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Abstract. The fluid-structure interaction (FSI) problem has been extensively studied, and many papers
and books are available in the literature on the subject. In this work, we consider some optimal FSI pres-
sure boundary control applications by using a membrane model derived from the Koiter shell equations
where the thickness of the solid wall can be neglected and the computational cost of the numerical prob-
lem reduced. We study the inverse problem with the aim of achieving a certain objective by changing
some design parameters (e.g. forces, boundary conditions or geometrical domain shapes) by using an
optimal control approach based on Lagrange multipliers and adjoint variables. In particular, a pressure
boundary optimal control is presented in this work. The optimality system is derived from the first-order
optimality condition by taking the Fréchet derivatives of the Lagrangian with respect to all the variables
involved. This system is solved by using a finite element code with mesh-moving capabilities. In or-
der to support the proposed approach, we perform numerical tests where the pressure on a fluid domain
boundary controls the displacement that occurs in a well-defined region of the solid domain.

1 Introduction

Recently, the numerical simulations of fluid-structure interaction (FSI) problems have become more and
more popular, and many papers and books have been published on this topic (see [1, 2, 3, 4, 5]). The
applications of the numerical modeling of FSI systems are various, raging from wind turbines and aircraft
to hemodynamics. In FSI problems the fluid flow changes the tensional state of a solid structure that is
left free to move and the solid deformation has an important effect on the fluid flow.

Several techniques have been developed to reduce the computational cost of FSI problems. In this re-
spect, this work is based on the reduction of the dimensionality of the solid, through a model built
on the Koiter shell equations [6]. In order to couple the fluid and the structure domains, the Koiter
shell equations are embedded into the fluid equations as a Robin boundary condition [7]. The coupling
fluid-structure conditions are automatically treated implicitly, so the stability of this numerical scheme is
preserved. This model has many applications in cases where a fluid interacts with a thin membrane that
deforms mainly in the normal direction.
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In the last years optimization problems have gained popularity among the research community by using
gradient-based adjoint methods, see [8, 9]. For adjoint FSI optimization the interested reader can see [10,
11, 12, 13] and the references therein. In this paper, we solve a stationary displacement matching problem
where the control variable is the fluid boundary pressure using the Lagrangian multipliers method to
obtain the optimality system. The rest of this paper is organized as follows. In Section 2 we introduce the
mathematical model describing our multi-scale FSI problem and in Section 3 we derive the optimality
system arising from the minimization of the augmented Lagrangian is presented. In Section 4 some
simple two-dimensional numerical results are then reported.

2 Physical model

In this section we introduce the mathematical model for the FSI problem. We consider the classic Navier-
Stokes equations to model the fluid motion, and a shell model to describe the solid behavior. In particular,
the structural model is based on the Koiter shell approach that considers the model of an elastic thin
membrane. We introduce now some functional spaces defined on the domain Ω used in the rest of the
paper: we denote with L2(Ω) the space of square integrable functions, and with Hs(Ω) the standard
Sobolev space with norm ‖ · ‖s. Moreover, we denote with Hs

0(Ω) the space of all functions in Hs(Ω)
that vanish on the boundary of Ω.

The Koiter shell approach relies on the assumptions that the structure displacements are small and normal
to the shell surface. The domain of the structure is denoted by Γs, the displacement and the external
surface force vectors by η and fs, respectively [7, 14]. The weak form of the considered shell equation
results ∫

Γs

ρshs
∂2η

∂t2
·ψ dΓ +

∫
Γs

hsE
αβλδγαβ(η)γλδ(ψ) dΓ =

∫
Γs

fs ·ψ dΓ , (1)

for appropriate test functions ψ belonging to a functional space to be determined on the basis of the
imposed boundary conditions. Furthermore, ρs and hs are the density and the thickness of the shell, and
Eαβλδ and γαβ are the elasticity and the change of metric, respectively.

