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1 INTRODUCTION

Wing planforms which are employed for high agility aircraft consist for the major part of highly swept
wings. This is the case of delta wings whose aerodynamic characteristics are dominated by the separa-
tion of large-scale leading-edge vortex flows. The vortex type and stage depends on several factors, both
geometrical and related to the flow conditions. The numerical simulation of such a complex type of flow
remains a source of issues for the turbulence models available at the state of the art. This is true, in par-
ticular, for the turbulence models which close a Reynolds-averaged Navier-Stokes (RANS) formulation
with a Boussinesq assumption.

On the one hand, the employment of more complex and/or scale resolving turbulence models remains
prohibitive with respect to the additional computational cost which is a relevant factor along the different
steps of the design and development phases of a aircraft where the investigation of several variations of
a complex aircraft is required. Moreover, the improvement in terms of accuracy is not always guaran-
teed by the additional modeling complexity and the introduction of numerical stability issues or setup
complexity is also to be considered [1, 2].

On the other hand, the most common eddy viscosity models (EVM) [3] provide an inherent lack of ac-
curacy with regard to highly separated and/or rotational flows where the Boussinesq assumption ceases
to be a valid simplification for most cases. At the state of the art, a series of corrections for the baseline
EVMs exist which address the limitations of the models for complex flows. However, these corrections
are calibrated using generic test cases in order to achieve a global formulation (Fig. 1). This means the
modeler prioritizes the globality and the model’s validity over the widest range of cases while it sacri-
fices its maximal possible accuracy level which could be achieved with the calibration performed over
a single point, i.e. one test case at one flow condition. The proposed methodology has the objective to

1



Matteo Moioli, Christian Breitsamter and Kaare A. Sørensen

combine the introduction of additional terms in the turbulence model equation with an automatic cali-
bration procedure with experimental data as reference [4]. The objective is to find the best compromise
between the accuracy enhancement provided by the additional model terms and a regional calibration
which sacrifices only part of the globality of the baseline model.

A series of modeling corrections or extensions are available and have been formulated, a part of these are
formulated with the objective of maintaining the highest grade of globality with a certain flow feature as
target, for instance the Rotation-Correction of the Spalart-Allmaras model [5], whereas others consist of
the maximization of accuracy for a certain target feature [6]. Therefore, the proposed methodology has
the objective to exploit the best compromise between the two possible modeling directions.

Figure 1: Qualitative visualization of the dependence of the accuracy and predictive capability levels of
a physical model vs the globality of the employed calibration cases.

A relevant drawback of the methodology is that it relies on experimental data for the calibration of a
model valid for a class of flows of a certain extension. When new cases are addressed, if the geometries
or flow conditions provide low to mild differences from past calibration cases, the modeler may apply
the same optimized model based on the experience and investigation of the present class of flow. How-
ever, if the new case has large differences to the previous calibration cases and there are no available
experimental data, the user may avoid the employment of the methodology.

A recent research path in physical modeling in fluid dynamics consists of the integration of machine
and deep learning methods to exploit of the availability the large amount of available high fidelity data
to enhance the model performance [7]. In this work, a machine learning extension of the proposed
methodology is also formulated with the objective to extend the predictive capability to flow cases where
no experimental data are available. In the context of this work, an additional methodology is introduced
in order to solve the problem. The idea is to utilize all the available data from the previous optimization
procedures to correlate the geometrical and flow condition features with the resulting turbulence model
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parameters. A set of the available data is established and an artificial neural network is trained in order
to predict the best set of coefficients based on the new test cases features as input.

2 LEADING-EDGE VORTEX FLOW

The dominating flow feature of a highly swept or delta wing is the vortex flow which separates at the
leading edge. A large-scale vortex system above a delta wing may occur in different stages depending
on geometrical features and flow condition factors. The more important parameters that determine the
vortex flow stages are the angle of attack, the leading-edge sweep angle and the leading edge curvature.
The leading edge shape plays a fundamental role on the separation onset of the vortex flow along the
leading-edge extension [8]. When the leading edge is sharp, the primary vortex flow separation is fixed
whereas at a blunt leading edge the primary separation strongly depends on the Reynolds number. With
regards to compressibility effects, Mach number plays the major role. The variation of the vortex flow
stage with an increase of the angle of attack is for a certain grade comparable to a decrease of the sweep
angle (Fig. 2) [9].

