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Abstract. In recent years, the optimal control in fluid dynamics has gained attention for the design and
the optimization of engineering devices. One of the main challenges concerns the application of the
optimal control theory to turbulent flows modeled by the Reynolds averaging Navier-Stokes equations.
In this work we propose the implementation of an optimal boundary control problem for the Reynolds-
Averaged Navier-Stokes system closed with a two-equations turbulence model. The optimal boundary
velocity is sought in order to achieve several objectives such as the enhancement of turbulence or the
matching of the velocity field over a well defined domain region. The boundary where the control acts
can be the main inlet section or additional injection holes placed along the domain. By minimizing the
augmented Lagrangian functional we obtain the optimality system comprising the state, the adjoint, and
the control equations. Furthermore, we propose numerical strategies that allow to solve the optimality
system in a robust way for such a large number of unknowns.

1 INTRODUCTION

In last years a considerable progress has been made in mathematical analysis and optimal control prob-
lems in several research fields of fluid dynamics. Optimal control theory has been applied successfully
to many fields ranging from heat transfer problems to fluid-structure interaction systems. Most of the
works refer to the standard Navier-Stokes system [1, 2], and the problem of turbulence is usually not
taken into account because of the many difficulties arising from the numerical implementation and so-
lution of the optimality system. Optimal control theory applied to DNS simulations for turbulent flows
need a very high computational effort and it can be affordable only for simple and two-dimensional ge-
ometries [3]. To overcome this issue, in this work we consider the Reynolds averaged Navier-Stokes
(RANS) system for the computation of the averaged fields. The closure of the problem is guaranteed by
the implementation of a k-ω model for the estimation of eddy viscosity νt .

Distributed control strategies and feedback controls have been successfully achieved in previous works
both for Navier-Stokes and RANS system [4, 5, 6]. On the other hand, few attempts of optimal boundary
control for turbulent flows have been studied. In [7] the turbulence is controlled acting on the wall
temperature and the buoyancy forces. In [8] a lifting function approach has been implemented in order
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to reformulate a boundary control problem into a distributed one for the RANS system closed with the
Wilcox k-ω model. According to this approach, boundary controls are defined in the appropriate function
boundary spaces restriction of the natural state volume spaces. However, the lifting function is solved
in an extension of the domain leading to a higher computational effort. We propose instead a traditional
approach for the optimal boundary control and we aim to find the optimal velocity field in the inlet
sections of channels in order to achieve some objectives.

In this work we treat optimal control problems for the stationary Reynolds averaged Navier-Stokes equa-
tions closed with a k-ω model. We consider an adjoint boundary control problem for steady incompress-
ible turbulent flows, in order to find the optimal boundary velocity that minimizes a functional computed
for different objectives. In the first case, we aim at matching the velocity field in a region of the domain
with desired values. In the second case, we seek to enhance the turbulence inside the channel. In both
cases, goals are accomplished by the injection of fluid with a certain velocity from injection sections.
We first derive, by applying the Lagrange multipliers method, the optimality system which consists of
the state, adjoint and control equations and then present numerical results by using a steepest descent
algorithm for the search of the local minimum of the functional.

2 MATHEMATICAL MODEL

In this section we first report the conservation equations modeling the physical system, then, define the
optimal control problem and finally, through the Lagrange multipliers method, achieve the optimality
system. We use the standard notation for Lebesgue and Sobolev space. Let L2(Ω) denote the space
of square-integrable functions in the domain Ω and let Hs(Ω) indicate the standard Sobolev space with
norm || · ||s. We denote with H

1
2 (Γ) the trace space for the functions in H1(Ω) and its dual space with

H−
1
2 (Γ).