In this work negligible bend, shear stresses, and linear elastic constitutive law with a homogeneous and
isotropic material are considered [6]. Under these hypotheses the structure model (1) reduces to a simple
scalar equation. The dimension of the structure is then reduced by one. So the following simplified
model is obtained

ρshs
∂2η3

∂t2
+ βη3 = fs on Γs ,

η3|t=0 = η0 ,
∂η3

∂t

∣∣∣
t=0

= ηv on Γs ,

(2)

where ρf and u are the density and the velocity vector of the fluid, respectively, and η3 represents
the displacement normal to the reference solid surface. In particular, when one considers cylindrical
geometries of radius R, it can be demonstrated that [7]

β =
hsE

1− ν2

1

R2
, (3)
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The fluid is modeled as Newtonian, homogeneous and incompressible, described in ALE form as [2, 15]

ρf
∂u

∂t

∣∣∣∣
A

+ρf [(u−w) · ∇]u−∇ · σf = 0 on Ωf , (4)

where ρf and u are the density and the velocity vector of the fluid. Moreover, σf is the Cauchy stress
tensor of the fluid written as σf = −pI + µ(∇u + ∇uT ), µ and p are the dynamic viscosity and the
pressure of the fluid, respectively. The system of equations (4) is completed with appropriate boundary
conditions. The fluid domain is Ωf , and w is the ALE velocity that determines step by step the position
of the nodes of the fluid domain as xf (t) = x0 +

∫ t
0 wdτ .

This shell model allows us to reduce by one the dimension of the solid, so the structural equations can
be reduced to a boundary condition on Γs for the fluid problem. The two sub-systems (4) and (2) can be
coupled by imposing σf · n− fs = 0 on Γs. We define now the functional space V 0 = {φ ∈ H1(Ωf ) :
φ|ΓD,f

= 0}, where ΓD,f are the boundaries of Ωf where a Dirichlet condition is imposed. In order to
satisfy the continuity of the test functions φ · n = ψ over the interface surface Γs in the coupled system,
we introduce the following functional space

W 0 = {(φ, ψ) ∈ V 0 ×H1(Γs) : φ · n = ψ over Γs} . (5)

Now we can derive the weak form of the coupled final system

ρf

(∂u
∂t

∣∣∣∣
A
, φ
)

+ ρf

(
[(u−w) · ∇]u, φ

)
+

∫
Ωf

σf : ∇φ dx−
∫

ΓN,t

h · φ dΓ

+

∫
Γs

ρshs
∂2η

∂t2
ψ dΓ +

∫
Γs

βηψ dΓ = 0 ,

(∇ · u, q) = 0 ,

(6)

for all (φ, ψ) ∈ W 0, q ∈ L2(Ωf ). A finite element technique is used to obtain the discrete weak
formulation of (6). Following the work in [7], we treat explicitly the position of the fluid domain, and
consider an implicit discretization of the coupling conditions. With this approach, the structural equation
can be incorporated into the fluid equations as a boundary condition (Robin scheme).

However, this work is based on the stationary solution of the presented system. Under this hypothesis,
the system (6) becomes

ρf

(
(u · ∇)u, φ

)
+

∫
Ωf

σf : ∇φ dx−
∫

ΓN,t

h · φ dΓ +

∫
Γs

βηψ dΓ = 0 ,

(∇ · u, q) = 0 .

(7)

3 Optimality system

In this work, we are interested in solving a given shell deformation by controlling the fluid pressure over
a boundary. For this purpose, we start introducing the following objective functional

J (η, p) =
1

2

∫
Γd

‖η − ηd‖2 dΓ +
λ

2

∫
Γc

p2 dΓ , (8)
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where the first term is the distance in norm between the actual displacement and the desired value over
the controlled boundary Γd, and the second term is a standard Tychonov regularization term that limits
the L2-norm of the fluid boundary pressure pc, i.e. the control variable. The regularization parameter
λ weights the importance of the two terms over the cost functional. In general, too much regularization
leads to smoother but less effective controls, while a lack of regularization may cause numerical issues
since usually the optimal solution lies in distributional spaces.

We now introduce the following augmented Lagrangian functional L, that is obtained by adding to the
objective functional J the FSI state equations (7) multiplied by a set of Lagrange multipliers. In the
following, we refer to the Lagrange multipliers as adjoint variables.

