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Abstract. This paper presents an extended procedure for computation of integral 

representations of regular parts of Laplace domain three-dimensional dynamic anisotropic 

elastic full space displacement fundamental solutions and their spatial derivatives. The 

problem is that under specific conditions these integrals become highly oscillatory. For the 

modified integral expressions, we present a technique that utilizes specialized quadrature rule 

which in turn is a variation of well-known Levin’s method for solving highly oscillatory 

integrals. Results of numerical investigations suggest improved performance (regarding 

number of integration points) compared to using the Gauss-Legendre quadrature. 
 

 

1 INTRODUCTION 

Elastodynamic fundamental solutions (or Green’s functions) play significant role in 

formulation and solution of initial boundary value problems. Besides that, fundamental 

solutions are essential for the development of diverse formulations of Boundary Element 

Method. 

For general homogeneous anisotropic linearly elastic media full-space fundamental 

solutions are not available in the explicit closed-form expressions. Frequency domain 

anisotropic fundamental solutions are represented as a sum of static (fundamental solutions of 

corresponding static problem) and dynamic parts. 

Pan and Chen [1] presented an excellent work dedicated to evaluation of static anisotropic 

fundamental solutions. Concerning the dynamic parts of elastodynamic fundamental solutions 

for anisotropic solids practically important results were provided by Wang and 

Achenbach [2, 3]. They suggested using Radon transform and obtained dynamic parts of 

fundamental solutions in the form of surface integrals over a half of a unit sphere. Resulting 
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expressions have rather complicated integrands that become rapidly oscillating for large 

distances between source and observation points or high frequencies. For these specific cases 

we propose an extended yet simple computational strategy based on a quadrature rule 

developed by Evans and Webster [4]. This quadrature is a variation of the well-known Levin's 

collocation method [5]. Results of numerical experiments indicate significantly improved 

performance of suggested procedure when compared to using the Gauss-Legendre quadrature. 

2 LAPLACE DOMAIN ELASTODYNAMIC FUNDAMENTAL SOLUTIONS 

Laplace domain full space anisotropic elastic dynamic fundamental solutions for 

displacements and tractions are represented as sums of respective singular (static) and regular 

(dynamic) parts as 

( ) ( ) ( ) ( ), , , , ,S R

ij ij ij ijg s g s g g s= = +y x r r r  , 1,3,i j =  (1) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,, , , , , ,S R S R

mi mi ijkl mk l j ijkl mk l j mi mih s h s C g n C g s n h h s= = + = +y x r r y r y r r  , , 1,3,k l m =  (2) 

,= −r y x  ,r = r  (3) 

where S

ijg  and S

mih  are the static parts, R

ijg  is the dynamic part, s is the complex frequency, y 

and x are the position vectors of the observation point source point, respectively, jn  is the unit 

vector at y, ijklC  is the fourth order elasticity tensor. 

In this paper, we concern ourselves only with the aspects of computing the dynamic part of 

displacement fundamental solution R

ijg  and it’s spatial derivative 
, .R

ij lg  Their modified and 

expanded expressions of those obtained in [2, 3] can be written as follows 
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where ( ),m    and ( ),jmE    are the eigenvalues and the corresponding eigenvectors of the 

matrix ( )( ) ( ) ( ), , , .ij kijl k lC n n      =n  Vector ( ), n  is defined as (see Figures 1, 2) 
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Figure 1: Overview of quantities required for integration of dynamic part of fundamental solution and it’s 

derivative 

 

Figure 2: Quantities involved in defining vector n 

Close inspection of integrals defined in equations (4) and (5) reveals that for numerical 

integration of these integrals an eigenvalue problem for Christoffel matrix ( )( ),ij   n  has 

to be also solved numerically for every value of   and   which is very computationally 

expensive. For practically feasible implementation of Laplace domain anisotropic 

elastodynamic fundamental solutions in any numerical method it is important to minimize 
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number of integration points required for numerical evaluation of integrals in (4) and (5). 

Let value of   be fixed and consider integrals with the respect to   

   
( ) ( ) ( )

( )

( )

( )

cos
2 3

1 1 3 2
10

sin
, , , , e ,m

sr
im jmij

m m

E E
I r s I r s d


 

   
  

 

 
 −
 
 

=

= =   (12) 

   
( ) ( ) ( ) ( )

( )

( )

( )

cos
2 3

,

2 2 2
10

sin
, , , , e .m

sr
k im jmij k

m m

n E E
I r s I r s d


 

    
  

 

 
 −
 
 

=

= =   (13) 

We denote complex frequency as 

.sr s i r i r       = = = + = +  (14) 

With (14) we have 
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Exponential term in the integrands makes these integrals highly oscillatory for the large 

values of the imaginary part ( )Im r  =  of the complex frequency .  

For further convenience we rewrite integrals  1 ,ijI    and  ,

2 ,ij kI    as follows 
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where ( )m

ijf   and ( ),

m

ij kg   are amplitude functions, and ( )mq   are corresponding to phase 

functions. 
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3 COMPUTATION OF INTEGRALS 

Specialized procedures [6] are required to efficiently evaluate highly oscillatory integrals 

defined in equations (17) and (18).  