Starting from small angles of attack, no vortex may be present above the wing surface and this is partic-
ularly true if the leading edge is characterized by a small curvature. The flow is able to remain attached
to the wing surface. As the angle of attack increases, the separation of the flow generates a vortex sheet
which rolla up above the wing into a vortex of stable structure. The vortex structure is characterized by
high tangential and axial velocities which interact with the upper wing surface and this causes an induced
suction footprint that determines the additional vortex lift [9, 10]. The axial velocities may reach values
up to three times the freestream velocity in the vortex core. The flow directed under the main vortex and
outboard to the leading edge may separate in a secondary vortex. This is a viscous phenomenon and is
caused by the strong adverse pressure gradient between the vortex suction peak and the wing’s leading
edge [11]. In the case of a rounded leading edge, at low angles of attack, the separation takes place
along a certain portion of the leading edge and a partially developed vortex is present. As the angle of
attack increases, the separation onset moves upstream until it reaches and remains at the apex. By further
increasing the angle of attack, the vortex changes its axis direction which moves inwards.

The stability of the fully developed vortex is progressively reduced with the angle of attack, until an
abrupt change of the vortex flow field takes place. This instability phenomenon is called vortex break-
down and it causes the vortex to lose its structured and helicity dominated nature into a wake like and
chaotic flow [12]. Hence, a drop in the vortex induced tangential and axial velocity is encountered which
determines a sudden change in the aerodynamic forces. The angle of initial breakdown is defined as
the angle of attack at which the breakdown instability takes place above the trailing edge. As the angle
of attack further increases, the breakdown moves upward until a fully burst and shedding condition is
reached where basically the breakdown takes place at the apex of the wing.

3 FORMULATION OF THE TURBULENCE MODEL ENHANCEMENT AND OPTIMIZA-
TION PROCEDURE

In the course of the Advanced Aircraft Understanding via the Virtual Aircraft Model (VitAM) Project
[13], the Technical University of Munich (TUM) and Airbus Defence & Space (ADS) have collaborated
in order to improve the available numerical tools and procedures for the virtual development and design
of an aircraft. Whereas efficiency has been mainly addressed with success by ADS [13], the main focus
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Figure 2: Qualitative representation of the vortex development stages for different leading-edge shapes
and their dependence on the angle of attack α and wing sweep angle ϕ. Also shown, the positioning of
the different test cases which have been investigated in the course of the VitAM project [4].

with respect to accuracy has been dedicated to turbulence modeling as it is recognized to be the main
source of discrepancies. This approach is now further developed and enhanced in the Digityl Flight Air
Vehicles (DIGIfly) project. The methodology which has been developed consists of expansion of the
one-equation EVM of Spalart-Allmaras (SA) [3] which is routinely employed in particular in the context
of external aerodynamic cases and it has shown throughout the years a well behavior with respect to
attached flows. In the current research, the baseline model is the Edwards variant (SAE) which includes
an improvement for stability in the wall treatment [14]. The enhancement of the model consists of the
following key points [4]:

• A series of production terms are formulated in order to have different sensitivities for different
types or regions of vortex flows.

• The additional terms are active exclusively inside the vortex flow field, without changing the mod-
eling inside the boundary layer region which is already well predicted by the baseline SA model.

• The model’s enhancement does not introduce significant additional computational costs or numer-
ical instabilities.

• The model maintains the Galilean invariance property and the additional terms are non-dimensional.

In order to activate the effect of the turbulence model enhancement in the vortical region only, a vortex
identifier quantity ξ is formulated (Eq. 1) and coupled with every additional term. The variable ξ consists
of a limited ratio between the vorticity and the strain rate. The limit value cvl is set equal to 1.0 in order
to avoid any influence on the boundary layer region.
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The turbulence model formulation is reported in the following equation (Eq. 2):
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Where the baseline model is furnished with the series of additional vortex source terms, which are num-
bered with the overlying brackets. The terms are formulated to provide the model with different sensitivi-
ties to different vortex stages, types and regions. The first term (i) is the closest to the baseline production
term except that it is limited in the vortex region by the ξ quantity. The terms (ii) and (iii) employs a
different exponentiation of ξ, i.e. respectively sublinear and superlinear, in order to have different influ-
ences in a radial-wise direction. The fourth term (iv) employs a negative exponentiation of ξ coupled
with a switch function which provides an inversion of the influence distribution and it concentrates its
effect on the outer regions of the vortex. Whereas the first four terms are based on variations of their dis-
tribution along the radial direction, the remaining three distinguish their regions of influence according
to regions relative to the breakdown position. Hence, one term (v) uses an absolute and non-dimensional
helicity variable to target the highly structured and stable vortex part upstream of the breakdown insta-
bility. Consequently, an inverse term (vi) is formulated and it is coupled with a switch function based on
the inverse of helicity that focuses its influence on the wake region downstream of breakdown. The last
one (vii) is based on the product between the vorticity direction and the gradient of velocity, the quantity
of which has high values in particular in proximity of breakdown.

