
14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020)

Virtual Congress: 11-–15 January 2021
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

NUMERICAL BOUNDARY CONDITIONS FOR SCHEMES WITH
CENTERED AND BIASED DIFFERENCES IN SUBSONIC GAS

DYNAMICS

ILYA V. ABALAKIN1 and LUDWIG W. DORODNICYN2

1 M.V. Keldysh Institute for Applied Mathematics
Miusskaia sq. 4, 125047 Moscow, Russia

ilya.abalakin@gmail.com

2 M.V. Lomonosov Moscow State University, Faculty CMC
Vorobievy gory, 119991 Moscow, Russia

dorodn@cs.msu.su

Key words: Gas Dynamics, Aeroacoustics, Euler Equations, Nonreflecting Boundary Conditions, Finite
Differences, Edge Based Reconstruction

Abstract. For finite-difference schemes of EBR class in multi-dimensional inviscid gas dynamics, the
nonreflecting boundary conditions are analyzed and developed. The wave-reflection properties of dis-
crete models differ significantly from each other and from the continuous Euler equations. For certain
schemes there exist local boundary conditions which lead to small reflections of waves with arbitrary
incidence angle. Numerical examples are shown both linear and nonlinear.

1 INTRODUCTION

Modeling external problems of subsonic gas dynamics or aeroacoustics and similar fields faces spurious
wave reflections from artificial boundaries. The reason is in the fact that for the multi-dimensional wave
equation it is impossible to specify any local nonreflecting boundary conditions [1]. Alternative and
more expensive techniques are used such as nonlocal boundary conditions and Perfectly Matched Layers
(PML), see, e.g., [2].

To demonstrate this feature, consider, reproducing our paper [3], the 2D wave equation

∂2 p
∂t2 −

(
∂2 p
∂x2 +

∂2 p
∂y2

)
= 0, 0 < x < X , 0 < y < Y, t > 0. (1)

The right-hand boundary condition

(∂p/∂t +∂p/∂x)|x=X = 0 (2)

is nonreflecting for the 1D case and causes reflection of oblique waves, for θ the angle of incidence
(Fig. 1), with the uniquely determined reflection coefficient R as

p(x,y, t; ω,θ) = exp{iωt− iωxcosθ− iωysinθ}
+Rexp{iωt + iωxcosθ− iωysinθ} , R = R(θ) =− tan2(θ/2) .

(3)
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Figure 1: Schematic of wave reflection from the right-hand boundary

However, the situation is not the same when viscous models or discrete equations are used for the fluid
description. Finite-difference schemes usually possess physical (regular) as well as additional (singular)
modes and require a greater number of equations on boundaries than the continuous models do. Such
boundary conditions, known from [4, 5], do influence strongly the reflective properties of boundaries.
Meanwhile, there are scarce publications where these phenomena were thoroughly examined. For a kind
of centered-difference scheme, spurious scheme modes were analyzed in [6] and appropriate boundary
conditions were constructed.

In this study we use numerical schemes of EBR (Edge Based Reconstruction) class [7] both on regular
and unstructured meshes. Two kinds of schemes for the Euler equations are considered—with centered
and biased (upwind) differences. The boundary conditions are implemented in the flux form.

For centered-difference schemes, there exist numerical boundary conditions which result in small reflec-
tions of oblique waves in the form of short scheme modes rather than of regular modes obeying a kind of
Snell’s law. For upwind schemes, the reflection coefficients are in some cases much less than the typical
values for the continuous Euler equations.

2 DIFFERENTIAL EULER EQUATIONS

To make a fundament for further analysis of finite-difference schemes in inviscid gas dynamics, let us
start with the simplest case of continuous Euler equations. We mostly repeat our previous paper [3] more
briefly.

Consider the linearized 2D Euler equations

∂U
∂t

+Cx
∂U
∂x

+Cy
∂U
∂y

= 0, 0 < x < X , 0 < y < Y, t > 0. (4)

Here U = (ρ′ u′ v′ p′ )T is the vector of perturbations and constant matrices are specified

Cx =


u ρ 0 0
0 u 0 1/ρ

0 0 u 0
0 ρc2 0 u

 , Cy =


v 0 ρ 0
0 v 0 0
0 0 v 1/ρ

0 0 ρc2 v

 .
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The general solution to (4) is expanded over normal modes of the four types

U(x,y, t; ω, `) =
4

∑
j=1

a jÛ j exp{iωt− ik jx− i`y} . (5)

The right-going ( j = 1) and the left-going ( j = 2) acoustic waves, the entropy ( j = 3), and the vorticity
( j = 4) waves are described with wavenumbers k j and eigenvectors

