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1-4 Avenue du Bois Préau, 92852 Rueil-Malmaison

alexis.cousin@ifpen.fr, martin.guiton@ifpen.fr, miguel.munoz-zuniga@ifpen.fr

2 CMAP, Ecole Polytechnique
Route de Saclay, 91120 Palaiseau

josselin.garnier@polytechnique.edu

Key words: RBDO, Extreme Value Theory, Adaptive Kriging, Monte Carlo, Floating Offshore Wind
Turbine, Fatigue

Abstract. In this paper, we seek to minimize the cost of the anchoring system of a floating offshore wind
turbine under reliability constraints. Taking into account the uncertainties on the model, on the resistance
threshold and on the environmental conditions implies constraints expressed as probabilities depending
on random vectors and a piecewise stationary Gaussian process. The main difficulty of the studied prob-
lem is to compute these probabilities since reliability methods require many calls to the simulator of the
system. We propose in this paper a two-step methodology allowing to solve the optimization problem
with a reasonable number of calls to the simulator. First, we exploit the properties of the problem to
reformulate the constraints into easier to compute ones. Then we propose a new approach based on
adaptive kriging well suited to the reformulated problem: AK-ECO.

1 INTRODUCTION

Floating offshore wind turbines (FOWT) enable to install high power turbines with favorable wind con-
ditions. Their economic feasibility requires an optimization of the additional cost due to the floater
equipment. The goal of this paper is to propose an innovative cost-efficient optimization approach for
configurating the mooring system of a modified version of the NREL 5MW-DeepCWind FOWT [1]. The
mooring system must limit the floater movements to ensure the turbine production, avoid compression in
the mooring lines and withstand the damage caused by fatigue. The resulting constraints inherit the ran-
domness of the marine conditions, of the material properties and model parameters. Therefore, we face
an optimization problem with a deterministic cost function and probabilistic constraints with very high
confidence levels (10−4 for annual failure probability in [2]). A naive approach such as the Monte Carlo
method is not feasible due to the time required in FOWT simulations since several thousand simulations
are required to estimate a deterministic fatigue life [3].

To overcome this difficulty, we propose a methodology that takes into account the nature of the con-
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straints to solve the problem within a reasonable computational time. First, we use the Extreme Value
Theory to reformulate the surge and tension constraints. The computations are performed in the fre-
quency domain [4] and the fatigue damage is estimated with the spectral Dirlik empirical formulae [5].
In order to determine the feasibility region defined by the probabilistic constraints, metamodels are then
built and sequentially enriched according to a new procedure introduced in this paper.

We emphasize that the proposed methodology is based on two important simplifications. First, in order
to work in the frequency domain, the movements of the structure are solution of a linearized equation of
movement and only the first order hydrodynamic loads are taken into account. Moreover, even though
the wind speed variations may contribute to the mooring line fatigue, we consider here only constant
wind forces on the structure for simplicity.

2 PROBLEM FORMULATION

We seek to minimize the cost of the mooring system of a FOWT while respecting reliability constraints.
We thus face an optimization problem whose characteristics are presented in this section.

2.1 Design variables and design space

The cost of the mooring system and the constraints depend on three design variables: the change d1 in
length of the mooring line from the nominal value of 841.2m (its domain is [−2,2] (in m)), the lineic
mass d2 ∈ [70,180] (in kg/m), the position d3 of the connection of the lines to the columns of the floater
(taking values between 0 and 1 which respectively correspond to the connection at the bottom and at the
top of the columns). We denote d = (d1,d2,d3) and the design space Ωd = [−2,2]× [70,180]× [0,1].

2.2 Environmental conditions

The movements of the structure are determined from the environmental loads occurring during the con-
sidered period [0,T ] (T is one year) and in particular wave loading. For a particular sea state defined
below, which lasts for three hours, the sea elevation is modeled by a stationary stochastic Gaussian pro-
cess whose statistics are determined by its spectral density. In this study, we consider the JONSWAP
spectral density [6] which is characterized by three long term parameters: the significant wave height hs,
the peak period tp and the mean wind speed u.