The automatic calibration of the coefficients of the additional vortex source terms is performed by means
of a toolchain which handles the I/O between optimization algorithm and numerical simulations as well
as the monitoring of the simulations. The objective function ε(c) of a certain set of coefficients c is:

ε(c) =
∑

m
i=1 ∑

n
j=1

[
ε(i, j) w(i)

d p

]
m n

(
∑

m
i=1 w(i)
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) (4)
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Where n is the number of experimental data points, m is the number of design points (d p) and wd p is
the weighting factor which can be varied for the design points. For the presented results, no particular
weight function was necessary, hence the value is always set equal to 1.

The algorithm consists of a gradient descent algorithm with a relaxation factor of 0.5. The toolchain
starts with a first simulation from an initial converged solution which can be the baseline SAE solution,
i.e. c0 = 0.0, or a different starting set of coefficients. This may be relevant in order to investigate
the inherent locality of the algorithm and improve the calibration result. After having conducted the
starting point simulation a series of incremental simulations are restarted. Every incremental simulation
corresponds to an increment of one of the active turbulence model parameters. This process continues
iteratively until the optimization reaches a minimum of the minimization function ε(c) and the final set
of coefficients is selected as the optimized parameters of the model.

4 OPTIMAL TURBULENCE MODEL PREDICTION BY MEANS OF ARTIFICIAL NEURAL
NETWORK

4.1 Motivation and Idea

Several test cases have been addressed for the application of the optimization methodology and the
investigation of its performance on different types of delta wings. Due to the locality of the chosen
optimization algorithm, usually different optimization procedures are tested for verifying the locality of
the optimum reached. Therefore, along the project a relatively large amount of RANS simulations have
been performed for the calibration procedures with different values of the turbulence model parameters.

The idea underlying this extension of the methodology arises from one drawback of the optimization
procedure which is that it requires high fidelity data to be performed. Hence, in the case that the differ-
ences with the available previously calibrated cases of the new geometry or flow condition are too large,
the methodology acquires low possibilities of success.

The test cases which have been reported in this article are highlighted with a red circle in Figure 2. In
this vortex flow map. also other examples of test cases are included which have been investigated and
which cover different parts of the vortex flow stages. The idea is to utilize the information available from
the data of all these previous optimizations and sensitivity tests in order to predict an appropriate set of
coefficients for a new test case. It is reasonable to expect that the achieved accuracy might not be at the
same grade as a successful gradient descent optimization. The objective is to address how accurate is this
type of prediction and how much it can increase the predictive capability of the available information.

4.1.1 Dataset Description and Augmentation

The dataset is therefore composed of a series of features x and target values y. The features consist of the
geometrical and flow condition parameters which describe the test case and its flow stage (Tab. 1). With
respect to the flow conditions, the features include the Mach and Reynolds number and the AoA range.
The geometric features include the sweep angle of the first and second section, ϕ1 ϕ2, if a strake wing
is present, the taper ratio λ, the aspect ratio Λ and the normalized leading-edge radius rLE/cr with cr as
the wing root chord. The target data are the values of the turbulence model coefficients.

In the best scenario, the dataset would be composed exclusively of points which describes optimal set of
coefficients, however, not enough data points are available with respect to the final optimized results. The
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Table 1: Features x.

Mach Reynolds AoA min AoA max ϕ1 ϕ2 λ Λ rLE/cr

application of a machine learning approach to a restricted database would lead to an over-fitted model
which is not recommended for extensive applications. Hence, the dataset is augmented by including
all the available intermediate points inside the optimization processes. In this case, the feature which
describes the minimization function ε(c) needs to be included in the features vector x.