(
Û1(θ) Û2(θ) Û3(θ) Û4(θ)

)
=


ρ ρ ρ 0

ccosθ1 ccosθ2 0 −c tanθ3
csinθ1 csinθ2 0 c

ρc2 ρc2 0 0

 ,

k1 =
ωcosθ1

c+ucosθ1 + vsinθ1
, k2 =

ωcosθ2

c+ucosθ2 + vsinθ2
, k3 = k4 =

ωcosθ3

ucosθ3 + vsinθ3
,

θ1 = θ,
sinθ1

c+ucosθ1 + vsinθ1
=

sinθ2

c+ucosθ2 + vsinθ2
=

sinθ3

ucosθ3 + vsinθ3
.

The full set of relationships is stated, e.g., in [2].

Indicate the case of 1D Euler equations (angle θ = 0) for which eigenvectors Û j, characteristic velocities
λ j, and wavenumbers k j = ω/λ j are the following:

U = U(0) =
(

Û1(0) Û2(0) Û3(0) Û4(0)
)
=


ρ ρ ρ 0
c −c 0 0
0 0 0 c

ρc2 ρc2 0 0

 , (6)

Cx = UΛxU−1, Λx = diag{λ j} = diag
(

u+c, u−c, u, u
)
, (7)

k1 =
ω

c+u
, k2 =−

ω

c−u
, k3 = k4 =

ω

u
. (8)

Consider a boundary condition on the right-hand (x = X) or the left-hand (x = 0) boundary of the rect-
angular domain. If the flow is subsonic and directed to right,

0 < u < c ,

the left acoustic wave (k2) propagates leftward as the rest do rightward. On the left boundary, incoming
modes are the right-going acoustic (k1), the entropy (k3), and the vorticity (k4) waves, while outgoing is
the left acoustic (k2). On the right boundary everything is contrary. Consequently, the Euler equations
need 3 boundary conditions on the left and 1 condition on the right.

A boundary condition is nonreflecting if it assigns zero amplitudes a j = 0 to incoming waves and
arbitrary a j to outgoing waves. For the left boundary this means a1 = a3 = a4 = 0, as for the right
boundary a2 = 0 is required.

Let both the right-hand and the left-hand boundary condition be a linear constant-coefficient system of
general form

LU |x=xΓ
= 0, (9)
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where operator L has the Fourier counterpart L̂(k, `,ω). In [5] the amplitudes a j are shown to satisfy the
system of linear algebraic equations

4

∑
j=1

V̂ja j = 0 , where V̂j = L̂(k j , `,ω)Û j , j = 1,2,3,4.

In the case of 2D Euler equations there are no local nonreflecting boundary conditions. More precisely,
acoustic waves of various incidence angles are inevitably reflected. In turn, entropy and vorticity waves
are not reflected nor generated for a certain class of boundary conditions.

3 FINITE-DIFFERENCE GASDYNAMIC SCHEMES

Edge-Based Reconstruction (EBR) schemes [7] are designed for the nonlinear gas-dynamic equations on
an arbitrary unstructured mesh and form a subcategory in finite-volume methods (FVM). A governing
scheme is based on the conservation laws in flux representation and their subsequent discretization. Yet
another feature of EBR is their vertex-centered structure. Generally, this kind of numerical schemes is
comparatively easy in construction as well as in a posteriori analysis.

The further theory will be developed for the linearized Euler equations and a 2D rectangular spatial
domain with a uniform mesh in each variable

{x j : j = 0, . . . ,Nx , x j− x j−1 ≡ ∆x}×{yl : l = 0, . . . ,Ny , yl− yl−1 ≡ ∆y} .

However, in most cases the presence of y-mesh will not be important. It will be shown below that for
such meshes the EBR schemes acquire a simple and familiar shape.

Boundary conditions for FVM are reduced to setting a flux in normal direction to each boundary edge/face
[8]. In the case of rectangular domain (with any type of mesh), on a boundary, for instance, right side
x = X , the x-flux through this edge is assigned in a special manner. Thus, for a rectangular mesh, the ap-
proximation to x-derivatives in the governing equations should be locally changed, while the derivatives
in t and y remain the same.

The advantage of such class of one-dimensional boundary conditions in multi-D is a simple and cor-
rect treatment of corner zones in a computational domain. Similar approaches to continuous boundary
conditions can be found in [9, 10].

The disadvantage is the neglecting a possibility to improve boundary conditions by introducing appro-
priate tangential derivatives—see Ref. [4, 11, 12]. In this way one obtains local boundary conditions
nonreflecting for vorticity waves in the Euler equations. Nevertheless, some opportunities exist in the
case of discrete schemes.