To account for the wave distribution, the period [0,T ] is decomposed into nT intervals Ii = [(i−1)∆T, i∆T ],
(i = 1, . . . ,nT ) where ∆T is three hours. At each interval Ii, (hs, tp,u)i define a sea state with a process of
sea elevation. Moreover they are the realizations of the random vector (Hs,Tp,U)i with known joint law.
In this work, for simplicity and without loss of generality, we consider only seven possible outcomes of
(Hs,Tp,U)i denoted (h j

s , t
j
p,u j), ( j = 1, . . . ,7) with probability p j (with ∑

7
j=1 p j = 1). Those outcomes

were selected to represent the long term parameters joint distribution as best as possible. Finally, the
random vectors (Hs,Tp,U)i, (i = 1, . . . ,nT ) are i.i.d. We denote η(hs,tp,u)i the stationary process on the
i-th interval, XLT the sequence of random triplets {(Hs,Tp,U)i, i = 1, . . . ,nT} and ηxLT the piecewise
stationary process equal to η(hs,tp,u)i on each interval Ii.

2.3 Surge, tension and fatigue

At the end of the optimization problem, the chosen design variables must restrict the platform move-
ments: the horizontal shifting of the structure (called surge) must be less than a conservative threshold
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smax of 5% of the water depth. Tension in the lines must stay positive. Accumulated fatigue damage at
the top of each line must remain below a resistance R.

For a fixed sea state (hs, tp,u)i, the movements of the platform and the lines are solutions of a linearized
movement equation in which the forces come from environmental loads. The surge and tension in each
line can be seen as outputs of linear filters with the sea elevation η(hs,tp,u)i as input. The surge Si and
tension Ti are the convolution of a response function (respectively hS and hT ) and η(hs,tp,u)i :

Si(t) = hS ∗η(hs,tp,u)i(t), Ti(t) = hT ∗η(hs,tp,u)i(t). (1)

Taking into account the different sea states, the surge and the tension on [0,T ], denoted S and T , are
defined as the sum of solutions of Equation 1 on each interval Ii as follows:

S(t) =
nT

∑
i=1

Si(t)1Ii(t), T (t) =
nT

∑
i=1

Ti(t)1Ii(t). (2)

Furthermore, the accumulated damage F[0,T ] in the line during the time interval [0,T ] can be estimated
from the variation of the tension process. It is a positive scalar and failure is considered when it exceeds
R. We will see in section 3.3 how this quantity can be directly estimated from the first spectral moments
of the tension, following a frequency domain simulation.

To simplify the notations, in the presentation of the problem and of our methodology, we consider only
the tension and the fatigue at the top of one mooring line since the methodology is similar for each line.
However, in the resolution we consider them for each of the three mooring lines.

2.4 Model and fatigue threshold uncertainties

To account for the lack of knowledge on certain parameters, uncertainties are considered on:

• the wave azimuth which is represented by a random variable Xp1 uniformly distributed between
plus and minus 10◦ around the wind turbine axis;

• two quadratic damping coefficients for the surge and the pitch of the floater, denoted Xp2 and Xp3 ,
to account for the approximation of the fitting method from decay tests [7]. Each of these random
variables follows a uniform law respectively on [105,106] (in N.s2.m−2) and [3× 1010,7× 1010]
(in N.m.s2.rad−2);

• the y-intercept of the fatigue law Xd2 accounting for experimental scattering. It follows a log-
normal distribution with parameters σd2 = 0.8 and µd2 which depends on the lineic mass d2 ac-
cording to a relation described in [8] ;

• the threshold resistance R for approximation of time independent Palmer Miner damage approach.
It is a log-normal distribution of parameters µR = 1 and σR = 0.3 [9].

All of these variables are independent and Xp denotes the random vector such that Xp = (Xp1 ,Xp2 ,Xp3).
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2.5 Optimization problem formulation

Taking into account all the sources of uncertainty, we decided to consider probabilistic constraint and we
end up with the RBDO problem (3) under study in this paper.

mind∈Ωd cost(d) such that

P
(

max
[0,T ]

S(d,Xp,ηXLT , t)> smax

)
< 10−4

P
(

min
[0,T ]

T (d,Xp,ηXLT , t)< 0
)

< 10−4

P
(
F[0,T ] (d,Xp,Xd2 ,ηXLT ))> R

)
< 10−4

(3)

The main difficulty to solve this problem is to evaluate at each iteration of the optimization algorithm the
low failure probabilities which require many simulations, each of them giving a realization of S , T and
F[0,T ].

