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Abstract. Global local analysis is a part of the structural analysis that allows to study, with an iterative
solution, a coarse global linear model with a specific zone. This zone is defined as a local model with fine
mesh and a non-linear behaviour such as crack propagation. However, the current trend in Global Local
analysis is to impose displacements on the fine model to later obtain the reactions that will be applied to
the global model for each iteration (Primal to Dual solution algorithm). Therefore, we propose a mixed
analysis in the local and global models through the application of Robin conditions on the interface,
allowing a higher grade of flexibility for the case of the patch or fine model with crack propagation
behaviour. As a result, the algorithm converges successfully, presenting kinematic compatibility and
good results with respect to the Monolithic (non-decomposed) model. Finally, a sensitivity analysis
is performed on some variables regarding the crack propagation for 2D models. Finally, the proposed
methodology also allows to improve the performance of the method for cracked models or other non-
linearities when compared with the current global local analysis, presented in the state of the art.

1 INTRODUCTION

The goal of non-intrusive frameworks is to develop advanced numerical methods benefiting from the
efficient linear and non-linear solvers implemented in the commercial software, used as “black boxes”.
For example, it is possible to drive the non-intrusive analysis with the python interface and Code Aster
[4] software. Advanced algorithms can be designed within this python interface and call non-linear
methods of Code Aster to take into account complex phenomena. Depending on the point of view, the
non-intrusivity would also enable to “enrich” a global model with a more detailed local one without
altering the global behaviour. For instance, the global model could be the result of a long industrial
design process and may not be modified easily. In that sense, methods that include local models without
touching the global mesh are considered as non-intrusive.

1



Ignacio Fuenzalida-Henriquez, Emilio Castillo-Ibarra and Jorge Hinojosa

The global/local approach [14] is a very good candidate for non-intrusive implementation [7]. The
basic idea is to introduce some localized details and potentially non-linear behaviors in a global and
coarse model within specific zones and without modifying the global model. Two models coexist: a
global one and a local one connected through an interface. The global/local approach consists in an
iterative Dirichlet-Neumann algorithm where an iteration is composed of two steps: (1) a problem on
the local model with Dirichlet boundary conditions on the interface, and (2) a problem on the global
model with Neumann boundary conditions on the interface. Links with Optimized Schwarz domain
decomposition methods can be found in [9]. The global/local framework has been generalized to a
domain decomposition method with a complete covering local model [3]. This method has been applied
on various types of non-linearities such as: crack propagation [13, 3], structural joints and assemblies
[10], local plasticity [7], cycling visco-elastic behavior [1]. Others studies for different applications and
improvements for the local global method and non-intrusive analysis can be found in [11, 6, 8, 9, 2].

Based on the St. Venant principle, the interface between the local and global models should be far from
the local details to avoid the Dirichlet boundary conditions from the linear global model being inaccurate
near the zone of potential non-linearity. The use of Robin Parameters on the interface may help to
disregard this issue. The first proposition for the use of Robin Parameters on the interface is on [6] for a
local plastic model.

This paper addresses the global/local method with a non-intrusive implementation of the Robin Parame-
ters on the interface, for the global and local models, applied to crack propagation in the fine model.

2 GLOBAL-LOCAL PROBLEM FORMULATION

2.1 Reference problem

We consider a mechanical model of a structure defined on a domain ΩR, as presented in [6, 9]. This
domain is composed of two non-overlapping domains ΩC and ΩL: the complementary domain and the
local domain, respectively. The domain ΩC considers elastic linear isotropic assumptions with small
perturbations whereas ΩL may consider a non-linear the mechanical model such as a crack propagation
or a plastic material. This local model enables to incorporate richer localized contents into a simple
global model of the structure. The interface between the complementary and the local model is defined
as Γ.

The admissible space of the displacements is defined by V (ΩR) = {v ∈ H1 (ΩR) , v = ud on ∂uΩR}. The
mechanical problem is equivalent to:

Find u ∈V (ΩR) , aR(u,v) = lR(v), ∀v ∈V0 (ΩR) (1)

The bi-linear form representing the equilibrium of the structure is defined with aR and the linear form
representing the loads and the boundary conditions with lR.

