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Abstract. In recent times, Petrov-Galerkin schemes with optimal test function framework
have presented themselves as a stable and robust technique for solving partial differential
equations. These schemes are also accompanied by an inbuilt error estimator, which makes
them an ideal candidate for mesh adaptation. In this paper, we present a metric-based
mesh adaptation strategy utilizing this inbuilt error estimator to generate optimal hp
meshes.

1 Introduction

Automatic mesh adaptation is a potent tool which aides the computation of efficient and
accurate solution of partial differential equations. In this regard, metric-based anisotropic
meshes and adaptive techniques have been very expedient for many applications, such as
computational fluid dynamics [1, 2, 3]. When these adaptive techniques are combined with
higher order approximation methods, they present themselves as a very powerful tool in
terms of higher accuracy with reduced degrees of freedom. This has also been pointed out
in the Workshop on Higher-Order CFD Methods [4]. In terms of robust and stable methods
for solving partial differential equation, Petrov-Galerkin (PG) Schemes with optimal test
functions have been a critical development in last decade [5, 6, 7, 8, 9, 10, 11]. Given
the weak formulation of the underlying partial differential equation with a priori chosen
approximation space, this framework aims to compute a space of test functions such that
the scheme is stable. Another significant advantage of this framework is the presence of an
inbuilt error estimator. With the inbuilt error estimators, these schemes are tailor-made
for supporting mesh adaptation techniques.

In this paper, we propose a metric-based anisotropic adaptation strategy which uses this
inbuilt error estimator to generate meshes with prescribed size and shape distribution
along with a variable polynomial distribution for approximating the solution. The article
is structured as follows. In section 2, we will briefly address PG schemes with optimal test
functions. In section 3, we will describe the relationship between a metric field and a mesh.
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This is followed by anisotropy computations in section 4 and a continuous mesh model in
section 5. Finally, in section 6, we provide numerical results and concluding remarks in
section 7.

2 Discretization

In this section, we provide a brief description of PG schemes with optimal test functions
and the associated inbuilt error estimator. We consider any inf-sup stable variational
problem :

u ∈ (U, ‖ · ‖U ) : 〈Lu, v〉 = 〈f, v〉, ∀ v ∈ (V, ‖ · ‖V)

where L : U → V′
, f ∈ V′

, U and V are Hilbert spaces with U
′

and V′
being the respective

dual spaces. One way to characterize PG Schemes with optimal test functions [6] is the
following: Given ‖ · ‖V and ‖ · ‖U , they satisfy

‖Lu‖V′ = ‖u‖E = sup
v∈V

|〈Lu, v〉|
‖v‖V

⇒ |〈Lu, v〉| ≤ ‖u‖E‖v‖V.

In a finite dimensional setting, given Uh ⊂ U , optimal PG schemes construct Vopth =
RV
−1L(Uh) such that

uh ∈ Uh : 〈Luh, vh〉 = 〈f, vh〉 ∀ vh ∈ Vopth ,

inherits the well-posedness, and furthermore

‖u− uh‖E = min
v∈Uh

‖u− v‖E = ‖Luh − f‖V′ = ‖RV
−1(Luh − f)‖V, (1)

where RV : V→ V′ is the Riesz map defined by the duality as 〈RVv, v
′〉 = (v, v′)V ∀ v′ ∈ V.

Since V is infinite-dimensional, it is not possible to explicitly compute RV
−1. Instead, a

choice of enriched space Vr ⊂ V (M = dim (Vr) ≥ dim (Uh) = N) is employed over which
the Riesz map is discretized and inverted. Since we are approximating the inverse of RV,
we have Vh which approximates Vopth . It also implies Vh ⊂ Vr ⊂ V. The discretization
of the Riesz map is represented by a Gram matrix Gi,j = (ψi, ψj)V which is induced by
the inner product on V. Here ψi and ψj represent the basis of enriched space Vr. The
resulting discrete system can be shown to be equivalent to the following linear system [11]