3 CONSTRAINTS REFORMULATION

We propose in this paper a new formulation based on Extreme Value Theory, which is not to our knowl-
edge proposed in the RBDO methods of the literature.

3.1 Properties of Surge and Tension processes

For each interval Ii, the process Si is defined by Equation 1. As η(hs,tp,u)i is a stationary Gaussian process,
it results from Equation 1 that Si is also stationary and Gaussian. Furthermore, suppose that (hs, tp,u)i

takes the value (h j
s , t

j
p,u j), then the spectral moments of the surge process on Ii can be computed from the

spectral density of η
(h j

s ,t
j
p,u j)

and the transfer function HS (which is the Fourier transform of hS ). Denoting
mn

S its spectral moment of order n on Ii, this relation is given by:

mn
S (h

j
s , t

j
p,u

j) =
∫
R

ω
n|HS (ω)|2ψ j(ω)dω. (4)

In Equation 4, ψ j is the spectral density of η
(h j

s ,t
j
p,u j)

. The standard deviation of the surge process is the
square root of its 0-th spectral moment and will be denoted σS .

For the same reasons, Ti is also a stationary Gaussian process and its spectral moments are computable
from the spectral density of η

(h j
s ,t

j
p,u j)

and the transfer function HT .

The mean of the surge and tension processes, denoted respectively µS and µT , are computed by the static
simulation (see [4] for more details).

These properties will be useful for the reformulation of each constraint.

3.2 Constraints of extreme value type

An important theorem from the Extreme Value Theory states that for a standardized stationary Gaussian
process ζ and under certain conditions on its spectral density detailed in [10], there exist two deterministic
functions aT and bT which depend on T and the second spectral moment of ζ such that
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P
(

aT

(
max
[0,T ]

ζ(t)−bT

)
≤ α

)
→ exp

(
−exp−α

)
as T → ∞. (5)

Furthermore, we have seen in the section 3.1 that the process Si is stationary and Gaussian on an interval
of length ∆T . Then, by standardizing Si of mean and standard deviation µS and σS , we can apply (5) to
obtain

P
(

max
[0,∆T ]

Si(t)> smax

)
' F

(
ea∆T (b∆T−

smax−µS
σS

)
)

(6)

with F(x) = 1− exp(−x).

Using (6) and with calculations that we will not detail in this paper, for a fixed xp, the probability that S
exceeds smax over the period [0,T ] can be approximated by

F

(
7

∑
j=1

exp

(
aT p j

(
bT p j(d,xp,h j

s , t
j
p,u

j)−
smax−µS (d,xp,h

j
s , t

j
p,u j)

σS (d,xp,h
j
s , t

j
p,u j)

)))
(7)

where p j is the probability of occurrence of the j-th sea state
(

h j
s , t

j
p,u j

)
.

The same reasoning is applied to reformulate the tension constraint.

3.3 Fatigue estimation with the Dirlik method

As we use frequency domain simulations, the contribution of a sea state to damage is not estimated
with the usual RainFlow-Miner’s rule combination, but with the semi-empirical Dirlik formula [5]. This
formula estimates the distribution of tension cycle ranges from the tension process spectral moments.
For a design d and fixed uncertainties xp and xd2 , only the four first spectral moments of the process are
required to obtain the accumulated damage during the interval Ii:

E
[
F[0,T ]

(
d,xp,ηh j

s ,t
j
p,u j

)]
'

D[0,T ](d,xp,h
j
s , t

j
p,u j)

xd2

. (8)

The expression of D[0,T ] is analytically given from the spectral moments of the tension process [11].

3.4 Problem reformulation

Using the Extreme Value Theory for the two first constraints and the Dirlik approach for the fatigue we
obtain a new formulation of the constraints given in (9) equivalent to the initial constraints in (3).
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EXp

F

∑
7
j=1 e

aT p j (bT p j (d,Xp,h
j
s ,t

j
p,u j)− smax−µS (d,Xp ,h

j
s ,t

j
p ,u

j)

σS (d,Xp ,h
j
s ,t

j
p ,u j)

)

 < 10−4

EXp

F

∑
7
j=1 e

aT p j (cT p j (d,Xp,h
j
s ,t

j
p,u j)− µT (d,Xp ,h

j
s ,t

j
p ,u

j)