A standard finite element discretization with Lagrange shape functions is used to obtain discrete models
and we assume a conforming mesh at the interface between the complementary and local models.

In order to detail the methods and the equation, we adopt a full elastic linear isotropic material over the
whole domain ΩR = ΩC∪ΩL. The case of a local non-linear model will be discussed further. Under this
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type of hypothesis, the discrete problem becomes:

Find uR solution of KRuR = fR
d (2)

the stiffness matrix is defined with KR, the discrete unknown of displacements with uR and the right-
hand-side corresponding to the Boundary conditions with fR

d . The null Dirichlet conditions are supposed
to be eliminated.

This reference problem can be observed as the coupling between the complementary model on ΩC and
the local model on ΩL. This coupling is enforced through a Lagrangian λλλ to impose the continuity of the
displacement on the interface Γ. Therefore, the discrete problem is equivalent to:

Find (uC,uL,λλλ) ,

 KC 0 −CT
C

0 KL CT
L

−CC CL 0

uC

uL

λλλ

=

fC
d

fL
d
0

 (3)

the stiffness matrices of the complementary and local models are defined with KC and KL, respectively,
the displacements on ΩC and ΩL with uC and uL, the load vectors on ΩC and ΩL with fC

d and fL
d , and the

Lagrange’s multiplier to enforce the coupling with λλλ.

The operators CC and CL are coupling operators. In the case of conforming meshes, these are trace
operators extracting the displacements from ΩC and ΩL on the interface Γ. They are sparse matrices with
1 in the degrees of freedom of the interface.

This problem can be rewritten in two sub-problems: one on ΩC and the other on ΩL:

Find uC, KCuC = fC
d +CT

Cλλλ

Find (uL,λλλ) ,

[
KL CT

L
CL 0

][
uL

λλλ

]
=

[
fL
d

−CCuC

] (4)

This problem can be solved with a classical Dirichlet-Neumann iterative algorithm for which an iteration
consists of the two following steps:

1. Knowing a solution
(
un

L,λλλ
n) on ΩL, solve a Neumann problem on ΩC:

Find un+1
C , KCun+1

C = fC
d +CT

Cλλλ
n (5)

2. Knowing a solution un+1
C on ΩC, solve a Dirichlet problem on ΩL:

Find
(

un+1
L ,λλλn+1

)
,

[
KL CT

L
CL 0

][
un+1

L
λλλ

n+1

]
=

[
fL
d

CCun+1
C

]
(6)

λλλ
n+1 the opposite of the reaction forces λλλ

n+1
L on the interface of the local model.

This type of algorithm could be generalized with multiple local models and considered as a non-overlapping
domain decomposition [3].
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3 GLOBAL-LOCAL ANALYSIS WITH ROBIN PARAMETERS

As stated before, the global/local analysis can be observed as a coupling of the complementary and the
local model through a Lagrange’s multiplier. This coupling problem is solved with an iterative Dirichlet-
Neumann fixed point algorithm [9].

However, similarly as for Schwarz domain decomposition methods [5], we can introduce Robin condi-
tions to improve the convergence and obtain more flexibility. In fact, the kinematic compatibility is loss
between the complementary and local model and replace it with Robin conditions written on the interface
Γ. The first work on the global/local method with Robin conditions are presented in [6] and reminded in
[9]. In Section 3.1 the complete derivation global/local method with Robin conditions is presented.

3.1 Derivation of global/local Analysis with Robin Parameters

In this section, the mechanical problem is written differently following a framework of a mixed domain
decomposition. Instead of considering a Lagrange’s multiplier defined on the interface Γ, we consider
the reaction forces λλλL and λλλC as full unknowns on the interface. Writing the problem as a domain
decomposition enables the conditions to enforce at the interface:

λλλL +λλλC = 0 Equilibrium of the forces

CLuL−CCuC = 0 Continuity of the displacements
(7)

These two equations representing the behavior of the interface are written with Robin conditions:

λλλL +λλλC−kC (CLuL−CCuC) = 0

λλλL +λλλC +kL (CLuL−CCuC) = 0
(8)

kC and kL are the Robin parameters. They are stiffness operators and are chosen symmetric definite
positive ensuring the equivalence with the equations of the interface, presented in Eq. 7. These Robin
conditions are defined and written on the interfaces: they connect the reaction forces λλλC and λλλL to the
displacements CLuL and CCuC of the interface.