4.2 Artificial Neural Network Setup, Hyper-parameters and Training

The dataset preparation and the artificial neural network (ANN) is performed by means of the Tensorflow
2 library in a Python framework [15]. The ANN is a feed-forward multi-layer network of a series of
hidden layers composed of this series of neuron numbers:

[512,256,128,64,64,64,32,16,8] (5)

A LeakyReLU activation function is employed for all layers and a batch normalization method is used
for regularization. In addition to that, a skip connection of the input features is concatenated to the
last hidden layer. This has shown significant improvements in the training performance. All the hyper-
parameters are found by means of a grid search.

The training optimizer scheme is the Stochastic Gradiend Descent (SGD) algorithm utilizing a constant
learning rate of 0.005 and a alpha regulation value of 0.005. The loss function is the Mean Absolute
Error (MAE). The training and validation is processed until it reaches convergence (Fig. 3).

Figure 3: Loss function of the training and validation data vs the training epochs.
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5 RESULTS AND DISCUSSION

5.1 Numerical Setup

The numerical simulations in this study have been performed by means of the TAU-Code solver of the
German Aerospace Center (DLR). The solver is based on a cell-vertex finite volume methodology with
the capability of solving hybrid-unstructured grids. The RANS equations are solved in a fully turbulent
regime, with an implicit dual-time stepping approach for the stabilization of the solver, a Multigrid relax-
ation scheme and an implicit Backward-Euler/LUSGS smoother. With respect to the flux discretization
method, an improved version of the Advection Upstream Splitting Method (AUSMDV) is used because
it combines the advantaged of the flux Difference (AUSMD) and the Vector splitting (AUSMV) variants.
The geometry of the test cases reported in these studies are split into a half model because no asymmetric
flow conditions are investigated. If the wind tunnel model of reference are provided with a support or
peniche, these are included in the flow domain and a symmetry plane boundary condition is placed at a
certain displacement from the wind tunnel floor by taking into account the corresponding boundary layer
thickness. The SAE model in its baseline or optimized form is employed for all the simulations.

5.2 Model53 and Model56

The Model53 and Model56 (Tab. 2) consist of two sweep angle variations, i.e. of 53° and 56° respec-
tively, of the same baseline geometry. The wing geometry is a generic delta wing with a deployed
leading-edge slat at -20° and a tip twist of 4°. The deployment of the slat is a plausible scenario for the
angle-of-attack range of main interest, which includes angles from medium to very high values where
the main discrepancies correlated with the turbulence model are present. In addition, the presence of the
deployed slat increases the complexity of the flow and, consecutively, the challenge for the methodol-
ogy application. In addition to the first vortex which separates at the wing’s apex, a secondary structure
separates above the deployed slat.

(a) Model53 (b) Model56

Figure 4: Wind tunnel models 53 and 56 in the W/T A facility at TUM.

The wind tunnel models (Fig. 4) are produced by means of a peculiar technique which employs a additive
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manufacturing technique to produce a model provided with internal taps for the measurement of station-
ary surface pressures [16]. The wind tunnel models are equippied with a generic fuselage and peniche
support, also produced by additive manufacturing and they are measured at the Wind Tunnel A (W/T-A)
facility at TUM. The flow conditions correspond to a Mach number of 0.15 and a Reynolds number of
1.7 ·106 based on the mean aerodynamic chord. A wide range of angles of attack have been measured but
for the information required in this work, only the angle of attack with the largest discrepancy between
the numerical and experimental data is reported which is AoA = 28.

Table 2: Model53/56: Wing geometry parameters.

Model cr[m] ct [m] λ ϕT E Sre f [m2] Λ lµ[m]

Model53 0.75 0.12 0.16 -2.7◦ 0.204 2.06 0.51
Model56 0.75 0.11 0.146 -2.7◦ 0.182 1.92 0.505

The availability of a sweep angle variation of the same geometry provides the possibility to perform the
calibration process on one sweep angle, and then, validate the optimized model on the other. Hence, first
of all the accuracy improvement is analyzed on the calibration case and, secondly, the predictive capabil-
ity is checked by applying the same turbulence model to the validation case. This is of major importance
for verifying that the methodology is able to furnish a model which extends its accuracy enhancement
to a certain range of variations from the calibration case. Being the sweep angle a sensitive parameter
with regards to the vortex type and stage, this validation delivers important information about the well
behavior of the methodology for its extensive application for a larger database with small to moderate
variations. The Model53 is chosen as the calibration case whereas the Model56 as the validation one.