σT (d,Xp ,h
j
s ,t

j
p ,u j)

)

 < 10−4

EXp

[
Φ

(
ln(T ∑ j p jD[0,T ](d,Xp,h

j
s ,t

j
p,u j))−c1(d2,µR)

c2(d2,σR)

)]
< 10−4

(9)

Here, we recall that aT p j ,bT p j ,cT p j are functions that only depend on T , p j and the second spectral
moments of the surge and tension process for the j-th sea state. The evaluation of the means and standard
deviations µS ,µT ,σS ,σT is described in section 3.1. The calculation of D[0,T ] only requires the spectral
moments of the tension process. And finally c1 and c2 are constants depending on d2, µR and σR that
result from the integration of the uncertainties on Xd2 and R.

We point out that, for a design d, a fixed variable xp, we only need the spectral moments of the surge and
tension process for each sea state to evaluate the quantities into square brackets in (9). These statistical
properties depend on the spectral density of the sea elevation (which is known) and the transfer functions
HS and HT which only require one call to the expensive simulator to be obtained (for each d and xp).
It is much more effective to solve the problem with the new formulation since to evaluate the quantities
into brackets of the initial problem (3), we need to sample many realizations (and call as many times the
simulator) of the surge and tension processes for each d,xp,h

j
s , t

j
p,u j. We notice that the new constraints

only depend on the uncertainties on the random vector Xp. So the reformulation makes it possible to go
from time-dependent constraints to time-independent ones.

However, it is still time consuming to estimate the reformulated constraints of (9) with a Monte Carlo
method. Over the last decades, many approaches have been developed to solve optimization problems
with failure constraints among which methods based on an adaptive kriging (AK) strategy [12, 13, 14].
These methods rely on building a kriging model of the performance functions and enrich this metamodel
with a learning criterion. Nevertheless, all these methods require constraints expressed as probabilities
while the constraints are expressed as expectations in our reformulation approach, as seen in (9). This
particularity has motivated the implementation of a new AK method called AK-ECO for ”Adaptive
Kriging method for Expectation Constraint Optimization” that we introduce in the next section.

4 RESOLUTION OF THE REFORMULATED PROBLEM

Given that evaluating the reformulated constraints expressed in (9) with Monte Carlo is still time consum-
ing, a metamodel is built to replace the expensive functions of each constraint. The AK-ECO procedure
consists in carrying out cycles of optimization in which a first phase of local enrichment of the meta-
models is performed followed by a resolution of the reformulated problem using Monte Carlo with the
refined metamodels.
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4.1 Metamodel strategy

Let us consider the first reformulated constraint. We define the function MS such that:

MS (d,xp,h j
s , t

j
p,u

j) = aT p j

(
bT p j(d,xp,h j

s , t
j
p,u

j)−
smax−µS (d,xp,h

j
s , t

j
p,u j)

σS (d,xp,h
j
s , t

j
p,u j)

)
. (10)

Since one evaluation of MS requires a call to the simulator, we can replace MS by a metamodel to
speed up the evaluation of the first constraint. Kriging models have been intensively used in reliability
analysis because they not only provide a prediction but also an information about the quality of this
prediction. In fact, a kriging model of MS is expressed at a point (d,xp,h

j
s , t

j
p,u j) as a normal random

variable representing the uncertainties of prediction of MS . Its mean is used as predictor and its standard
deviation as a indicator of the precision of the metamodel at this point.

The calibration of the kriging model of MS is carried out on the space Ωd ×ΩP×ΩLT of dimension 9
where ΩP and ΩLT respectively refer to the sample spaces of Xp and (HS,Tp,U). Furthermore, the triplet
(HS,Tp,U) have 7 possible outcomes that are well ordered and this order is conserved when we replace
the triplet outcomes by the corresponding outcome of Hs. Doing so, we reduced the dimension of ΩLT

from 3 to 1. Thus the metamodel is actually built in a 7-dimensional space.

For the second and third constraints, the metamodels will apply to the functions MT and MD defined by
Equations 11-12.