2.1 Governing equations

We consider the Reynolds-Averaged Navier-Stokes system for incompressible flows where the Reynolds
stress tensor is modeled according to the Boussinesq assumption by using mean velocity gradient com-
ponents and the eddy viscosity νt . We use the Wilcox k-ω model to close the system and accurately
evaluate νt [9]. The governing equations for turbulent flows in a domain Ω can be written as follows

∇ ·u = 0 , (1)

u ·∇u−∇ · [(ν+νt)S(u)]+∇p = 0 , (2)

u ·∇k−∇ · [(ν+σkνt)∇k] = Pk−βkkω , (3)

u ·∇ω−∇ · [(ν+σωνt)∇ω] = cω

ω

k
Pk−βωω

2 +
σd

ω
∇k ·∇ω . (4)

The quantity νt is the turbulent or eddy viscosity defined in the turbulence model as

νt = min
( k

ω
,νt,max

)
. (5)
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For the interested reader the closure coefficients appearing in (3)-(5) are discussed in details in [10]. The
turbulent kinetic energy source term Pk is defined by

Pk =
νt

2
S(u)2 , (6)

with S(u)2 = S(u) : S(u), where S(u) is the deformation tensor

S(u) = ∇u+∇uT . (7)

We use a near-wall approach for the boundary conditions of the turbulence problem. We set the boundary
conditions along the linear region at a distance yd from the wall, so that the value of ω remains limited
in the computational domain

u · n̂ = 0, S(u) · n̂ =
u · t̂
yd

, ∇k · n̂ =
2k
yd

, ω =
2ν

βky2
d

on Γw . (8)

2.2 Boundary control and cost functional

The first step to obtain the optimality system is to choose an objective for our optimal control problem.
The objective functional is denoted by F (u,k) and is described by the following expression

F (u,k) =
a
2

∫
Ωd

||u−ud ||2dΩ+
b
2

∫
Ωd

||k− kd ||2dΩ , (9)

where a and b are weight functions. If a 6= 0 and b = 0 we have a velocity matching problem and
objective is expressed by the L2-norm distance between the velocity field and the desired value ud . If
b 6= 0 and a = 0 the objective concerns the turbulent kinetic energy and its distance from the target value
kd .

Let Γc be a subset of the boundary Γ of the domain Ω⊂ R3. We introduce the boundary condition

u = uc on Γc , (10)

where uc ∈ H
1
2 (Γc) is the trace restriction of velocity field u ∈ H1(Ω). The function uc is the control

parameter that we aim to optimize in order to achieve some objectives.

In standard boundary control approaches the objective or cost functional is reformulated as

J (u,k,uc) = F (u,k)+
λ1

2

∫
Γc

||uc||2dΓ+
λ2

2

∫
Γc

||∇suc||2dΓ, (11)

where ∇s represents the surface gradient operator. The last two terms are penalization contributions
introduced to limit the size of control parameter uc and its gradient ∇suc. In this way, the boundary
control parameter is limited to Sobolev space H1(Γc), although its natural space is H

1
2 (Γc). To enforce

uc to belong to its natural space it is possible to implement a fractional norm or to adopt a lifting function
approach already presented in [8]. In this work we choose to enforce stronger regularity requirements.

The values of λ1 and λ2 are important for the solution of the optimal control problem. If λ2 = 0, the
control variable uc belongs to L2(Γc), i.e. in a less regular space than its natural one. In the same way, if
λ1→ 0, the control variable tends to belong to distributional spaces. For this reason low values of penal-
ization coefficients may lead to convergence issues in the numerical solution of the optimality system.
On the other hand, high values of λ1 and λ2 may result in too smooth control and poor optimization [11].
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2.3 Optimality system

In order to obtain the adjoint equations and the optimality system, the augmented Lagrangian functional
is written considering the cost functional J (u,k,uc) and the constraints expressed in the system (1-
5) multiplied by appropriate Lagrange multipliers. To reproduce the inequality constraint in (5), we
introduce auxiliary variables and transform the inequality into an equality constraint that can be treated
with standard techniques. We write condition (5) as(

νt −
k
ω

)(
νt −νt,max

)
= 0 , (12)

and we introduce two new real variables γ1 and γ2 defined by

γ
2
1 = νt,max−νt , (13)

γ
2
2 =

k
ω
−νt . (14)

The condition (12) is satisfied if νt = k/ω or νt = νt,max. If k/ω > g, νt must be equal to νt,max in order
to verify (13) and (14), since left hand side terms are always positive. We also introduce the Lagrange
multiplier τa to enforce the boundary condition (10). The augmented Lagrangian functional is given by
the following expression