Figure 5: Optimization convergence of the objective function and the turbulence model coefficients along
the iterations of the procedure for the Model53 at AoA = 28°.

The calibration procedure is performed on the angle of attack of 28° and it provides a significant im-
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Table 3: Optimized set of coefficients for the Model53.

Coefficient cbv1 cbvh1 cbvh2

Value 0.41 -0.11 -0.10

provement of the mean average error of the surface pressure coefficient distribution (Fig. 5). The final
set of coefficients is selected as optimized model and it includes three parameters of the additional turbu-
lence model terms (Tab. 3). The terms which have been excluded for the calibration have indicated a low
sensitivity, similar to other terms during the preliminary sensitivity testing and other optimization pro-
cedures derived from different starting points for addressing the locality. Compared to the baseline SAE
model, the improvement is significant for different angles of attack for both the calibration (Tab. 4) and
the validation cases (Tab. 5). This shows the potential of the methodology to improve a certain extension
of cases around the calibration case with a significant accuracy improvement.

Table 4: Mean absolute error between numerical and experimental surface pressure data for the Model53.

AoA ◦ SAE model Optimized Difference
25 0.1570 0.1348 -14.1%
28 0.4253 0.1411 -66.8%

Table 5: Mean absolute error between numerical and experimental surface pressure data for the Model56.

AoA ◦ SAE model Optimized Difference
25 0.1905 0.1609 -15.5%
28 0.2885 0.1986 -31.2%
30 0.4622 0.1182 -74.4%

The surface pressure distribution of the wing for the calibration case at AoA = 28 shows a significant
difference of the solutions for the baseline and the optimized model (Fig. 6). Whereas the baseline
SAE model predicts a developed vortex downward nearly 60% of the wing root chord where breakdown
occurs, the optimized model returns a fully stalled and vortex shed condition. Therefore, the grade of
accuracy with the experimental data is improved. Instead of a suction peak, a flat distribution is visible
above the complete wing providing a significant match with the experimental data. The available pressure
data on the lower wing surface indicate how the sensitivity of the vortex source terms is present only in
the vortex flow field. In fact, there is no significant variation between the two turbulence models and
they both match with the experimental data on the lower surface where an attached flow is present. The
two apex and slat vortices are of different nature because of their different effective angles of attack and
the different geometrical contour that the flow has to follow. The interaction between the two vortices
shows how the breakdown of the less stable apex vortex triggers the slat vortex to burst and merge
into a common chaotic wake. The suction level downstream of breakdown has a certain offset to the
experimental data when the optimized model is employed. In general, the accuracy improvement is
significant (Tab. 4) and the optimized model is chosen as an optimal set of coefficients to be applied for
similar test cases of non-slender delta wings, i.e. with a sweep angle in the proximity of 53°.

For the Model56 treated as validation case the same AoA as for the Model53 calibration case, namely
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Figure 6: CP surface contour plots and sectional Cp distributions of the Model53 at the flow conditions
of M = 0.15, Re = 1.7 ·106 and AoA = 28. The numerical results of the baseline (SAE) and the optimized
model (OPT) (Tab. 3) are compared to the experimental data (W/T Data).

Figure 7: CP surface contour plots and sectional Cp distributions of the Model56 at the flow conditions of
M = 0.15, Re = 1.7 ·106 and AoA = 28°. The numerical results of the baseline (SAE) and the optimized
model (OPT) (Tab. 3) are compared to the experimental data (W/T Data).
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AoA = 28°, is chosen in order to show the significant improvement achieved with a different flow field
from the calibration case. In this case, the experimental data indicate that no stall condition is reached.
Instead a fully developed vortex with breakdown instability is present, however, the breakdown posi-
tion is much upstream compared to the SAE numerical result. The application of the optimized model
provides an accurate match with experimental data (Tab. 5)

5.3 Extension of the Optimized Model to other Test Cases

The optimized model on the Model53 is used in the following section for the cluster of cases highlighted
in Figure 2 which share a similar sweep angle but significant differences for other features.

The extension of the optimized model (Tab. 4) is firstly performed as a direct application to the AVT-183
diamond wing configuration and a Blended Wing Body test cases. This approach is usually performed
when the modeler has the availability of an optimized model for a case with relatively moderate differ-
ences in terms of the vortex flow field evolution.

