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Abstract. In this study, resin permeability of plain-woven composites is analyzed using a 

three-scale homogenization method. To this end, the three-scale homogenization method is 

developed to analyze the resin flow through both the structures of fiber bundles and the inside 

of fiber bundles, and also the mesoscopic and macroscopic resin permeability. To evaluate the 

validity of this method, resin permeability and characteristic flow velocity of plain-woven 

glass fiber-reinforced plastic (GFRP) are analyzed. The results show that the present method 

successfully analyzes the resin permeability of plain-woven composites. 
 

 

1 INTRODUCTION 

Woven composites have many positive features, for example, high specific strength, high 

specific stiffness and good formability compared to single materials such as metals. Therefore, 

they have been used as primary structural members in many industrial fields such as the 

aerospace, auto and energy-related industries. In recent years, the resin transfer molding 

(RTM) has been attracting attention as a manufacturing method for woven composites from 

the viewpoint of production cost and efficiency. In the RTM, resin materials are impregnated 
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through reinforcements consisting of fibers. The RTM method has higher production 

efficiency compared with the autoclave method, but there is a disadvantage that it may lack 

stability. Therefore, it is necessary to understand permeation behavior of resin materials 

through fiber reinforcements in order to further improve the production efficiency and ensure 

the stability of this molding method. In general, such permeation behavior has been examined 

experimentally. However, conducting experiments one by one for many kinds of woven 

composites is not realistic, and it is desirable to predict the permeation behavior analytically. 

For such analysis, the mathematical homogenization method [1, 2] is one of the most 

useful methods because the method can analyze both macroscopic and microscopic properties 

of heterogeneous materials. In fact, the method has been applied to the permeability analysis 

of woven composites, showing its validity [3]. However, this study did not explicitly consider 

microscopic structures consisting of fibers and a resin in fiber bundles. On the other hand, an 

analysis method called the three-scale homogenization method [4] has been developed by our 

research group. In this method, the whole material is defined as the macroscale, the fiber 

bundles inside the material is defined as the mesoscale, and the fibers inside the fiber bundle 

are defined as the microscale. The method allows us to obtain the mechanical properties of 

composites in more detail by applying the homogenization method twice to the three scales. 

Thus, the analysis of thermal properties of plain-woven composites using this method was 

already conducted by the authors [5]. 

In this study, a resin permeability analysis method for plain-woven composites is 

developed based on a three-scale homogenization method. To this end, the mathematical 

homogenization method is applied to resin flow in both the weaving structures of fiber 

bundles and the inside in fiber bundles, deriving macroscopic resin permeability and meso 

flow velocity distributions. Using the present method, resin permeability of a plain-woven 

glass fiber-reinforced plastic (GFRP) is analyzed. 

2 THREE-SCALE HOMOGENIZATION METHOD FOR FLUID PROBLEM 

2.1 Problem settings 

For permeability analysis, an analysis model is defined, in which a whole plain-woven 

composite is regarded as a macro scale structure, fiber bundles (yarn) and resin flow path in 

the composite as a meso scale structure, and fibers and resin flow path in a fiber bundle as a 

micro scale structure (Fig.1). A resin permeates the fiber bundle areas, but does not permeates 

the fiber areas. Both fiber bundles and fibers are treated as rigid bodies. The Cartesian 

coordinate systems are defined in each scale as illustrated in Fig. 1. Then, we define a meso 

scale periodic structure as a unit cell A, and a micro-scale periodic structure as a unit cell B. 

the density, viscosity and flow velocity of the fluid are defined as  ,   and iu , respectively, 

and the external force per unit mass is defined as if . If the resin is treated as incompressible 

fluid, the following continuity equation is given. 

 0i

i

u

x





. (1) 

Assuming steady-state flow and a small Reynolds number, the following Stokes equation is 

given as the equation of motion for incompressible fluid 
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Fig. 1. Plain-woven composite and three-scale structure. 
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Furthermore, the following basic equations can be given in arbitrary hierarchy 

 
( )( )

( )

( ) ( ) 2

j

i
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 
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( )

( )
0i
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x









. (4) 

2.2 Meso/micro homogenization 

The formulation between meso and micro scales is described in this section. We consider 

the following asymptotic expansions of the flow velocity and pressure 

 ( ) (1) (2) 2 (3)( , ) ( , ) ( , ) ( , )i i i iu u u u     y z y z y z y z , (5) 

 ( ) (1) (2) 2 (3)( , ) ( , ) ( , ) ( , )p p p p     y z y z y z y z , (6) 

where   indicates the scale factor between the meso and micro scales. Equations (3)-(6) and 

the relation 2 (2)    [6] give the governing equations for the micro flow path by 

considering the identity relations of  : 

 
2 (1)(2) (1)

(2)

2

( )
( )i

i

i j i

up p y
f y

z z y
 
 

  
  

, (7) 

 
(1)

0i

i

u

z





. (8) 

These two equations respectively represent the Stoke equation and the continuity equation for 

the micro resin flow path. Now, we express 
(1)

iu  and (2) p  as follow [7] 

 
(1)

(1) (2)

(2)

1
( )k

i i k

k

p
u f

y
 



 
  

 
z , (9) 
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(1)

(2) (2) k

k

k

p
p f

y
 

 
  

 
z , (10) 

where (2) ( )k

i z  and (2) ( )k z  respectively denote the micro characteristic flow velocity and the 

micro characteristic pressure which are Y-periodic functions. Then, we can derive the 

following boundary value problem for B by substituting these characteristic functions to Eq. 