L(u, p,k,ω,νt ,γ1,γ2,uc,ua, pa,ka,ωa,νa,γa1,γa2,τa) = J (u,k,uc)+
∫

Ω

pa∇ ·udΩ

+
∫

Ω

ua ·
{

u ·∇u+∇p−∇ · [(ν+νt)S(u)]
}

dΩ+
∫

Γc

τa · (u−uc)dΓ

+
∫

Ω

ka

{
u ·∇k−∇ · [(ν+σkνt)∇k]− νt

2
S(u) : S(u)+βkkω

}
dΩ

+
∫

Ω

ωa

{
u ·∇ω−∇ · [(ν+σωνt)∇ω]− cω

2
S(u) : S(u)+βωω

2 +
σd

ω
∇k ·∇ω

}
dΩ

+
∫

Ω

νa

(
νt −

k
ω

)
(νt −νt,max)dΩ+

∫
Ω

γa1(γ
2
1−νt,max +νt)dΩ+

∫
Ω

γa2

(
γ

2
2−

k
ω
+νt

)
dΩ ,

(15)

We use label a to denote the Lagrange multipliers (ua, pa,ka,ωa,νa,γa1,γa2) of the corresponding state
variables (u, p,k,ω,νt ,γ1,γ2).

To obtain the optimality system we impose the first order necessary condition δL = 0 [11]. In the follow-
ing we denote with δq the variation of a generic function q and with (DL/Dq)δq the Fréchet derivative
of the functional L in the direction δq. The stationary points of the Lagrangian functional can be found
by setting to zero the Fréchet derivatives taken with respect to all the variables, since each variation
is independent from the others. When the derivatives are taken with respect to the adjoint variables
(ua, pa,ka,ωa,νa,γa1,γa2,τa), the state system is recovered together with the boundary conditions. To
obtain the weak form of the adjoint or dual system, we take the Fréchet derivatives with respect to the
state variables (u, p,k,ω,νt ,γ1,γ2).

Considering the variations δp and δu, we obtain∫
Ω

∇ ·uaδp dΩ−
∫

Γ

ua · n̂δpdΓ = 0 , ∀δp ∈ L2(Ω) (16)
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∫
Ω

{(δu ·∇)u ·ua− (u ·∇)ua ·δu−∇pa ·δu−∇ · [(ν+νt)S(ua)] ·δu

+ ka∇k ·δu+ωa∇ω ·δu+∇ · [(kaνt + cωωa)S(u)] ·δu}dΩ =

=
∫

Γ

{−pan̂ ·δu− (u · n̂)(ua ·δu)+(ν+νt)S(δu) · n̂ ·ua

+(kaνt + cωωa)S(u) ·δu · n̂− (ν+νt)S(ua) ·δu · n̂}dΓ

−
∫

Γc

τa ·δudΓ

∀δu ∈H1(Ω) (17)

The natural boundary conditions for the optimality system in strong form can be obtained setting equal to
zero the surface integrals containing unknown terms or non-integrable functions. Let be Γc the controlled
surface, Γw the walls, Γo the outlet and Γc∪Γw∪Γo = Γ.

Over Γc, we set ua = 0, ka = ωa = 0 and pa = 0, then we can deduce the expression of the Lagrangian
multiplier τa ∈ H−1(Γc)

τa =−(ν+νt)S(ua) · n̂ on Γc . (18)

In the outlet section Γo, we have for the state variables S(u) · n̂ = 0 and p = 0. In order to enforce the
integration to vanish, we have

pa = 0, (ν+νt)S(ua) · n̂ = (u · n̂)ua on Γo . (19)

The conditions for the state variables over Γw are reported in (8) and therefore the boundary integral
vanishes with

ua · n̂ = 0, ωa = 0, (ν+νt)S(ua) · n̂ =
kaνtu · t̂

yd
on Γw . (20)

The conditions so defined are appropriate also to vanish the boundary integral in (16). We now consider
the variations of the total Lagrange functional in the directions δk and δω. The Fréchet derivatives in
the directions δk and δω are independent and should be zero in order to minimize the functional. We
integrate by parts and extract each variation from the differential operators∫