BTG−1Bx̂h = BTG−1l, (2)

where uh =
∑N

i=1 (x̂h)iφi is the discrete solution with φi being the basis of the finite
dimensional trial space Uh. B is the enriched stiffness matrix where Bij = 〈Lφj , ψi〉 and l
is the enriched load vector with li = 〈f, ψi〉. The residual based error estimator in eq. (1)
can be approximated due to discretization of RV and is given by:

ŷ = G−1 (Bx̂h − l) , (3)

where the dual of residual is approximated as ϕ =
∑M

i=1 ŷiψi, and hence the error in en-
ergy norm is approximated as ‖u− uh‖E ≈ ‖ϕ‖V. The function ϕ is also known as error
representation function. In this article, we present results for scalar convection-diffusion
problems using ultraweak formulation and discontinuous Galerkin discretization (for ap-
proximation spaces) with optimal test functions (DPG schemes) [6]. Uh will represent
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the solution of the scalar convection-diffusion problem i.e. Uh = (uh, σh, ûh, σ̂h). The nu-
merical solution uh represents the approximation of primary variable u, σh represents the
approximation of gradient of u, ûh approximates the trace of u and σ̂h approximates the
normal flux σ ·n. The variables ûh and σ̂h exists on mesh skeleton. Hence, for convection-
diffusion problems, the global energy error will be represented by ‖U − Uh‖E(Ω) and local
energy error will be represented by ‖U − Uh‖E,k. Here, Ω represents the computational
domain and Th represents its triangulation with k being an element in Th.

3 Mesh-Metric Duality

In this section, we briefly present the concept of metric-based mesh representation. For
this, we will be aided by a tensor valued field M(x). Let Th be a given triangulation of
Ω ∈ R2. Each element in this Th can be characterized by a symmetric positive definite
matrix in such a way that we can extract information about the shape and the size of the
element by analysing this matrix. To be precise, let ek for k = 1, 2, 3 represent the edges of
a non-degenerate triangle k ∈ Th. Then, there exists a symmetric positive definite Matrix
M∈ R2×2

M =

[
a11 a12

a21 a22

]
, (4)

such that, for a given constant C > 0

eTMe = C ∀ k = 1, 2, 3. (5)

(a) (b)

Figure 1: Ellipse circumscribing a triangle with (a) C = 3 and (b) C = 1

IfM is defined at every x ∈ Ω, we call it as a metric field. From eq. (5), one can infer that
the triangle is equilateral under the norm induced by M i.e. ‖x‖M =

√
xTMx. A mesh

is called a unit mesh with respect to a metric field M(x) if every element in the mesh is
equilateral with respect to M.

As illustrated in fig. 1, a metric implies an elllipse, defined by three parameters, into which
a unit element is inscribed. These parameters are the length of the major axis denoted by
h1, the minor axis denoted by h2 and the orientation of the major axis denoted by θ. On
performing eigenvalue decomposition of M [12, 13], one can observe how these quantities
are encoded in the metric field. Indeed one can write

M =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]T [ 1
h21

0

0 1
h22

][
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, (6)
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The eigenvectors represent the principal axes of the ellipse whereas eigenvalues are inverse
of the square of principle lengths h1 and h2 such that h1 > h2. Next, we define the aspect
ratio of an element as β = h1

h2
. From the relation between the area of an ellipse and its

corresponding triangle (C = 3), we have:

|k| = 3
√

3

4
h1h2 =

3
√

3

4d
, (7)

where we define d = 1/h1h2 as the mesh density. We have introduced d, β and θ to
neatly separate the size and the anisotropy of the triangle. The dependence of eigenvalues
and eigenvectors on d, β and θ lays down the motivation of encoding the information for
a desirable mesh into a metric field. This will be our focus in the next two sections.
We have so far considered a constant metric field but the concept can be extended to a
continuous Riemannian metric field. In that case, the norm induced by M(x) is given by
‖x‖M =

∫ 1
0

√
xTM(x1 + tx2)x dt where x := x2 − x1. Such a Riemannian metric may

be generated from a suitable interpolation resulting from the piecewise constant metric
inferred from an existing mesh. There are already specific mesh generators which attempt
to produce a metric-conforming from such a metric field. Examples of metric-based mesh
generators are [14] and [15].