MT (d,xp,h j
s , t

j
p,u

j) = aT p j

(
cT p j(d,xp,h j

s , t
j
p,u

j)−
µT (d,xp,h

j
s , t

j
p,u j)

σT (d,xp,h
j
s , t

j
p,u j)

)
(11)

MD(d,xp,h j
s , t

j
p,u

j) = D[0,T ](d,xp,h j
s , t

j
p,u

j) (12)

We notice that the three metamodels are carried out on the same space and that one call to the simulator
provides simultaneously the values of MS , MT and MD at one point of this space. Thus, only one Design
of Experiments (DoE) is enough to calibrate the three metamodels and will be shared at each enrichment
step.

4.2 AK-ECO procedure

4.2.1 Initialization

The procedure begins with the choice of an initial design point d0 from which the optimization will start.
Moreover initial krigings must be built for MS ,MT and MD which require the computation of a space-
filling DoE denoted DoE0. Once DoE0 is obtained, the kriging models M̃S

0
,M̃T

0
,M̃D

0
are calibrated

and the first cycle of optimization (k = 1) can begin.

4.2.2 Sequential cycles of optimization

Once the initialization is complete, the reformulated problem is solved through sequential cycles of op-
timization. Each cycle is numbered k and is decomposed into two steps. We respectively denote dk−1,
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DoEk−1, M̃S
k−1

,M̃T
k−1

,M̃D
k−1

the design point, DoE and kriging models recovered from the initializa-
tion for k = 1 or from the previous cycle for k > 1.

Step 1. Local enrichment at dk−1 of the metamodels M̃S
k−1

, M̃T
k−1

, M̃D
k−1

:

• Step 1.a. An accuracy criterion assesses the precision of each metamodel at dk−1 (we detail this
step in section 4.2.3)

• Step 1.b. For each inaccurate metamodel, one local enrichment is carried out. The local refinement
of each metamodel consists in adding to the shared DoE the point (xp,h

j
s , t

j
p,u j) selected by the

procedure described in section 4.2.4. The simulator is evaluated at the selected point. This point
and its response are added to the previous DoE to obtain a new DoE from which all the kriging
models are recalibrated.

Steps 1.a and 1.b are repeated until each kriging model meets the accuracy condition of step 1.a. At the
end of step 1, the enriched DoE and kriging models are denoted DoEk,M̃S

k
,M̃T

k
and M̃D

k
.

Step 2. The reformulated problem is solved using the optimization algorithm chosen by the user starting
from dk−1. At each iteration of the optimization, the constraints are estimated through Monte Carlo on
the current surrogates M̃S

k
,M̃T

k
and M̃D

k
. This step does not require any call to the expensive simulator.

Once the optimization algorithm has converged, a new design denoted dk is provided.

At the end of each cycle k, if ||dk−1−dk||< ε, AK-ECO is completed and the minimum retained denoted
dmin is dk, otherwise, k = k+1 and a new cycle begins from step 1.

4.2.3 Details of step 1.a

We introduce in this section the accuracy condition of step 1.a for the kriging model of MS . At the
k-th cycle of optimization, a kriging model M̃S

k−1
is recovered from the previous cycle. The prediction

pk−1
S (dk−1) of the surge probabilistic constraint at dk−1 is obtained by replacing MS with the mean µk−1

S

of M̃S
k−1

. As in Dubourg (2011), the standard deviation σ
k−1
S of M̃S

k−1
can be used to obtain a low,

resp. high, estimator pk−1
S (dk−1), resp. pk−1

S (dk−1), of the surge constraint at dk− 1 by replacing MS

with µk−1
S +2σ

k−1
S or with µk−1

S −2σ
k−1
S . The kriging model M̃S

k−1
is considered accurate at dk−1 if the

following condition is met.
|pk−1

S (dk−1)−10−4|
|pk−1

S (dk−1)− pk−1
S (dk−1)|

> 1 (13)

Therefore the kriging model is considered sufficiently accurate if the distance between the low and high
estimations of the constraint is less than the distance between the estimation of the constraint and 10−4.
When this condition is met, we have reasonable grounds to believe that the kriging model accurately
predicts whether a point near dk−1 belongs or not to the safe space.

The criteria for the others constraints are adapted for each constraint formulation following the same
reasoning.
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4.2.4 Details of step 1.b

During the k-th cycle, if M̃S
k−1

is not accurate at dk−1, a point of the space ΩP×ΩLT is selected by
maximizing a criterion Ck

S :

(xpenr ,h
enr
s , tenr

p ,uenr) = arg max
Ωp×ΩLT

Ck
S (xp,hs, tp,u). (14)

The criterion Ck
S favors points where the uncertainty of prediction implies important uncertainties on the

constraint estimation at dk−1. The simulator is then called at (dk−1,xpenr ,h
enr
s , tenr

p ,uenr) and this point
and the response at this point are added the current DoE.