Ω

{
−(u ·∇)ka−∇ ·

[(
ν+σkνt

)
∇ka

]
+βkωka +b(k− kd)−

νa(νt −νt,max)+ γa2

ω

−σd∇ ·
[

ωa

ω
∇ω

]}
δkdΩ+

∫
Γ

[
u · n̂kaδk− (ν+σkνt)∇δk · n̂ka

+
ωa

ω
σd∇ω · n̂δk+(ν+σkνt)∇ka · n̂δk

]
dΓ = 0 , ∀δk ∈ H1(Ω) ,

(21)

∫
Ω

{
−(u ·∇)ωa−∇ ·

[(
ν+σωνt

)
∇ωa

]
+2βωωωa +

kγa2 + kνa(νt −νt,max)

ω2 +βkkka

−σd
ωa∇k ·∇ω

ω2 −σd∇ ·
(

ωa

ω
∇k
)}

δωdΩ+
∫

Γ

[
u · n̂ωaδω− (ν+σωνt)∇δω · n̂ωa

+σd
ωa

ω
∇k · n̂δω+(ν+σωνt)∇ωa · n̂δω

]
dΓ = 0 , ∀δω ∈ H1(Ω) .

(22)

Setting equal to zero the surface integrals, we obtain the remaining boundary conditions. Over Γo, we
have for the state variables ∇ω · n̂ = ∇k · n̂ = 0 which implies

(ν+σkνt)∇ka · n̂ =−u · n̂ka, (ν+σωνt)∇ωa · n̂ =−u · n̂ωa, (23)
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Over Γw, we have used the near wall approach (8) for state variables. For the adjoint variables, we obtain

ωa = 0, ∇ka · n̂ =
2ka

yd
. (24)

We now consider the variations of the total Lagrange functional in the direction δνt and integrate by parts
to extract each variation from differential operators∫

Ω

[
S(u) : ∇ua +σk∇k ·∇ka−

ka

2
S(u) : S(u)+σω∇ω ·∇ωa +νa

(
2νt −νt,max−

k
ω

)
+ γa1 + γa2

]
δνtdΩ−

∫
Γ

(S(u) · n̂ ·ua−σk∇k · n̂−σω∇ω · n̂)δνtdΓ = 0 , ∀δνt ∈ L2(Ω) .

(25)
The boundary conditions previously described make the surface integrals equal to zero. If we consider
the variations of Lagrange functional with respect to the constraints δγ1 and δγ2 we obtain∫

Ω

2γ1γa1δγ1dΩ = 0 , (26)∫
Ω

2γ2γa2δγ2dΩ = 0 , (27)

that are algebraic equations. If νt = k/ω then γ2 = 0, γ1 > 0 and γa1 = 0. In this case we can set
γa1 = νa(1− νt + k/ω). If νt = νt,max then γ1 = 0, γ2 > 0 and γa1 = 0 while for γa2 we can set γa2 =
νa(1−νt +νt,max). In this way, in both cases we can solve (25) for νa obtaining

νa =
ka

2
S(u) : S(u)−S(u) : ∇ua−σk∇k ·∇ka−σω∇ω ·∇ωa . (28)

Finally for the variation δuc of the control uc we have∫
Γc

(λ1uc ·δuc +λ2∇suc : ∇sδuc− τa ·δuc)dΓ = 0 , ∀δuc ∈H1(Γc) . (29)

By substituting the equation (18) we obtain∫
Γc

(λ1uc ·δuc +λ2∇suc : ∇sδuc +(ν+νt)S(ua) · n̂ ·δuc)dΓ = 0 . (30)

If λ2 = 0, equation (30) simplifies in the following algebraic expression

uc =−
(ν+νt)

λ1
S(ua) · n̂ on Γc . (31)

The boundary control uc on the boundary Γc depends on the adjoint velocity surface normal gradient
(∇ua +∇uT

a ) · n̂, on eddy viscosity νt and on regularization parameters λ1 and λ2.