Amplitude functions ( )m

ijf   and ( ),

m

ij kg   and phase functions ( )mq   are not available in 

an explicit closed-form and for every value of integration variable   they need to be 

evaluated numerically. This prevents from using any Filon-type method to compute integrals 

(17) and (18). 

For a complicated phase functions such as in our case, Levin’s collocation method offers a 

suitable framework for evaluating highly oscillatory integrals. In Levin’s approach an 

integration problem of form 

( ) ( )
1

1

,
i q x

I f x e dx


−

=   (21) 

is transformed into an ordinary differential equation (ODE) 

( ) ( ) ( ) ( ).F x i q x F x f x + =  (22) 

After ODE (22) is solved, integral (21) is obtained by substitution 
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To find ( )F x  it is approximated as 
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where ( )k x  are linearly independent basis functions. 

Therefore integral (21) can be approximated substituting (24) into (23) 
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In order to obtain coefficients ,k  a following collocation system is assembled on a set of 

points  ,jx  1, ,j n=  and then solved 

( ) ( ) ( ) ( )
1 1

.
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To evaluate integrals (17) and (18) using Levin’s method it would require to solve three 

complex valued collocation systems with 24 different right-hand sides each. We employ a 

variation of Levin’s method proposed by Evans and Webster [4]. Consider a quadrature rule 
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which is exact for the functions 
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( ) ( ) ( ) ( ),k k kh x i q x p x p x  = +  0, .k N=  (28) 

Functions defined in (28) are substituted on a set of points  jx  into (27) to obtain linear 

system for the weights jw  

,kj j ka w b=  (29) 

( ) ( ) ( ) ,kj j k j k ja i q x p x p x  = +  , 0, ,k j N=  (30) 

( ) ( ) ( ) ( )1 1
1 e 1 e ,

i q i q

k k kb p p
  −

= − −  0, .k N=  (31) 

Following original paper by Evans and Webster [4] 

( )cos ,jx j N=  ( ) ( ),j jp x T x=  0, ,j N=  (32) 

where ( )jT x  is the j-th Chebyshev polynomial of the first kind. 

In our case, to assemble systems defined by (29) we need to define derivatives of the phase 

functions 
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To evaluate integrals (17) and (18) domain of integration  0, 2  over   is subdivided into 

a sufficient number of intervals and Evans-Webster quadrature is applied on each interval. 

4 NUMERICAL EXAMPLE 

Consider evaluation of integrals  1 ,ijI    and  ,

2 ,ij kI    for the following parameters 

32216 kg/m , =  

17.77 3.78 3.76 0.24 0.28 0.03
19.45 4.13 0.41 0.07 1.13

21.79 0.12 0.01 0.38
GPa,

8.30 0.66 0.06
symm. 7.62 0.52

7.77

− 
− 

 −
=  
 
  

C  5. =  (35) 

Dimensionless quantities are introduced 

max ,p=C C  
2 2

max max max/ / ,l p t =  2.0 ,s i= +  ,sr =  (36) 

max 0.005 s,t =  
10

max 1.0 10  Pa,p =   max 200 m.l =  (37) 

 
T

0,0,0 ,=x  ( ) ( ) ( ) ( ) ( )
T

sin 3 cos 4 ,sin 3 sin 4 ,cos 3 ,    =   y  1.r = − =y x  (38) 

The errors between results obtained with Evans-Webster (EW) based procedure and 

converged values obtained with high-order Gauss-Legendre (GL) rule denoted with 
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superscript “ref” are measured as 
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where 
2
 denotes the spectral norm of a matrix. 

Different orders of EW method on each interval are considered for 500. =  Figures 3 

and 4 present obtained errors depending on the total number of evaluations of integrands. 

Results for EW orders 5, 6, and 7 are depicted in Figure 3 and for EW orders 8, 9, and 10 are 

depicted in Figure 4. 

 

Figure 3: Errors ( )1err I  and ( )2err I  for 500, =  5,N =  6, 7 

 

Figure 4: Errors ( )1err I  and ( )2err I  for 500, =  8,N =  9, 10 

Now we fix maximum allowed error for evaluating 2.I  For frequencies in interval 

1 1000,   Figure 5 presents the number of integrand evaluation required for 
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( ) 10

2 1 10err I −   for Gauss-Legendre quadrature and proposed technique with EW method 

orders 5,N =  6, 7, 8, 9 and 10.  

 

Figure 5: Number of integrand evaluations required for ( ) 10

2 1 10err I −   and 1 1000   

For lower frequencies 100   GL predictably performs better. Obtained results indicate 

that required numbers of integrand evaluations for all considered EW orders are close. 

Therefore, it is computationally beneficial to use lower orders in practice. 

5 CONCLUSIONS 

- A simple technique based on a variation of well-known Levin's method is presented 

for evaluation of highly oscillatory integrals appearing in Laplace domain anisotropic 

elastodynamic solutions. 

- For high frequencies presented approach performs favorably in terms of required 

number of integrand evaluations compared to using Gauss-Legendre quadrature rule. 

- Obtained results of numerical example indicate that errors decrease with increasing 

frequency which suggest that proposed procedure enjoys asymptotic property of 

Levin’s method. 
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