4.3 Implementation of AK-ECO

To solve the reformulated problem, the procedure described in section 4.2 has been implemented using
a Latin Hypercube Sampling [15] of size 70 for the initial DoE. A maximum of 15 local enrichments
has been imposed at each cycle and for each constraint which stops the enrichment of the concerned
constraint even if the criterion of accuracy is not satisfied. Moreover each constraint is refined at least
once at each cycle even if the criterion of accuracy is met. The optimization algorithm used in step 2 is
the COBYLA (Constrained Optimization BY Linear Approximations) algorithm [16]. The constraints
are estimated with a Monte Carlo sample of size 30,000. The AK-ECO procedure is finished if ||dk−1−
dk||< 10−2.

5 NUMERICAL RESULTS

AK-ECO has been applied to the reformulated problem with the constraints described in (9). The ap-
proach is compared to three other methods. The first one, denoted K1600, consists in solving the problem
using COBYLA with the constraints estimated by Monte Carlo and MS ,MT and MD replaced by krig-
ing models built from a DoE of size 1600. No refinement is done in this method which will provide a
reference result against the adaptive strategies.

The problem is also solved with the SORA method [17] and a method proposed by Stieng in [18]. They
both require a formulation of the constraints as probabilities which can be obtained by noticing that the
three reformulated constraints are written as EXP [Fc(g(d,Xp))] with Fc a cumulative distribution function
(exponential for the first constraints and normal for the last one). They are also based on the resolution
of a RBDO problem through cycles of optimization. In SORA, the reliability constraints are converted
into deterministic ones by fixing the uncertainties to certain values during the optimization. At the end of
each cycle, these values are updated and a new cycle of optimization begins at the design point obtained
at the previous cycle. The second method relies on an approximation of the performance function by the
product of two functions: one depending only on the design variables and the other one depending only
on the uncertain variables. A metamodel is fitted on the second function and is updated at each cycle of
optimization.

All the methods have been initialized at the same design point d0 = (−1.07,138.9,0.07). The AK-ECO
and Stieng algorithms were terminated because the changes in design between two consecutive cycles
were small enough. For SORA, the limit of two days of calculation was reached, which stopped the
algorithm. The results obtained are presented in Table 1. The quantities pS (dmin) and pline3

F (dmin) are the
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failure probabilities for surge and damage at top of mooring line 3, respectively. They are estimated at
dmin for each method using a massive Monte Carlo with the kriging models built for the K1600 method.
In Table 1, all the other constraints are not represented as they are equal to zero at dmin i.e. they are not
active for the chosen case study. The number of calls to the expensive simulator is denoted by Ncalls.

Table 1: Numerical results

K1600 SORA Stieng AK-ECO

dmin (1.11,110.45,0) (−0.2,101.2,0) (−1.99,86.6,0) (1.05,109.96,0)

cost(dmin) 0.262 0.201 0.104 0.259

pS (dmin) 1.0×10−4 0.9×10−4 0.66 1.0×10−4

pline3
F (dmin) 1.0×10−4 2.6×10−4 14.2×10−4 1.0×10−4

Ncalls 1600 24983 4557 456

The results presented in Table 1 show that AK-ECO requires much less calls to the simulator than the
other approaches to provide a a design configuration that is both optimized and reliable: 70 calls are
needed for the initial DoE and 386 for the enrichments of the metamodels. Moreover the estimation
of the constraints is more accurate with AK-ECO. The lack of precision of the two competing methods
can be explained by the reliability method used in SORA to update the uncertainties and in Stieng to
estimate the constraints: the HMV method [19]. In this case study, oscillations appear in the HMV
algorithm leading to important inaccuracies in the estimation of the constraints. This is particularly true
for pS since this constraint variations are very abrupt. Moreover, methods implementations of this paper
impose a maximum of 10 iterations for the HMV algorithm in SORA and Stieng approaches. Kriging
models are used for the Stieng approach and are calibrated from a LHS of size 10 for the first cycle, 30
for the second, 100 for the third and 300 for the fourth one.