The variations with respect to the adjoint variables give back the original state system (1)-(5). In the case
one might be interested in a finite volume discretization it is necessary to recover the strong form of the
adjoint system

∇ ·ua = 0 (32)
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(u ·∇)ua− (∇u)T ·ua =−∇pa−∇ · [(ν+νt)S(ua)]+ ka∇k+ωa∇ω

+∇ · [(kaνt + cωωa)S(u)]+a(u−ud)
(33)

(u ·∇)ka +∇ ·
[(

ν+σkνt

)
∇ka

]
=βkωka +σd∇ ·

(
ωa

ω
∇ω

)
+b(k− kd)−

γa2−νa(νt −νt,max)

ω

(34)

(u ·∇)ωa∇ ·
[(

ν+σωνt

)
∇ωa

]
=2βωωωa−σd

ωa

ω2 ∇k ·∇ω−σd∇ ·
(

ωa

ω
∇k
)

+
νak(νt −νt,max)+ γa2k

ω2 +βkkka

(35)

νa =
ka

2
S(u) : S(u)−S(u) : ∇ua−σk∇k ·∇ka−σω∇ω ·∇ωa . (36)

The optimality system consists of the state system (1)-(5), the adjoint system (32)-(36), the optimality
condition (30) and it is completed with the appropriate boundary conditions reported in Table 1.

Table 1: Boundary conditions with a near wall approach for the state variables (u, p,k,ω) and for the adjoint
variables (ua, pa,ka,ωa).

Variable ΓC ΓW ΓO

u u · n̂ = uC un = 0 S(u) · n̂ = 0
u · t̂ = 0 (ν+νt)S(u) · n̂ = νu · t̂/yd u · t̂ = 0

p − − p = 0

k k = kIN ∇k · n̂ =
2k
yd

∇k · n̂ = 0

ω ω = ωIN ω =
2ν

βky2
d

∇ω · n̂ = 0

ua ua · n̂ = 0 ua · n̂ = 0 (ν+νt)S(ua) · n̂ = (u · n̂)ua

ua · t̂ = 0 (ν+νt)S(ua) · n̂ = kaνtu · t̂/yd S(ua) · t̂ = 0
pa − − pa = 0
ka ka = 0 ∇ka · n̂ = 2ka/yd (ν+σkνt)∇ka · n̂ =−u · n̂ka

ωa ωa = 0 ωa = 0 (ν+σωνt)∇ωa · n̂ =−u · n̂ωa

A velocity matching objective is easier to be achieved since in the adjoint velocity equation (33) the
source term a(u−ud) appears and acts directly on ua, which appears in its turn in the optimality condition
(30). For this reason, a velocity matching objective is easier to be achieved. If a turbulent kinetic energy
objective is considered, the source term, b(k− kd), acts on ka in (34) and through the adjoint ua affects
the velocity field to obtain an enhancement or reduction of turbulent kinetic energy. In this case the
control is much more complex and the optimality system is strongly coupled.

Due to its strong nonlinearity, the optimality system cannot be solved with one-shot techniques. We use
the following steepest descent algorithm:

1. Setup
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a) Set an initial value for the control u0
c and an initial state (u0, p0,k0,ω0,ν0

t ) solution of the
state system (1)-(5)

b) Compute the functional J 0 in (11)

c) Set ∆u0
c = 0, r0 = 1

2. Solve the adjoint system (32)-(36) for the adjoint variables (ui
a, pi

a,k
i
a,ω

i
a,ν

i
a)

3. Set the control update ∆ui
c = uc by solving (30) and compute ui

c = ui−1
c + ri, j∆ui

c

4. Solve (1)-(5) for the state variables (ui, j, pi, j,ki, j,ωi, j,ν
i, j
t )

5. Compute the functional J i, j in (11)

a) if ‖J i, j− J i, j−1‖/J i, j−1 < toll convergence of the optimal control problem is reached

b) else if J i, j > J i, j−1 set ri, j+1 = 0.5ri, j and return to step 3.

c) else if J i, j < J i, j−1 set ri, j+1 = r0 and return to step 2.

3 Numerical Results

Γc

Γw

ΓoΩdH

L

y

x

Figure 1: Plane channel geometry.

In this section, we solve the optimality system in a two-dimensional geometry for velocity matching and
turbulence enhancement cases. We use a finite element discretization of the optimality system written in
weak form, replacing the infinite-dimensional spaces with appropriate finite-dimensional spaces. We use
a differentiate-then-discretize approach since we apply the finite element approximation after computing
the Fréchet differentials. We use quadratic finite elements for all the variables but the pressure, for which
we use linear finite elements. The steepest descent algorithm has been implemented in the finite element
code FEMuS [12] and the PETSc libraries are used to handle the algebraic solver of the system.