L(η,u,ua, p, pa,Γ) = J (η, p)− (ρf (u · ∇)u, ua) + (p, ∇ · ua)− (pa, ∇ · u)

− µ(∇u, ∇ua) +

∫
Γ
µ(∇u · n) · uadΓ−

∫
Γ
(pn) · uadΓ−

∫
Γt

ua · (βη − fs − τn)dΓ ,
(9)

where we integrate by parts the contributions of the fluid stress tensor σf . The surface integrals can be
rewritten by substituting the definition of τn. The stationary points of the Lagrangian functional can be
found by setting to zero the Fréchet derivatives taken for all the problem variables. When the derivatives
are taken with respect to the adjoint variables the weak form of the state system (7) is recovered as well
as the boundary conditions. By taking the derivatives in the direction δp we get

DL
Dp

δp = (∇ · ua, δp)−
∫

Γ−Γt

(ua · n)δp dΓ + +

∫
Γc

λp δp dΓ = 0 ∀δp ∈ L2(Ω) . (10)

By considering the volume integral we get the following continuity equation for the adjoint velocity

∇ · ua = 0 on Ω , (11)

while, with the surface contributions, we recover the control equation over the controlled boundary Γc∫
Γ−Γt

(ua · n)δp dΓ−
∫

Γc

λp δp dΓ = 0 ∀δp ∈ L2(Ω) ⇒ p =
ua · n
λ

on Γc , (12)

and the boundary conditions on ΓD∫
Γ−Γt−Γc

(ua · n)δp dΓ = 0 ∀δp ∈ L2(Ω) ⇒ ua · n = 0 on ΓD , (13)

On ΓN we have δp = 0 since we prescribe Neumann boundary conditions with fixed pressure.

For δη we have

DL
Dη

δη = −
∫

Γt

ua · β δηdΓ +

∫
Γd

(η − ηd) · δηdΓ = 0 ∀δη ∈W 0 . (14)

Recalling that Γd ⊂ Γt we obtain the following boundary conditions for the adjoint system

uaβ − (η − ηd) = 0 on Γd ,

uaβ = 0 on Γt .
(15)
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We collect δu terms and integrate by parts to obtain

ρf ([(δu · ∇)u + (u · ∇)δu] , ua)− (∇pa, δu)− µ(∇2ua, δu) +

∫
Γ
(pan) · δu dΓ

−
∫

Γ−Γt

µ(∇δu · n) · ua dΓ +

∫
Γ
µ(∇ua · n) · δu dΓ = 0 ∀δu ∈W 0 .

(16)

The strong form of the adjoint velocity reads

ρf (∇u)T · ua + ρf (u · ∇)ua −∇pa − µ∇2ua = 0 on Ω , (17)

with boundary conditions

ua = 0 on ΓD, τna = 0 on ΓN ∪ Γt . (18)

Moreover we have to consider the contribution on L given by the motion of the boundary Γt along the
direction δη

DL
DΓ

δη =

∫
Γt

β(∇ua · n + χua) · δη dΓ = 0 ∀δη ∈W 0 , (19)

where χ represents the shell curvature. Under the hypothesis of small deformation we can safely neglect
the terms where χ appears. We also have that DLDΓ δη = 0 since the term with ua is defined on the surface
Γt, and a constant extension of it towards the normal direction to the surface leads to a null normal
gradient of this term.

In short the optimality system consists of the state system (7), the control equation (12), the adjoint
system (11)-(16) and the boundary conditions (13)-(15)-(18). Since the optimality system doubles the
state variables the use of a one-shot method is not appropriate and we use a segregated approach for the
solution of the state, adjoint, and gradient equations. An advantage of our monolithic aproach is that we
can reuse the same solver for both the solution of the state (7) and adjoint systems (11)-(16) with few
modifications.