4 Anisotropy Computations

In order to generate an optimal hp mesh, one needs to compute optimal density (d?), opti-
mal anisotropy (β?, θ?) and a polynomial distribution p(x). In this section, we present the
methodology for computing the anisotropy (β?, θ?) for an element k ∈ Th. As mentioned
in section 2, DPG schemes with optimal test functions are accompanied with a residual
based inbuilt error estimator. In case of convection-diffusion and diffusion problems, for
ultra-weak formulations, there are two components in the error representation function [9].
We will denote them as (ψv,ψτ ). In finite dimensional setting, we can approximate these
error representation function using the same polynomial basis functions which are used to
compute the near-optimal test space Vh (see section 2). This polynomial representation is
very pivotal for anisotropy computation. Here, we demonstrate this with a scaled version
of the norm induced by the inner product of H1(Th)×H(div;Th) (see [9] ):

‖(ψv,ψτ )‖2V,k = ‖ψv‖2 +
√
|k| ‖∇ψv‖2 + ‖ψτ‖2 +

√
|k| ‖∇ ·ψτ‖2

=

∫
k

(ψv(x))2 +ψτ (x) ·ψτ (x) +
√
|k|(∇ψv(x) · ∇ψv(x) + (∇ ·ψτ (x))2))︸ ︷︷ ︸
ek(x)

dx.

(8)

In eq. (8), ek(x) represents the polynomial which is being integrated to compute ‖(ψv,ψτ )‖2V,k
and |k| is the area of the element k. In [[16], Lemma 3.12 ], a very important result on
an anisotropic bound is presented. We will just reiterate it next as it plays a fundamental
role for the proposed anisotropy computation.
Lemma 1. Let Pi,x̄(x) : Ω → R be a homogeneous polynomial of order i located at x̄,
i ≥ 2. Then there exist values Ai, ρi and φi ∈ [0, 2π) such that

|Pi,x̄(x)| . Ai
(
(x− x̄)TQφiDρiQφi

T (x− x̄)
) i

2 . (9)
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In lemma 1, Dρi = diag(1, ρ
−2/i
i ), Qφi is a 2 × 2 rotation matrix through an angle φi

counter-clockwise and Ai > 0. For a given polynomial Pi,x̄, the values of Ai, Dρi and
Qφi can be computed numerically in such a way that Lemma 1 is sharp. Details about
this can be found in [16]. In case of ek(x), it is a combination of multiple homogeneous
polynomials. For an order p approximation for the solution variables with an enrichment
of δp for Vr, there will be a total of 2(p+ δp) sets of homogeneous polynomials. Since, the
element k ∈ Th is inscribed in an ellipse which we will represent by Ek and using Lemma 1,
we have∫

k
ek(x) dx ≤

∫
Ek

ek(x) dx .
2(P+δP )∑
i=2,i∈Z+

ev

∫
Ek

Ai
(
(x− x̄k)

TQφiDρiQφi
T (x− x̄k)

) i
2 dx, (10)

where Z+
ev represents the set of positive even integers. The subscript ev represents the

even nature of the integers. Since, integrals of odd order homogeneous polynomial is
zero over a symmetric interval about origin (here x̄k can be treated as the origin), we
are left with only even ordered polynomials. A mapping F : Ê → R2 can be defined as
F (x̂) = QeSex̂+ x̄k where Ê represents the unit circle, Qe is a rotation matrix through an
angle φ and Se = diag(h1, h2) = h1diag(1, 1/β) where β is the aspect ratio. On introducing

this transformation (x = F (x̂)) into eq. (10) and polar co-ordinates x̂ =
[
cos(θ) sin(θ)

]T
,

we have

∫
k
ek(x) dx ≤

∫
Ek

ek(x) dx .
2(P+δP )∑
i=2,i∈Z+

ev

Aiλk
i+2
2

i+ 2

∫ 2π

0
(gi(θ;β, φ− φi))

i
2 dθ, (11)

where λk = 1
dk

and dk is computed using the implied metric (computed using the vertices
of k ∈ Th where Th is the current triangulation). In eq. (11), gi is a trigonometric function
which is obtained after performing some arithmetic following the substitution mentioned
earlier. The expression for gi can be be found in [17] and [18]. Hence, the computation
of the anisotropy becomes a minimization problem.