As we previously mentioned in [3], a mechanism of wave propagation and reflection is distinct in con-
tinuous and discrete fluid models. In the linear case, various numerical schemes typically have two types
of normal modes: regular—similar to those of the Euler equations—and singular—additional scheme
modes.

Centered-difference approximations to hyperbolic systems always possess grid-to-grid (sawtooth) oscil-
lations which do not decay in space. Schemes with upwind differences have only exponentially dumping
modes and such type of solutions are present in a number of centered-difference schemes. When an
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Figure 2: Schematic of the reflection of a regular wave in the form of singular wave

incident regular wave interacts with a boundary, regular and singular waves are generated with certain
amplitudes (Fig. 2). In this case, the reflected fast-dumping scheme waves exist physically within a
narrow area near the boundary (boundary layer).

All the numerical schemes to be considered here require a greater number of boundary conditions than
the differential system. We will start with the linear 1D advection equation and then proceed to the Euler
equations approximations.

3.1 Schemes for the advection equation

The Edge-Based Reconstruction (EBR) schemes are being constructed for the 1D advection equation

∂u/∂t +∂u/∂x = 0, 0 < x < X , t > 0, (10)

and then implemented to a hyperbolic system of equations.

Eq. (10) is replaced, on a uniform mesh, with a discrete equation represented in the flux form as

du j

dt
+

f j+1/2− f j−1/2

∆x
= 0, f j+1/2 = ∑

l
blu j+l , (11)

where bl form a finite set of known coefficients. The particular case of symmetric (centered-difference)
schemes is characterized with relation

bl = b1−l .

In a numerical algorithm the time derivative d/dt is implemented by using some Runge–Kutta method.

Eq. (11) has the general normal-mode solution

u(x j, t; ω) = a1 exp{iωt− ik1x j}+∑
l

aS
l exp{iωt− ikS

l x j} .

The regular mode is similar to the solution of continuous equation (10), and the corresponding wavenum-
ber is

k1 = ω(1+O(ω∆x)p) ,

where p is the approximation order of scheme (11).
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The singular modes are expressed through wavenumbers

kS
m =

i
h

lnqm

(
1+O(ω∆x)

)
,

where q = qm are the roots of f j+1/2 characteristic polynomial

∑
l

blql = 0. (12)

In [3], examples of schemes were illustrated with exact analytic normal-mode solutions. However, for our
further analysis, mostly sufficient will be the leading terms of expressions. This simplifies the procedure
essentially.

Scheme (11) cannot be expressed in standard way at a number of near-boundary nodes. The correspond-
ing fluxes f should be altered. We consider this as the boundary conditions.

Upwind scheme EBR3:

f j+1/2 =
1
6

(
2u j+1 +5u j−u j−1

)
,

du j

dt
+

2u j+1 +3u j−6u j−1 +u j−2

6∆x
= 0. (13)

Polynomial (12) has the two roots q1 and q2, and the general normal-mode solution has the approximate
(leading-term) form

u(x j, t; ω) = a1 exp{iωt− iωx j}+aS
1 q j

1 +aS
2 q j

2 , q1 =

√
33−5

4
, q2 =−

√
33+5

4
.

The stencil of scheme (13) goes beyond the mesh at nodes j = 0,1 and Nx = N. Fluxes f−1/2, f1/2 and
fN+1/2 form a set of boundary conditions.

Quantity fN+1/2 can be extrapolated from values of function u within the domain. The linear extrapola-
tion yields

fN+1/2 =
1
2

(
3uN−uN−1

)
,

duN

dt
+

7uN−8uN−1 +uN−2

6∆x
= 0. (14)

The left-hand fluxes f−1/2 and f1/2 may be set equal to incoming values of u = 0. Accordingly, the
governing equation (13) is replaced at points 0 and 1 as follows:

f−1/2 = f1/2 = 0,
du1

dt
+

2u2 +5u1−u0

6∆x
= 0,

du0

dt
= 0. (15)

Symmetric scheme EBR4:

f j+1/2 =
1
12

(
−u j+2 +7u j+1 +7u j−u j−1

)
,

du j

dt
+

u j−2−8u j−1 +8u j+1−u j+2

12∆x
= 0. (16)

Polynomial (12) has the three roots

q1 =−1, q2 = 4+
√

15, q3 = 4−
√

15.
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The first corresponds to the sawtooth mode and the others describe two fast-dumping exponents. More
precisely, the spurious oscillation kS

1 propagates leftward with speed acceleration of factor 5/3. The
general normal-mode solution to EBR4 scheme has the approximate form

u(x j, t; ω) = a1 exp{iωt− iωx j}+aS
1 (−1) j exp{iωt +(5/3)iωx j}+aS

2 q j
2 +aS

3 q j
3 .