4 Numerical results

In this section, we report some numerical results obtained by using the mathematical model shown in the
previous sections. We consider a rectangular domain Ω = {(x, y) : x ∈ [0, 0.1], y ∈ [0, 0.3]} as shown in
Figure 1 on the left. The fluid has density ρf = 1000 kg/m3 and dynamic viscosity µ = 100 Pa · s. For
the solid, we consider β = 60kPa/m and thickness hs = 0.0075 m. For all the presented simulations,
the domain was uniformly divided with a regular rectangular mesh.

We implement a standard steepest descent algorithm in the multigrid finite element code FEMuS, that
relies on PETSc libraries for the solution of the multigrid discretized linear solver with MPI paralelliza-
tion.

4.1 Plane channel test

In this first test, the fluid flows vertically from the bottom to the top. The region of the boundary Γ2

represents a solid wall with no-slip boundary condition (u = 0) and Γ3 is the membrane where we
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impose the generalized Robin boundary condition (2). In Figure 1, we also report the results obtained
simulating the system without control and in steady-state. The displacement of the points in the domain
(center) and the pressure (right) are shown. The pressure presents a linearly decreasing trend from the
bottom, where p = 6000 Pa is imposed, to the top, where we fixed p = 0 Pa, and it is shown with lines
of iso-magnitude.

0
.3
m

0.1m

Γ1

Γ2 Γ3

Γ4

Ω xd

xd1

xd2

Figure 1: Geometry and controlled region used in the plane channel (with Ωd = xd) and airbag (with Ωd =
xd1 ∪ xd2) tests (left). Deformation η (center) and pressure p (right) in Ω in steady state without control.

The simulations aim to control the displacement of the point xd of the membrane, along the x-direction,
optimizing the pressure of the fluid on Γ1. This point, without control, shows a displacement η =
0.015824 m. The objective of the optimization is to reduce ηd to 0.005 m, changing the pressure of the
fluid on Γ1. The objective functional of the problem reads

J (η, p) =
1

2
(η|xd

− ηd)2 +
λ

2

∫
Γ1

p2 dΓ . (20)

We solve multiple simulations with different regularization parameter λ. The results are presented in
Table 1. Note that the smaller is λ, the closer the displacement of the controlled point xd is to the
desired one. This result is expected, since with larger λ the contribution of the regularization term in
the minimization of the functional is more relevant. This is introduced in the functional in order to limit
the control parameter p to the space of square integrable functions. Therefore, with larger λ we find
more regular optimization parameter p, but less precise displacement field η. In Table, we also report the
number of iterations needed for the implemented algorithm to find the optimal solution.

We focus now on the controlled inlet pressure field updated through the formula

pic = pi−1
c − ri,j

(
pi−1
c − uia · n

λ

)
. (21)
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Table 1: Objective functional J , displacement η and number of iteration obtained with different λ values.

λ J (η, pc) ηopt[m] Iterations

∞ 5.85839 · 10−05 0.015824 −
10−08 2.19246 · 10−06 0.002906 4
10−09 5.54438 · 10−09 0.004895 8
10−10 2.18941 · 10−10 0.004979 10
10−11 6.10506 · 10−12 0.004997 12
10−12 3.86734 · 10−15 0.005000 26

In fact, depending on the regularization parameter, different inlet pressure fields can be obtained. In
Figure 2, the controlled pressure field along the boundary Γ1 is reported for various values of λ. Note
that the choice of the regularization parameter strongly affects the controlled pressure field. With weak
regularization, the objective term dominates in the functional and the pressure attains large values, thus
effectively controlling the membrane displacement. In Figure 2 it is also reported the reference starting
pressure. The comparison between the uncontrolled field and all the controlled pressure fields show
that the control strongly affects the solution on Γc = Γ1 in order to obtain the desired displacement ηd.
Moreover, in Figure 2 on the right the velocity field for λ = 10−15 is reported. Note that an inversion of
the fluid flow in the inlet occurs, needed for reducing the displacement of the point xd.