Secondly, the ANN methodology described in Section 4 is applied for the more interesting angle of
attack for additional test cases in order to evaluate the potential of the method to extend the predictive
capability of the available calibrated turbulence models.

5.3.1 AVT-183 Configuration

The AVT-183 test case consists of a 53° swept diamond wing and it has been the target of the investigation
performed in the NATO-STO AVT-183 task group [17, 18]. The geometry has a rounded leading-edge
shape which causes partially developed vortex stages in the range of smaller angles of attack. The
research task group selected as target feature the prediction of the separation onset with the numerical
simulations. However, data are available also for larger angles of attack which are employed in this
work for the verification of the turbulence model optimized on the Model53. The flow conditions are a
Mach number of 0.15, i.e. equal to the Model53, and a Reynolds number of 2.7 ·106 based on the mean
aerodynamic chord. Except for the sweep angle which is also 53°, different geometrical features are
present compared to the Model53 (Tab.6). Moreover, the wind tunnel geometry is also a half model but
it is mounted on a peniche without a generic fuselage which may influence differently the development
of the vortex system. In addition, no deployed slat geometry is present, hence a singular vortex flow
separates at the wing’s leading edge. Therefore, the test case provides a challenging benchmark for the
extension of an available optimized model.

Table 6: AVT-183: wing geometry parameters.

cr[m] ct [m] λ ϕLE ϕT E Sre f [m2] Λ lµ[m] r/cr

1.2 0.0 - 53◦ -26.5◦ 0.394 2.191 0.8 0.246

With respect to an AoA of 28°, the numerical results with the baseline SAE model provides a fully
developed vortex with breakdown (Fig. 8). The breakdown location appears to be between x/cr = 0.1
and 0.2 where a significant drop in the suction values is present and downstream of that a flat distribution
dominates the wing surface. The development of the suction distribution along the cross-flow sections
(Fig. 9= is comparable to the Model53 case but the breakdown location is much more upstream. The
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Figure 8: CP surface contour plot of the AVT-183 diamond wing at the flow conditions of M = 0.15, Re
= 2.7 ·106 and AoA = 28°. The numerical results of the baseline (SAE) and the optimized model (OPT)
(Tab. 3) are compared.

difference is reasonable due to the mentioned geometrical differences, in particular, the deployed slat
on the Model53 provides a more stable vortex which delays the breakdown instability phenomenon.
The application of the optimized set of turbulence model coefficients on the Model53 provides a similar
variation of the vortex flow stage and a comparable improvement of the prediction to the experimental
data. In fact, not only the vortex stage is now correctly predicted as a stall condition is achieved but the
CP values show only small discrepancies compared to the experimental data downstream.

The angle of attack of 32° is characterized by the presence of a stall condition already with the baseline
SAE model and a flat CP distribution is evident. However, the suction level is larger compared to the
experimental data as spurious tangential and rotational velocities are not dissipated through the shedding
of the vortex directly at the leading edge and provide an additional suction to the wing surface. The
application of the optimized model do improve the suction level to a certain amount but the accuracy
improvement with the experimental data is fairly lower compared to the 28° angle of attack case.

As second step, the ANN method is applied to the case of AoA = 32 as target. The set of coefficients
predicted by the ANN model (Tab. 7) is then applied for a numerical simulation. The contour surface plot
is visualized in comparison to the SAE model in Figure 9 and it shows how the correct stall condition
is still predicted by the machine learning (ML). Moreover, the suction distribution is better than the
SAE baseline model as the spurious velocities of the stalled flow which maintain a higher suction level
above the wing are better dissipated and the level of suction is closer to the experimental data (Figure 9).
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Figure 9: CP surface contour plot and sectional Cp distributions of the AVT-183 diamond wing at the
flow conditions of M = 0.15, Re = 2.7 · 106 and AoA = [28,32]°. The numerical results of the baseline
(SAE), the model optimized on the Model53 (OPT) (Tab. 3) and the model predicted with the ANN
methodology (ML) are compared to the experimental data (W/T Data).

The result is close to the accuracy improvement achieved with the optimized turbulence model on the
Model53 for the region from x/cr = 0.2 and downwards. However, the first cross-section cut shows an
even better prediction of the surface CP distribution than the Model53 optimum, because it is flatter and
at lower suction level.

Table 7: Set of coefficients predicted with the ANN model for the AVT-183 diamond wing.