The boundary conditions for EBR4 scheme are needed two on the left-hand edge and two on the right-
hand. As previously, set a flux extrapolation

fN+1/2 =
1
2

(
3uN−uN−1

)
, fN−1/2 =

1
2

(
3uN−1−uN−2

)
(17)

and zero incoming fluxes
f−1/2 = f1/2 = 0. (18)

The correspondent scheme coefficients can be obtained by combining (16) with (17) and (18).

3.2 Schemes for the 2D Euler equations

In upwind schemes for the linearized Euler equations, matrix Cx is split to “positive” and “negative”
parts by means of factorization (7) as follows:

Cx = C+
x +C−x , C+

x = UΛ+
x U−1, Λ

+
x = diag{λ+

j } = diag
(

u+c, 0, u, u
)
,

C−x = UΛ−x U−1, Λ
−
x = diag{λ−j } = diag

(
0, u−c, 0, 0

)
.

Matrix Cy is treated analogously. The governing scheme has the form

∂U
∂t

+C+
x D+

x U +C−x D−x U +C+
y D+

y U +C−y D−y U = 0, (19)

where D+
x is a biased-difference operator such as in Eq. (13) and D−x is its “mirror” counterpart. Symbols

D+
y and D−y denote the corresponding operators on y-mesh.

Centered schemes can be expressed in form (19) as well. However, the symmetry of operators D+
x = D−x

simplifies the governing numerical scheme to

∂U
∂t

+Cx Dh
x U +Cy Dh

y U = 0, (20)

Note that in the formulation of boundary conditions one should return to the general representation (19).

A solution to the finite-difference scheme is expanded over regular and singular modes

U(x,y, t; ω, `) = exp{iωt− i`y}
[ 4

∑
j=1

a jÛ j exp{−ik jx}+∑
j

aS
jÛ

S
j exp{−ikS

j x}
]
.

The regular modes (Û j, k j) are similar to the four physical modes of continuous Euler equations (5). The
number and form of singular modes (ÛS

j , kS
j ) depend on the scheme considered.
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Boundary condition (9) specifies the following equation system for amplitudes

4

∑
j=1

V̂ja j +∑
j

V̂ S
j aS

j = 0, where V̂j = L̂(k j , `,ω)Û j , V̂ S
j = L̂(kS

j , `,ω)ÛS
j . (21)

Nonreflecting boundary conditions for finite-difference schemes will be meant, following Ref. [3], in
the simple (or “weak”) sense. For arbitrary amplitudes of regular outgoing modes, the amplitudes of
incoming regular modes do not depend on them. From the physical point of view, outgoing regular
waves should not generate incoming regular waves. As stated in [3], this implies the structure of Eq. (21)
solution:

a j = 0 for incoming modes, if aS
l = 0, ∀ l,

a j arbitrary for outgoing modes.

For EBR3 scheme (13) the governing system of equations has the form (19):

∂U
∂t

+C+
x D+

x U +C−x D−x U +C+
y D+

y U +C−y D−y U = 0. (22)

Here operators D+
x and D−x are

D+
x u≡

2u j+1 +3u j−6u j−1 +u j−2

6∆x
, D−x u≡

−2u j−1−3u j +6u j+1−u j+2

6∆x
.

For scheme (22), the expansion over 12 normal modes looks in leading terms like

U(xl,y, t; ω, `) = exp{iωt− i`y}
[ 4

∑
j=1

a jÛ j(θ)exp{−ik jxl}

+ ∑
j 6=2

aS1
j Û j(0)ql

1 + aS1
2 Û2(0)q−l

1 + ∑
j 6=2

aS2
j Û j(0)ql

2 + aS2
2 Û2(0)q−l

2

]
.