The geometry we have tested is the plane channel with H = 0.1m and L = 0.0303m reported in Figure 1.
The rectangular domain Ω is defined as Ω = {(x,y) : x ∈ [0,0.0303],y ∈ [−0.05,0.05]}. The fluid flows
from the controlled boundary Γc, on the left, to the outflow section Γo, on the right, while the region of
boundary Γw represents the walls where we have set the near-wall boundary conditions as reported in
Table 1. The y-axis is set along the flow direction while the x-axis is along the transverse one. The bulk
mesh consists of 15655 nodes with mesh refinement near wall boundaries. We have considered liquid
lead with density ρ = 10340kg/m3 and dynamic viscosity µ = 0.00181Pa · s.
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3.1 Test 1. Velocity Matching Case

a)

Ωd

0.0000 0.0601 0.1203 0.1804 0.2405 0.3007 0.3608 0.4209 0.4811 0.5412

‖u‖ [m/s]

b)

Ωd

0.0000 0.1002 0.2004 0.3006 0.4008 0.5010 0.6012 0.7014 0.8016 0.9018

‖u‖ [m/s]

Figure 2: Test 1: Velocity Matching Case. Isosurface contours and streamlines of the velocity for the uncontrolled
case (a) and for λ1 = 10−8 and λ2 = 10−4 (b).

a)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y [m]

u
c
·n̂

[m
/s
]

λ1 = 10−8 λ1 = 10−9 λ1 = 10−10 n.c.

b)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y [m]

u
c
·n̂

[m
/s
]

λ2 = 10−4 λ2 = 10−5 λ2 = 10−6 n.c.

Figure 3: Test 1: Velocity Matching Case. a) Velocity profile over the half-section of Γc for tests with λ1 =
10−8,10−9,10−10 and λ2 = 0. b) Velocity profile over the half-section of Γc for tests with λ2 = 10−4,10−5,10−6

and λ1 = 10−9.

Let be Ωd = {(x,y) : x∈ [0.01115,0.01915],y∈ [−0.025,−0.005]} the region where we aim to minimize
the objective functional with an objective on velocity field, therefore with a = 1 and b = 0

J (u,uc) =
a
2

∫
Ωd

||u−ud ||2dΩ+
λ1

2

∫
Γc

||uc||2dΓ+
λ2

2

∫
Γc

||∇suc||2dΓ . (37)

We have performed several tests varying the regularization parameters λ1 = 10−8,10−9,10−10 and λ2 =
10−4,10−5,10−6.

In Figure 2 a) we report the velocity profile over the domain Ω at the reference state. We have set a
constant velocity profile uc = (0,0.5m/s) on the boundary Γc as initial value for the control, resulting
in Re = uHρ/µ = 87000. Over Ωd , the velocity field assumes a maximum value of 0.5412m/s. These
simulations aim to control the distance expressed in L2-norm between the velocity field and a target
value. In this test we aim to reduce the velocity over Ωd with respect to the reference case, therefore we
set ud = (0,0.3m/s). In Figure 2 b) the velocity over the domain Ω is reported for the optimal solution
corresponding to λ1 = 10−8 and λ2 = 10−4. Over Ωd , the velocity assumes values around 0.3-0.4m/s.
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Table 2: Test 1: Velocity Matching Case. Objective functionals with λ2 = 0 and different λ1 values. The reference
case without control is obtained when λ1→ ∞.

λ1 ∞ 10−8 10−9 10−10

J ·106 4.26025 1.93769 1.70594 1.00159

Table 3: Test 1: Velocity Matching Case. Objective functional with λ1 = 10−9 and different λ2 values.

λ2 10−4 10−5 10−6

J ·106 4.08514 1.04643 1.00159

To analyze the influence of the regularization parameter λ1 on the optimal solution, we show in Figure
3 a) the results with λ2 = 0 for different values of λ1. When λ1 is smaller, the control acts stronger
and achieves low values of the objective functional, as the reader can see in Table 2. For the lowest
considered value of λ1, the optimization gives a 77% functional reduction.