0 0.02 0.04 0.06 0.08 0.1
0

1,000

2,000

3,000

4,000

5,000

6,000
reference

x[m]

p
[P
a
]

λ = 10−8

λ = 10−9

λ = 10−10

λ = 10−11

Figure 2: Plane channel test: control pressure p on Γ1 with different regularization parameters (left). The dotted
line represents the pressure in the reference case with no control (i.e. λ = ∞). On the right: velocity u in Ω for
λ = 10−15.
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4.2 Airbag test

We consider the same geometry of the previous test, togheter with airbag-like boundary conditions: we
impose a no-slip condition on Γ1 ∪Γ4 and the Koiter boundary condition on Γ3. The controlled pressure
is imposed on Γc = Γ2, where we initially impose p = 300 Pa. We also consider all the physical
properties introduced above. In this framework we want to control the displacement field on the two
different points, xd1 and xd2 (see Figure 1, left).

Observing the results obtained in a steady state without control, shown in Figure 3, one can see that the
problem is symmetric since we are neglecting the buoyancy forces. The two points xd1 and xd2 present
a displacement η = 0.001152 m and the pressure in the channel is almost constant everywhere.

Figure 3: Airbag test: behavior of the displacement η (center) and the pressure p (right) in the reference case with
no control. The points xd1 and xd2 are highlighted.

The goal is to control the displacement of the two points xd1 and xd2 , optimizing the pressure of the fluid
on the boundary Γ2. In order to break the symmetry of the problem, we choose a desired displacement
of point xd1 equal to ηd1 = −0.01 m and a desired displacement of xd2 equal to ηd2 = 0.01 m. The
functional associated with the presented numerical problem reads

J (η, pc) =
1

2
(η|xd1

− ηd1)2 +
1

2
(η|xd1

− ηd2)2 +
λ

2

∫
Γ2

p2
c dΓ . (22)

Many simulations have been done for different regularization parameter λ. In Figure 4, the control
parameter p obtained with different values of λ is reported. Note that the trend obtained with λ = 10−10

shows slightly different values compared to the other two reported cases.

The reason of that is explained in Table 2, where the values of the functional J and of the displacements
on xd1 and xd2 are reported for all the inspected λ values. In fact, we can observe that the displacements
obtained with λ = 10−8 and λ = 10−12 are similar and we are achieving the objective displacement
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Table 2: Objective functional J , displacement η and number of iteration obtained with different values of λ.

λ J (η, pc) η1opt[m] η2opt[m] Iterations

∞ 1.01327 · 10−4 0.001152 0.001152 −
10−8 2.21289 · 10−5 −0.010695 0.005348 4
10−10 1.39504 · 10−5 −0.011603 0.013374 6
10−12 2.54909 · 10−5 −0.010032 0.004951 4

ηd2 from a lower value of it. On the contrary, if we consider the results obtained with λ = 10−10, we
see that we are getting to the objective from a larger displacement. In fact, the functional has a different
local minimum and the algorithm in this case moved to a different one. In Figure 4, we also reported the

0 0.1 0.2 0.3
−20,000

−10,000

0

10,000

20,000

30,000

y[m]

p
[P
a
]

λ = 10−8

λ = 10−10

λ = 10−12

Figure 4: Pressure p on Γ2 = Γc with different values of λ (left) and pressure p in Ω with λ = 10−10 (right).

pressure of the fluid in Ω for λ = 10−10. Again, note that the value of λ affects the pressure field to be
imposed on the control domain Γ2. In this case, the resulting velocity implies an inlet of fluid from a
region of Γ2 close to the point xd2 of which we want to increase the displacement, and an outlet of the
fluid in a region of Γ2 close to the point xd1 , of which we want to reduce the displacement. In general,
this case is an ill-posed control problem, due to various local minima close to each other.

Conclusions

In this work a mathematical and numerical method have been proposed to solve an optimal boundary
control problem applied to a fluid-structure interaction model based on the Koiter’s equation. Using this
formulation, the equations for the solid become boundary conditions for the fluid equations reducing the
computational cost of the numerical simulation. Then, we have obtained the optimality system applied
to the pressure boundary control problem applied to the introduced Koiter FSI model to find the required
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memebrane displacement. We have introduced the steepest descent algorithm and solved the proposed
control problem with a finite element code. Some simple numerical results have been presented to show
the robustness of the multi-scale mathematical model.
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