Therefore, the new system to be solved is:

KCuC = fC
d +CT

CλλλC

λλλL +λλλC−kC (CLuL−CCuC) = 0

KLuL = fL
d +CT

L λλλL

λλλL +λλλC +kL (CLuL−CCuC) = 0

(9)

As well as the Dirichlet-Neumann global/local method, the problem on the complementary model is
extended to the global model and the first equation of the system becomes:

KGuG = fG
d +CT

GλλλC +CT
GλλλA (10)

In addition, as uG and uC are equal on the interface Γ, the Robin conditions can also be written as:

λλλL +λλλC−kG (CLuL−CGuG) = 0

λλλL +λλλC +kL (CLuL−CGuG) = 0
(11)
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On the other hand, λλλC are the reaction forces of a problem on the complementary domain. Therefore, the
notation λλλG will not be used, in order to avoid any confusion regarding λλλG.

Considering the first equation of the Robin conditions, we extract the expression of λλλC to inject it into
the equilibrium of the global model leading to:

KG +uG = fG
d +CT

GλλλA−CT
G (λλλL−kGCGuL−kGCGuG) (12)

Using the second equation of the Robin conditions, the expression of λλλL can be extracted to be injected
it into the equilibrium of the local model obtaining:(

KL +CT
L kLCL

)
uL = fL

d +CT
L (kLCGuG−λλλC) (13)

As well as the global/local method, a fixed point algorithm is derived, where an iteration consists of the
successive steps:

1. A global problem: knowing
(
un

L,λλλ
n
L,λλλ

n
A
)
, find un+1

G solution of:

KGun+1
G = fG

d +CT
G
(
λλλ

n
A−
(
λλλ

n
L−kGCLun

L−kGCGun
G
))︸ ︷︷ ︸

Pn

(14)

2. Auxiliary problems: computing the reaction forces on ΩA and ΩC at the interface Γ:

λλλ
n+1
A = CA

(
KAuG|ΩA− fA

d
)

λλλ
n+1
C = CC

(
KCuG|ΩC − fC

d
) (15)

3. A local problem: knowing
(

un+1
G ,λλλn+1

C

)
find un+1

L solution of:

(
KL +CT

L kLCL
)

un+1
L = fL

d +CT
L

(
kLCGun+1

G −λλλ
n+1
C

)
(16)

In order to save the global model without any changes, the contribution of uG due to the Robin parameters
kG is moved to the right-hand side of the equation, with the term −CT

GkGCGun
G.

For global local analysis, auxiliary problems are not necessary if the finite element codes can extract
reaction forces on an immersed surface. Nevertheless, it can be computed from known variables without
assembling the operator KC:

λλλ
n+1
C = CC

(
KCun+1

G |ΩC
− fC

d

)
= CG

(
KGun+1

G − fG
d −

(
KAun+1

G − fA
d

))
= CG

(
CT

GPn−λλλ
n+1
A

)
λλλ

n+1
C = Pn−λλλ

n+1
A

(17)
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In addition, since Pn = λλλ
n
A−λλλ

n
L +kGCLun

L−kGCGun
G, we can write Pn+1 in function of Pn and forming

a new rest rn+1:
Pn+1 = λλλ

n+1
A −λλλ

n+1
L +kGCLun+1

L −kGCGun+1
G

= Pn−λλλ
n+1
C −λλλ

n+1
L +kGCLun+1

L −kGCGun+1
G

= Pn−
[(

λλλ
n+1
C +λλλ

n+1
L

)
+kG

(
CGun+1

G −CLun+1
L

)]
= Pn + rn+1

(18)

The new rest rn+1 now includes a mixed contribution of the discontinuity of the displacements and the
disequilibrium of forces:

rn+1 =−
(

λλλ
n+1
C +λλλ

n+1
L

)
︸ ︷︷ ︸

Disequilibrium

−kG
(
CGun+1

G −CLun+1
L

)︸ ︷︷ ︸
Discontinuity

(19)

In addition, the interface error measured as the norm of the difference of displacements between the local
and global models is used to measure the quality of the solution. The expression is presented in Eq. (20).