(a) Normalized cost function (b) Failure probabilities

Figure 1: Cost function and failure probabilities at the end of each cycle
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We display in Figure 1 the evolution of the normalized cost function (Figure 1a) and the active constraints
pS and pline3

F (Figure 1b) at the design points obtained at the end of each cycle for each algorithm. The
probabilities are still estimated using Monte Calo with the kriging models calibrated for the K1600
method. We observe that at each cycle, our implementations of SORA and Stieng methods obtain lower
values of the cost function but this is due to poor estimations of the constraints. On the other hand, the
design obtained by AK-ECO at the end of each cycle always respect the real constraints: the failure
probabilities stay under 10−4.

We emphasize that the conclusions of the comparison presented in this article apply to the particular case
presented here and the chosen configurations of the different algorithms. More work need to be done
to extend our remarks to other applications and to investigate the dependency on the initial state with a
multi-start strategy.

6 CONCLUSION

This paper presents a new two-step methodology to minimize the cost of the mooring system of a FOWT
under probabilistic constraints. First, the linearity of the movement equation allows to transmit the
piecewise stationarity of the sea elevation process to the surge and tension processes. The Extreme Value
Theory is then used to reformulate the constraints involving the extrema of these processes. Furthermore,
the Dirlik approach is implemented to evaluate the fatigue constraint. At the end of this reformulation
step, new constraints are expressed as expectations. The existing methods in reliability analysis are
based on the fact that the constraints are written as probabilities and hence are not suited for our prob-
lem. Therefore a new adaptive method is proposed in this paper to estimate efficiently the reformulated
constraints.

This methodology is applied with success to a representative Floating Wind Turbine case study. The
reformulated problem is solved with AK-ECO and three others approaches in section 4. Compared to
the alternatives, the results show that AK-ECO is best suited to solve the reformulated problem.

REFERENCES

[1] Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling A. and Luan, C. Def-
inition of the Semisubmersible Floating System for Phase II of OC4 (No. NREL Technical report
NREL/TP-5000-60601) (2014).

[2] Det Norske Veritas. Design of floating wind turbine structures. Offshore Standard DNV-OS-J103
(2013).

[3] Vorpahl, F., Schwarze, H., Fischer, T., Seidel, M., and Jonkman, J. Offshore wind turbine envi-
ronment, loads, simulation, and design. Wiley Interdisciplinary Reviews: Energy and Environment
(2013), 2(5):548–570.

[4] Le Cunff, C., Ryu, S., Heurtier, J. M. and Duggal, A. S. Frequency-Domain Calculations of Moored
Vessel Motion Including Low Frequency Effect. International Conference on Offshore Mechanics
and Arctic Engineering (2008), 48180:689–696.

[5] Dirlik, T. Application of computers in fatigue analysis. PhD thesis, University of Warwick (1985).

[6] Hasselmann, D.E., Dunckel, M. and Ewing, J.A. Directional wave spectra observed during JON-

11



A. Cousin, J. Garnier, M. Guiton and M. Munoz Zuniga

SWAP 1973. Journal of physical oceanography (1980), 10(8):1264–1280.

[7] Burmester, S., Vaz, G., Gueydon, S. and el Moctar, O. Investigation of a semi-submersible floating
wind turbine in surge decay using CFD. Ship Technology Research (2020), 67(1):2–14.

[8] Rossi, R. R. A review of fatigue curves for mooring lines. ASME 2005 24th International Confer-
ence on Offshore Mechanics and Arctic Engineering (2005) 1097–1104.

[9] Leira, B. J., Igland, R. T., Baarholm, G. S., Farnes, K. A. and Percy, D. Fatigue safety factors for
flexible risers based on case specific reliability analysis. ASME 2005 24th International Conference
on Offshore Mechanics and Arctic Engineering (2005) 211–217.

[10] Leadbetter, M.R., Lindgren, G. and Rootzén, H. Extremes and Related Properties of Random Se-
quences and Processes. Springer series in statistics (1983).

[11] Benasciutti, D. and Tovo, R. Rainflow cycle distribution and fatigue damage in Gaussian random
loadings. Internal Report No. 129, Department of Engineering, University of Ferrara, Italy (2004).

[12] Dubourg, V. Adaptive surrogate models for reliability analysis and reliability-based design opti-
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