In Figure 3 b), we show the influence of the solution on the regularization parameter λ2. We set λ1 = 10−9

and we consider λ2 = 10−4,10−5,10−6. Figure 3 b) evidences that the highest considered value of λ2
brings to the smoothest solution and to the poorest functional reduction (around 4%), as reported in
Table 3. When low values of λ2 are considered, the boundary control parameter is closed to the solution
obtained with λ2 = 0 and brings to the strongest functional reduction.

3.2 Test 2. Turbulence Enhancement Case

Let be Ωd = {(x,y) : x∈ [0.01115,0.01915],y∈ [−0.025,−0.005]} the region where we aim to minimize
the objective functional with an objective on turbulent kinetic energy, therefore with a = 0 and b = 1 in
(11)

J (k,uc) =
b
2

∫
Ωd

|k− kd |2dΩ+
λ1

2

∫
Γc

||uc||2dΓ+
λ2

2

∫
Γc

||∇suc||2dΓ (38)

In Figure 4 a) we report the turbulent kinetic energy profile over the domain Ω at the reference state.
Also in this case, we have set a constant velocity profile uc = (0,0.5m/s) on the boundary Γc as initial
value for the control. Over Ωd , the turbulent kinetic energy assumes values in the order of magnitude
about 10−4m2/s2. In order to enhance the turbulence inside the channel, we aim to minimize the distance
expressed in L2-norm between the turbulent kinetic energy and a target value, i.e. kd = 0.01m2/s2. In
Figure 4 b) the turbulent kinetic energy over the domain Ω is reported for the optimal solution corre-
sponding to λ1 = 10−13 and λ2 = 10−6. Over Ωd , the turbulent kinetic energy assumes values around

Table 4: Test 2: Turbulence enhancement case. Objective functionals with λ1 = 10−13 and different λ2 values.

λ2 ∞ 5 ·10−5 10−5 5 ·10−6

J ·1010 82.7304 19.1531 12.2519 4.55217
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a)

Ωd

0.00048 0.00510 0.00973 0.01435 0.01897 0.02359 0.02822 0.03284 0.03746 0.04208

k [m2/s2]

b)

Ωd

0.00055 0.00521 0.00987 0.01453 0.01919 0.02385 0.02851 0.03317 0.03783 0.04249

k [m2/s2]

c) 0.0000 0.0875 0.1749 0.2624 0.3498 0.4373 0.5247 0.6122 0.6996 0.7871

‖u‖ [m/s]

Figure 4: Test 2: Turbulence enhancement case. Isosurface contours of turbulent kinetic energy field for the
uncontrolled case (a) and for λ1 = 10−13 and λ2 = 10−6 (b). Isosurface contours and streamlines of the velocity
field corresponding to the optimal state (c).
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·n̂
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]

λ2 = 5 · 10−5 λ2 = 10−5 λ2 = 5 · 10−6 n.c.

Figure 5: Test 2: Turbulence Enhancement Case. Velocity profiles along the half-section of Γc with λ2 = 5 ·
10−5,10−5,5 ·10−6 and λ1 = 10−13.

0.009-0.014m2/s2. The corresponding velocity profile over the domain Ω is reported in Figure 4 c). The
optimization algorithm leads, with this set of regularization parameters, to a velocity profile with a strong
peak in the middle of the channel to maximize the turbulence over Ωd .

Also in this test case, we show the influence of the solution on the regularization parameter λ2 in Figure
5. We set λ1 = 10−13 and we consider λ2 = 5 ·10−5,10−5,5 ·10−6. Figure 5 evidences that the highest
considered value of λ2 brings to the smoothest solution and to the poorest functional reduction (around
77%), as reported in Table 4, while the lowest value of λ2 brings to the strongest functional reduction
(95%).
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4 Conclusions

An adjoint-based boundary optimal control method for the Reynolds Averaged Navier-Stokes equations
coupled with a two-equations turbulence model has been presented. The adjoint system has been ob-
tained through a Lagrangian functional minimization. Proper boundary conditions have been set on the
adjoint variables and a steepest descent algorithm has been implemented for the segregate solution of
the optimality system. Simple test cases have been reported to show the robustness of the mathematical
approach presented for different objectives and different regularization terms.
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