ηΓ =
‖
(
CLun+1

L −CGun+1
G

)
‖2

‖CGun+1
G ‖2

(20)

It is also relevant to consider the error of the results obtained using the Global-Local Analysis with
Robin parameters with the results regarding the Monolithic error. This error is calculated as the norm of
the displacements on the nodes where the force is applied and compared with the same nodes from the
Monolithic model, as presented in Eq. (21).

ηMono. =
‖
(
CGun+1

G −uMono.
)
‖2

‖uMono.‖2
(21)

4 RESULTS FOR 2D STRUCTURES USING GLOBAL-LOCAL ANALYSIS WITH ROBIN
PARAMETERS

The Global-Local algorithm with Robin Parameters was implemented with Code Aster [4], considering
two A-36 steel structures modeled with 2D plane stress formulation and a thickness equal to 1. The
structures are shaped as an inverted T-Shape with a 10 mm initial crack and considering different load
conditions. The corresponding properties are presented in Fig. 1 and Table 1:
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(a) Inverted T-Shaped cracked problem, Horizontal Force (b) Inverted T-Shaped cracked problem, Vertical Force

Figure 1: Geometry of analyzed models, boundary conditions and applied loads

Table 1: Properties associated with the crack propagation and material properties

Yield Number of Maximum Crack
Stress Prop. Steps Propagation/Step

250 (MPa) 4 (steps) 2 (mm)

In order to analyze the performance of the Global-Local algorithm with Robin Parameters, the pre-
defined element strip is used to calculate the Robin parameter, presented in Fig. 1b, as well as the Aitken
δ2 dynamic relaxation, as presented in [9].

The results for the horizontal applied load and the 4 propagation steps are presented in Fig. 2 and Fig. 3.
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Figure 2: Evolution of Method error r/ iterations, horizontal load

(a) Interface error r/iterations, horizontal load (b) Monolithic error r/iterations, horizontal load

Figure 3: Interface error and Monolithic error, horizontal load

As presented in Fig. 3a and Fig. 3b, the convergence is fulfilled in 13 iterations for the horizontal
load. For the final converged state, the interface and monolithic errors tend to 0, indicating kinematic
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compatibility between models and a good quality of the solution, respectively.

The results for the vertical applied load and the 4 propagation steps are presented in Fig. 4 and Fig. 5.

Figure 4: Evolution of Method error r/ iterations, vertical load

(a) Interface error r/iterations, vertical load (b) Monolithic error r/iterations, vertical load

Figure 5: Interface error and Monolithic error, vertical load
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As presented in Fig. 5a and Fig. 5b, the convergence is fulfilled in 11 iterations for the horizontal
load. For the final converged state, the interface and monolithic errors tend to 0, indicating kinematic
compatibility between models and a good quality of the solution, respectively.

In addition, the Aitken δ2 is appropriate for the Global Local Analysis with Robin Conditions, exhibiting
a good convergence rate. This is presented in the slope of the method error r/iterations in Fig. 2 and Fig.
4.

Finally, as stated in [12], the convergence of the method ‖rn+1‖ < tol = 10−4, depends directly on the
Robin parameter chosen for the analysis. Therefore, the presented convergence can be improved, due to
the arbitrary strip of elements chosen in the current example and used for the calculation of the Robin
parameter.

The complete results of the Global-Local Analysis with the initial Robin Operator are presented in Table
2.

Table 2: Results for the Global Local Analysis

Applied Monolithic Interface Method Number of
Load Error Error Error Iterations

Horizontal 5.9e-06 7.45e-11 8.64e-05 13
Vertical 0.000123 3.09e-09 4.47e-05 11

5 EFFECT OF THE PROPAGATION STEPS AND MAXIMUM CRACK PROPAGATION FOR
THE PROPOSED METHOD

In order to understand the effects of the variables required to perform the crack propagation in 2D struc-
tures and how they affect the convergence rate of the Global-Local analysis with Robin parameters, the
propagation number and maximum crack growth per step are modified for both models. Hence, the
analysis is performed for propagation steps within the range of 1 to 4 and the maximum crack growth is
chosen from 2 (mm) to 10 (mm) for both forces applied.