β?, φ? = argmin
β,φ

2(P+δP )∑
i=2,i∈Z+

ev

Aiλk
i+2
2

i+ 2

∫ 2π

0
(gi(θ;β, φ− φi))

i
2 dθ. (12)

The above minimization problem has been solved using an iterative process mentioned in
[18] and [17].

5 Continuous model of energy error estimate for hp adap-
tation

In this section, we present the procedure for hp adaptations using the inbuilt energy error
estimator that accompanies DPG schemes with optimal test functions. The procedure
is a two-step process that comprises of selecting a polynomial order for approximation
followed by a mesh density computation (d(x)) based on the concept of continuous mesh.
The following assumption is fundamental for mesh density computation.
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Assumption 5.1: Let Th be a triangulation and η be a local error estimate such that
η2 =

∑
k∈Th η

2
k and η = O(hs) i.e error estimate converges at sth order [19]. We assume that

local error estimate ηk scales 1 as η2
k = A|k|(s+1) where A depends upon the anisotropy of

the element. Furthermore, the order of the method s directly depends upon the polynomial
degree of approximation p.

Verification of assumption 5.1 can be found in [section 8.1, [19]] and [17] where the authors
have demonstrated this with a Laplace problem having an exact solution u of the form
u = sin(2πx)sin(2πy) and in [section 3.2, [20]] where similar properties are studied for
compressible flow problems. Let {Th}n be the sequence of triangulation employed, we
would like to construct an error estimate which achieves global equality with the inbuilt
energy error estimate asymptotically.

‖U − Uh‖2E,k ≈ ed(xk)|k| for xk ∈ k, k ∈ Th, (13)

where we call ed(xk) as the error density function. Thus, asymptotically (h→ 0), we have

‖U − Uh‖2E(Ω) =
∑
k∈Th

ed(xk)|k| →
∫

Ω
ed(x) dx. (14)

Next, we define the error density function as following

ed(x) := A(x)d(x)−s(x)αs(x), (15)

where α = 3
√

3
4 . On substituting eq. (7) and eq. (15) in eq. (13), it can be observed

that eq. (13) refers to assumption 5.1 with ηk = ‖U − Uh‖E,k. Using a priori established
order of convergence of energy estimate in [8], we can set s(x) = p(x) + 1.

5.1 Polynomial Selection

In order to choose the proper polynomial order for approximation, we solve the governing
partial differential equation locally over a patch surrounding an element k ∈ Th. The
boundary conditions for these local problems are obtained using trace (ûh) in case of
Dirichlet boundary conditions or normal flux (σ̂h) for Nuemann boundary condition com-
puted at the current polynomial order. In fig. 2, we have shown an internal patch where we
have used Dirichlet boundary condition. We solve these local problems at three different
polynomial orders: pk and pk ± 1 where pk represents the current polynomial order of the
element k. Once the solution is computed, it is followed by computing the local energy
error estimate ‖U − Uh‖E,k for each polynomial order (the local problem is also solved
at pk so that the error at pk has similar fidelity as the error computed for pk ± 1). We
denote the energy error computed at the polynomial order pk+ i by Epk+i and the number
of degrees of freedom for each polynomial order by Npk+i where i = −1, 0, 1. Also, we
introduce a new parameter mpk+i which corresponds to the amount of uniform refinement
or coarsening required to achieve a level of error. The motivation behind this is to use the
a priori rate of convergence to predict the required uniform coarsening or refinement at a
local level. It is computed as follows:

mpk+i =

(
Epk+i

Epk

) 2
pk+i+1

Npk+i (16)

1To motivate the scaling η2k ∝ |k|(s+1), recall that the global error estimate η2 scales as h2s ∝ |k|s. (we
have a sth order method.) At the same time, the contribution from each individual sub-element scales with
an additional factor of k, because the local domain of integration becomes smaller.
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Figure 2: Patch around an element k over which local problems are solved. Edges marked by red
represents the boundaries of patch with Dirichlet boundary conditions

