

0 1.427kN.F R p f   (16) 

6 CONCLUSIONS 

- The new model of the dry friction with coupled kinematics of the relative motion of 

interacting solids is considered accounting for the real contact pressure distribution; 

- The real pneumatic tire is investigated, and the contact pressure is obtained from the 

finite element simulation of the quasi-static deformed state of the pressurized tire; 

- The trigonometric approximation of the contact pressure in severely deformed tire is 

proposed, and the corresponding analytical representation of the coefficients of the 

dry friction model are constructed; 

- The dependencies of the longitudinal dry friction force, lateral dry friction force, and 

dry friction torque on the ratio of the sliding velocity and spinning angular velocity 

are constructed using dimensionless variables; 

- The method of identification of the coefficients of the developed dry friction model 

using the experimental dependencies of the longitudinal dry friction force, lateral dry 

friction force, and the dry friction torque on the ratio of dimensionless sliding 

velocity and spinning angular velocity is proposed; 

- The experimental data are simulated by adding the random noise to the theoretically 

computed diagrams, and the model coefficients are obtained from these perturbed 

diagrams by nonlinear least squares procedure; 

- The rolling friction coefficient as well as other factors of the coupled dry friction 

model based on fraction-rational approximations are computed using the numerical 

simulation of the steady rolling of the tire corresponding to the possible test data; 

- The good correlation between the exact model coefficients and the ones obtained 

from the simulated test curves is shown, and the principal possibility of identification 

of the model parameters after typical tests for a rolling tire is shown.  

- The further development of the proposed approach may consist in the accounting of 

both vertical and lateral deformations of the tire as it was proposed in [21]. 
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