For the purposes of boundary formulations, rewrite the x-differencing terms of governing scheme (22) in
the flux form(

C+
x D+

x U +C−x D−x U
)∣∣∣

x=x j
=
(

F+
j+1/2−F+

j−1/2

) 1
∆x

+
(

F−j+1/2−F−j−1/2

) 1
∆x

,

where vectors F+
j+1/2 and F−j+1/2 are, according to Eq. (13), constructed as

F+
j+1/2 = C+

x W+
j+1/2 , F−j+1/2 = C−x W−j+1/2 , (23)

W+
j+1/2 =

1
6

(
2U j+1 +5U j−U j−1

)
, W−j+1/2 =

1
6

(
2U j +5U j+1−U j+2

)
. (24)

Now discuss the representation of EBR3 scheme at the boundary nodes. Like in Eqs. (14)–(15), variables
W+ and W− are altered in the following manner:

W+
N+1/2 =

1
2

(
3UN−UN−1

)
, W+

1/2 = 0, W+
−1/2 = 0,

W−−1/2 =
1
2

(
3U0−U1

)
, W−N−1/2 = 0, W−N+1/2 = 0.
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The task is to find vector relations F+(W+) and F−(W−). The characteristic boundary conditions use
the same expressions (23) for j =−1,0,N−1,N, i.e.,

F+
−1/2 = C+

x W+
−1/2 , F−−1/2 = C−x W−−1/2 , F−1/2 = C−x W−1/2 ,

F+
N+1/2 = C+

x W+
N+1/2 , F−N+1/2 = C−x W−N+1/2 , F−N−1/2 = C−x W−N−1/2 .

There are alternative ways—the transformation matrix can be changed. A possible approach is based on
radiation boundary conditions [4, 5]. Here we change the technique, so far as the flux form of boundary
conditions is used. As an example, impose the equations of left- and right-going acoustic waves on the
corresponding sides of the domain:

F+
−1/2 = F+

1/2 = 0 , F−−1/2 = (u− c)W−−1/2 ,

F+
N+1/2 = (c+u)W+

N+1/2 , F−N+1/2 = F−N−1/2 = 0 .

The centered scheme EBR4 from (16) produces the governing scheme (20) for the Euler equations

∂U
∂t

+Cx Dh
x U +Cy Dh

y U = 0, (25)

Dh
x u≡

u j−2−8u j−1 +8u j+1−u j+2

12∆x
.

The solution to (25) has the following approximate expansion over 16 modes

U(xl,y, t; ω, `) = exp{iωt− i`y}
{ 4

∑
j=1

Û j(θ)
[
a j exp{−ik jxl}+aS1

j (−1)l +aS2
j ql

2 +aS3
j ql

3

]}
.

The flux form of x-differencing terms in Eq. (25) looks, according to Eq. (16), like

Cx Dh
x U(x j ,y, t) =

(
Fj+1/2−Fj−1/2

) 1
∆x

, Fj+1/2 = Cx
1
12

(
−U j+2 +7U j+1 +7U j−U j−1

)
.

Near the boundaries a centered-difference scheme becomes similar to a scheme with biased differences.
EBR4 suggests splitting the x-fluxes at nodes j =−1/2,1/2,N−1/2, and N+1/2 as

F−1/2 = F+
−1/2 +F−−1/2 , F1/2 = F+

1/2 +F−1/2 , FN−1/2 = F+
N−1/2 +F−N−1/2 , FN+1/2 = F+

N+1/2 +F−N+1/2 .

These fluxes are associated with the corresponding variables W+ and W− whose form is taken from the
scalar case (17)–(18):

W+
N+1/2 =

1
2

(
3UN−UN−1

)
, W+

N−1/2 =
1
2

(
3UN−1−UN−2

)
, W+

1/2 =W+
−1/2 = 0,

W−−1/2 =
1
2

(
3U0−U1

)
, W−1/2 =

1
2

(
3U1−U2

)
, W−N−1/2 =W−N+1/2 = 0.

The characteristic boundary conditions are:

F+
−1/2 = C+

x W+
−1/2 , F−−1/2 = C−x W−−1/2 , F+

1/2 = C+
x W+

1/2 , F−1/2 = C−x W−1/2 ,

F+
N+1/2 = C+

x W+
N+1/2 , F−N+1/2 = C−x W−N+1/2 , F+

N−1/2 = C+
x W+

N−1/2 , F−N−1/2 = C−x W−N−1/2 .
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The acoustic radiation boundary conditions take the form:

F+
−1/2 = F+

1/2 = 0 , F−−1/2 = (u− c)W−−1/2 , F−1/2 = (u− c)W−1/2 ,

F+
N+1/2 = (c+u)W+

N+1/2 , F+
N−1/2 = (c+u)W+

N−1/2 , F−N+1/2 = F−N−1/2 = 0 .

4 CONCLUSION

Finite-volume numerical schemes admit a variety of artificial boundary conditions. For EBR schemes
with centered differences there exist boundary formulations which yield weak reflection of oblique
waves. For biased-difference EBR schemes, boundary conditions are possible to diminish essentially
the spurious reflection. The theoretical results in practice can be generalized to more complex models,
including nonuniform or unstructured meshes and nonlinearity.
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