We have taken the a priori rate of convergence to be (pk + i) + 1 where i = −1, 0, 1. In
order to choose a better suited polynomial order, we computed mpk+i for pk−1 and pk+1
to achieve the same error as pk and optimal order is the one which achieves Epk with least
degrees of freedom.

pk,opt = argmin
i=−1,0,1

mpk+i (17)

The idea behind this is to find out the polynomial order which is more efficient in terms of
number of degrees of freedom to the achieve the same level of error as pk. For i = 0, above
computation is trivial. Once the polynomial order is selected, we still need to compute
the mesh density distribution for the size of elements. For this purpose, we will use the
global continuous estimate E =

∫
Ω ed(x) dx as mentioned in eq. (14).

5.2 Mesh density computation

In order to generate the optimal density distribution at fixed cost, we need to have a notion
of cost. For this, we will be employing the concept of mesh complexity (N) for continuous
hp mesh models (for more details see [21, 22]). It can be regarded as an equivalent of total
degrees of freedom desired in a mesh.

Problem 5.1: Let N be the desired complexity in terms of degrees of freedom and ed(x)
be the error density function. We seek a mesh density distribution d(x) : Ω → R+ for a
given polynomial distribution p(x) : Ω→ Z+ on the next triangulation such that:

(a) N =
∫

Ωw(x)d(x) dx with w(x) = 2(p(x)+1)(p(x)+2)

3
√

3
.

(b) E =
∫

Ω ed(x) dx is minimized.

For density computation, we have implemented the analytic optimization for hp continuous
mesh model mentioned in [22]. Using eq. (15), we state the global continuous error as
follows:

E =

∫
Ω
α(p(x)+1)A(x)d(x)−(p(x)+1) dx. (18)

In case of hp adaptivity, the constraint is the total number of degrees of freedom desired
in the next mesh which is obtained by multiplying a weight to mesh density distribution
[21, 22].

N =

∫
Ω
w(x)d(x) dx with w(x) =

2(p(x) + 1)(p(x) + 2)

3
√

3
. (19)
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Taking variation of global continuous error and complexity constraint with respect to
density, we get

δE =

∫
Ω
−(p(x) + 1)α(p(x)+1)A(x)d−(p(x)+2)δd dx, (20)

δN =

∫
Ω
w(x)δd(x)dx = 0. (21)

Using the eq. (19), it can be observed that we can obtain an admissible solution if we set

(p(x) + 1)A(x)

w(x)
α(p(x)+1)d(x)−(p(x)+2) = K = const. (22)

Solving this for d(x) yields

d?(x) =

(
(p(x) + 1)A(x)α(p(x)+1)

w(x)

) 1
(p(x)+2)

K
− 1

(p(x)+2) . (23)

The constant K can be computed from eq. (19) numerically. In our current implementa-
tion, we employ bisection method to compute K. Once K is computed, we can substitute
that into eq. (23) which is a straight forward algebraic expression. Since, we are in a
discrete setting in terms of triangulation, the quantities A(x), p(x) and optimal density
d?(x) can only be computed in a piecewise constant sense for each element in the mesh.
Thus, if xk ∈ k and k ∈ Th, using assumption 5.1, we have

A(xk) =
‖U − Uh‖2E,k,p(xk)

|k|p(xk)+2
(24)

d?(xk) =

(
(p(xk) + 1)A(xk)α

(p(xk)+1)

w(xk)

) 1
(p(xk)+2)

K
− 1

(p(xk)+2) (25)

where ‖U − Uh‖E,k,p(xk) represents the energy error in element k for the optimal polyno-
mial order chosen via the process mentioned in section 5.1.