(7), Eq. (8) and the non-slip condition 

 
2 (2)(2)

2

kk

i
ik

i jz z





 

 
, (11) 

 
(2)

0
k

i

iz





, (12) 

 (2) 0 onk

i B  , (13) 

where ik  indicates the Kronecker’s delta. Furthermore, the following mesoscopic 

permeability which is homogenized permeability for fiber bundles can be obtained by 

applying the volume average to the micro characteristic flow velocity 

 (2) (2)1k k

i iB B
dB

B
   . (14) 

Here, #  represents the volume average with respect to B, i.e. 
1

# #
B B

B dB


   , where B  

signifies the volume of  B. 

2.3 Macro/meso homogenization 

The formulation between macro and meso scales is described in this section. In the meso 

scale, the resin flows through the meso resin flow path, which is governed by the Stokes 

equation and the continuity equation, while the resin permeates the fiber bundles. Thus, the 

following governing equation for the meso fiber bundles is given by substituting the 

mesoscopic permeability into the relationship between meso and micro flow velocity 

 
(1)

1
(2) (2) (0)i

j j iB
i

p
u f

y
  


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
. (15) 

This equation is called the Brinkman equation. The governing equations for the whole meso 

scale are obtained by unifying the equations for two regions as follows 
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The boundary value problem for A is obtained as follows by substituting characteristic 

functions as with the previous meso/micro analysis 

 
2 (1)(1) (2)

1
(1) (1)

2 (1)
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j j ikB
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i
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



, (19) 

where (1) ( )k

i y  and (1) ( )k y  respectively denote the meso characteristic flow velocity and the 

meso characteristic pressure which are Y-periodic functions. Furthermore, the following 

macroscopic permeability which is homogenized permeability of the entire composite can be 

obtained by applying the volume average for A to the meso characteristic flow velocity 

 (1) (1)1k k

i iA A
dA

A
   . (20) 

3 MESO/MICRO ANALYSIS 

3.1 Analysis conditions 

The analysis model of micro scale considering the fiber volume fraction in fiber bundles of 

72% was created as shown in Fig. 2. This model was divided into eight-node isoparametric 

elements (18240 elements, 23052 nodes). We performed the analysis by imposing the 

periodic boundary condition to the opposite surfaces of the analysis model and the non-slip 

condition to the boundary surface between the fiber area and the resin area. 

3.2 Results of analysis 

The distributions of micro characteristic flow velocity obtained by the present analysis are 

shown in Fig. 3. The characteristic flow velocity distribution is shown by vectors which 

represent resin flow at the nodes in the finite element model when a unit pressure gradient is 

given to the macro scale. The meso permeability tensor obtained by averaging these micro 

characteristic flow velocities for B is as follows 

0.5 
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z
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z
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z
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Fig. 2 Unit cell B in micro scale and finite element mesh. 
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  

. (21) 

This tensor represents the permeability of the fiber bundles, and used as an input for the next 

macro/meso analysis. 

4 MACRO/MESO ANALYSIS 

4.1 Analysis conditions 

The analysis model of meso scale considering the fiber bundle volume fraction in the 

composite of 44% was created as shown in Fig. 4. This model was divided into eight-node 

isoparametric elements (8192 elements, 9603 nodes). We performed the analysis by imposing 

the periodic boundary condition to the opposite surfaces of the analysis model. The meso 

permeability tensor obtained by the previous meso/micro analysis was introduced into this 

analysis as the permeability of the fiber bundles. 

Fig. 3 Micro characteristic flow velocity distributions in unit cell B; 
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1
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2
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Fig. 4 Unit cell A in meso scale and finite element mesh; 

(a) whole image, (b) fiber bundles. 
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4.2 Results of analysis 

The distributions of meso characteristic flow velocity are shown in Fig. 5. The macro 

permeability tensor obtained by averaging these meso characteristic flow velocities for A is as 

follows 

 

1

(1) 1 2

1

1.721 10 0 0

0 1.721 10 0 mm

0 0 1.612 10

k

i A








 
 

  
  

. (22) 

The meso characteristic flow velocity distribution and the macro permeability tensor show 

isotropy in the y1- and y2- directions due to the symmetry of the structure in these directions. 

In the y3-direction, on the other hand, the concentration of the characteristic flow velocity 

through the meso pores, and the greater value compared to the previous experimental research 

for various woven structures [8, 9] can be confirmed. One of the reasons is that the actual 

woven composites have laminate misalignment mainly caused by the pressure during molding. 

5 CONCLUSIONS 

- The three-scale homogenization method was developed to be applied to the resin 

flow problem in woven composites. The present method enabled us to analyze the 

characteristic flow velocity distribution and the resin permeability from multiscale 

perspective. 

- The characteristic flow velocity distribution and the resin permeability of plain-

woven GFRP were successfully obtained using the present method. 
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