The results for the different number of propagation steps and a maximum crack growth of 2 (mm) are
presented in Fig. 6a and Fig. 6b for the horizontal load with 2 (mm) and 10 (mm) crack growth (DA),
respectively. It is important to mention that as presented in Section 4, the interface and monolithic errors
tends to 0; therefore, they will be omitted in the current section.
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(a) Method error for all NPS, DA=2(mm), horiz. load (b) Method error for all NPS, DA=10(mm), horiz. load

Figure 6: Effect of number of propagation steps for horizontal loads and different crack growth

It can be observed that the number of propagation steps analyzed affects the convergence rate of the
proposed method. For the horizontal load and DA=2 (mm), the convergence is achieved with 11 iterations
for the initialized crack (NPS=1), 12 iterations for one propagation (NPS=2) and 13 iterations for NPS=3
and NPS=4. However, when a larger crack growth is considered with DA=10 (mm), the convergence is
equal to 11 for NPS=1, 13 iterations for NPS=2, 18 iterations for NPS=3 and 22 iterations for NPS=4.
These results show that for a large crack growth, the discontinuity becomes geometrically larger with
more propagation steps. Consequently, as to achieve a good stress and displacement compatibility, more
iterations are required to fulfill the convergence.

For the vertical load case, the results for 2 (mm) and 10 (mm) crack growth and all number of propagation
steps are presented in Fig. 7a and Fig. 7b.
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(a) Method error for all NPS, DA=2(mm), vert. load (b) Method error for all NPS, DA=10(mm), vert. load

Figure 7: Effect of number of propagation steps for vertical loads and different crack growth

As for the vertical loads, it can be observed that the number of propagation steps analyzed also affects
the convergence rate of the proposed method. For the vertical load and DA=2 (mm), the convergence
is achieved with 10 iterations for the initialized crack (NPS=1) and 11 iterations for all other cases.
Nevertheless, when a larger crack growth is considered with DA=10 (mm), the convergence is equal to 10
for NPS=1, 11 iterations for NPS=2, 13 iterations for NPS=3 and 18 iterations for NPS=4. These results
are aligned with the previous results for the horizontal load, indicating that the size of the discontinuity
affects the number of iterations required to achieve a ”balanced” interface condition and thus, obtaining
the desired convergence.

Finally, the final deformed shape of the cracked model with 4 propagation steps and different crack
growth is presented in Fig. 8a and Fig. 8b, for the horizontal loads.
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(a) Deformed state, NPS=4, DA=2(mm), horiz. load (b) Deformed state, NPS=4, DA=10(mm), horiz. load

Figure 8: Final deformed state with 4 propagation steps and DA=2 (mm) and 10 (mm) and horizontal
load.

6 CONCLUSIONS

- The method presented in this study has a good performance regarding the resolution of struc-
tural/mechanical problems with crack propagation in 2D plane stress elements. However, the im-
plementation is more complex regarding the standard Global Local analysis (Primal-Dual method,
presented in [9]).

- An advantage of the proposed model corresponds to the Robin Operator and the flexibility that
is added to the local fine model, which can be optimized in order to improve the quality of the
solution.

- The solution obtained with the Global-Local with Robin Conditions is affected by the crack growth
parameter (DA) and the number of propagation steps (NPS), obtaining a best convergence rate for
lower crack growth and lower number of propagation steps. These can be explained because the
behaviour acts more like the original structure and, in consequence, obtaining good results for the
number of iterations until convergence.

- Finally, the global-local analysis with Robin parameters presents a good correlation to the results
obtained with the Monolithic solver, assuring that the analysis can be used without losing infor-
mation or quality of the solution for larger models.
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7 FUTURE RESEARCH AND COMMENTARY

- As presented in the conclusions, the Robin parameter can be optimized in order to achieve a better
convergence of the method. Basin-Hopping Optimization Algorithm can be used to find a global
minimum or, at least, a better solution than the current one presented in this article.

- The extension of the method to 3D structures has been studied using the proposed method, but the
results were not included in this article due to great computational effort involved.

- The proposed method can be used to solve a non-linear material, such as isotropic hardening and
other types of localized non-linearities. These behaviours will be addressed in future works.
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