6 Results

Sharp boundary layers are one of the most encountered features in flow fields. This test
problem is selected in order to validate the fidelity of the proposed algorithm in presence
of boundary layers. In particular, we solve,

β · ∇u− ε∇2u = s(x, y) (x, y) ∈ Ω = (0, 1)2

u = 0 (x, y) ∈ ∂Ω
(26)

where β = [1, 1]T . The source term s(x, y) is selected in such a way that the exact solution
is given by

u(x, y) =

(
x+

e
x
ε − 1

1− e
1
ε

)(
y +

e
y
ε − 1

1− e
1
ε

)
. (27)
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The solution exhibits a sharp boundary layer near x ≈ 1, y ≈ 1, increasingly so for smaller
values of ε. In fig. 4, we have presented the convergence results comparing the h adaptation
algorithm [17] and proposed hp adaptation algorithm. In h adaptations, we start with an
initial mesh of 32 elements and in case of hp adaptations, we begin with the same mesh
but with constant initial polynomial order of pinitial = 2. In hp adaptation, N for the first
adaptation cycle is computed as

N = Ne× (pinitial + 1) (pinitial + 2)

2
× 3
√

3

4
(28)

where Ne represents the number of elements in the mesh. Between each adaptation cycle,
N is increased by 30%. This choice of growth in N is arbitrary and different choice
in growth may result in different pre-asymptotic behaviour but should produce similar
asymptotic result.

(a) (b)

Figure 3: Boundary Layer: (a) Solution contour on an adapted mesh and (b) polynomial distri-
bution on the same adapted mesh with ε = 0.005 with 6980 degrees of freedom.

101 102

10−10

10−8

10−6

10−4

10−2

100

2
√
ndof

||u
−
u
h
|| L

2
(Ω

)

p = 1

p = 2

p = 3

p = 4

p = 5

hp

(a)

101 102

10−10

10−8

10−6

10−4

10−2

100

2
√
ndof

||U
−
U
h
|| E

(Ω
)

p = 1

p = 2

p = 3

p = 4

p = 5

hp

(b)

Figure 4: Convergence plots of (a) L2 error in uh and (b) Energy norm using scaled mathemati-
cian’s norm (ndof represents the total number of degrees of freedom).
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Figure 5: Evolution of (a) number of mesh elements and (b) average polynomial order with
adaptations at a fixed cost N = 3072 for different boundary layer strengths ε.
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Figure 6: Convergence plots of (a) L2 error in uh and (b) Energy norm using scaled mathemati-
cian’s norm with different initial polynomial distributions (ndof represents the total number of
degrees of freedom).

In hp adaptations, we have kept an upper limit on the highest possible polynomial order
as pmax = 10. Since, the analytical solution is in C∞, there is no theoretical limit on the
highest allowable polynomial order. This limit is prescribed for the practical computations
[23]. On continuously increasing N , the hp algorithm produces a better convergence plot
compared to the h adaptation at constant polynomial order p = 5 in terms of convergence
rate as shown in fig. 4. In hp adaptation, initially on increasing N the adaptation is dom-
inated by h refinement. Consequently once the boundary layer is resolved, p adaptation
takes over and hp algorithm selects maximum polynomial order in almost every cell in
the boundary layer whereas it prescribes p = 2 away from the boundary layer. Away
from the boundary layer the analytical solution is nearly quadratic, at least up to machine
precision, i.e. u(x) ≈ xy. Since with the assumption of quasi-regular elements, one can
show the equivalence of error in energy norm (using the inner product on the test space
induced by the norm given by eq. (8)) with the error in L2 norm of the field variables,
one can expect to obtain the polynomial distribution reflecting the local regularity of the
solution. The evolution of average polynomial order with subsequent adaptations is shown
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in fig. 5. In fig. 6, we show how two different initial polynomial distribution have similar
asymptotic convergence behaviour. This reflects the robustness of the algorithm towards
the user-controlled parameter of selecting the polynomial order on the initial mesh.

7 Conclusions

We have presented a continuous hp mesh model for driving mesh adaptations which solely
depends upon the inbuilt error estimator accompanying the numerical scheme rather than
depending on an extrinsic error model. One major advantage of the proposed methodology
is being parameter free. In the future, we would like to extend this hp framework to system
of equations and goal-oriented adaptations.
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