Coefficient cbv1 cbvh1 cbvh2

Value 0.2479 -0.02574 0.04235

5.3.2 SAGITTA Blended Wing Body Configuration

As additional test case for the application of the ML methodology employing the ANN model, the
SAGITTA blended wing body geometry is selected which consists of a 55° swept diamond wing config-
uration [19, 20]. The wind tunnel model is a full model and it has been mounted through a sting support
which is also included in the numerical simulations. The measurements are performed at M = 0.1 and
Re = 1.77 ·106 based on the mean aerodynamic chord for the high angles of attack region. The test case
employs some differences with regard to the other test cases reported in this work. The major differences
are the larger sweep angle, the body thickness and also the leading-edge curvature which is rounded.
With the application of the ML-methodology a slightly different set of coefficients is predicted (Tab. 9).
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The target angle of attack has been selected to be 36°.

Table 8: Blended Wing Body: wing geometry parameters.

cr[m] ct [m] λ ϕLE ϕT E Sre f [m2] Λ lµ[m] r/cr

1.2 0.03 - 55◦ -25◦ 0.759 2.001 var height

Table 9: Set of coefficients predicted with the ANN model for the blended wing body.

Coefficient cbv1 cbvh1 cbvh2

Value 0.23378 -0.001 -0.0403

At AoA = 36° the vortex flow predicted by the SAE baseline model consists of a fully developed vortex
with breakdown in the region between x/cr = 0.3 and 0.4 (Fig. 10). The SAE turbulence model shows
a larger suction peak compared to the experimental data in the first two cross-flow sections whereas
downstream of breakdown the accuracy is quite good. The experimental data also manifests the presence
of the same vortex flow stage and not a full stall condition as it was the case of the calibration target of the
Model53. The application of the ML-predicted set of coefficients improves the accuracy of the vortex
flow related to the experimental data without changing the vortex flow stage. The suction footprint is
sensitively reduced in the front part of the wing and the vortex flow acquires a physical oscillating nature
in contrast to the baseline model. This phenomenon indicates that the additional vortex destruction of
the turbulence model reduces the dissipation effect of the large eddy viscosity quantities produced with
the baseline SAE model. Hence, the lower dissipation model produces unsteady flow phenomena and an
oscillation of convergence which is physical in the case of highly unstable vortex flows at high angles
of attack. In general, the accuracy improvement of this test case is appreciable and comparable with the
other test cases. This provides an additional confirmation of the possibility to use the data available to
extend the predictive capability of the methodology.

6 CONCLUSION AND OUTLOOK

The present results show how the turbulence model modification introducing additional source terms
exclusively active in the vortex flow regions manifests the properties set as objective of its formulation
and development. Hence, it does not introduce numerical instabilities or significant additional compu-
tational costs. Moreover, it is able to influence the vortex flow field only without worsening regions of
attached flow where the baseline model is already well calibrated. The different additional turbulence
terms are able to influence with flexibility and variable intensity different types and regions of the vortex
flow development.

The methodology is applied to a generic 53° swept delta wing, called Model53, and it has shown a
consistent accuracy improvement throughout the angle-of-attack polar. The range of predictive capability
is, therefore, investigated by means of different steps. First of all, the optimized model is applied to a
close validation case which is the Model56 that consists of a sweep angle variation of +3°. The validation
case confirms a comparable grade of accuracy improvement of the calibration case. Second, the model
is applied to a cluster of available test cases which share partial similarities to the calibration case with
respect to their geometries and the class of vortex flow. The application of the previously optimized
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Figure 10: CP surface contour plot and sectional Cp distribution of the Blended Wing Body at the flow
conditions of M = 0.1, Re = 1.77 · 106 and AoA = 36°. The numerical results of the baseline (SAE)
and the model predicted with the ANN methodology (ML) are compared to the experimental data (W/T
Data).

model show consistent improvements with respect to these additional cases. This confirms the potential
of the methodology to be applied for a significant extension of geometries and flow conditions around
the calibration case.

An important drawback is highlighted which consists of the limitation of the calibrated model which
reduces its accuracy improvement if a significant difference in terms of geometry and flow condition is
investigated. Hence, if a new test case needs to be investigated and no experimental data is available,
the methodology might lack of efficient utility. For this reason, an additional methodology is introduced
which employs an artificial neural network which is trained on all the available data from previous op-
timization procedures in order to predict a proper model calibration for a new test case in relation to its
geometry and flow condition parameters. The methodology is applied on the additional validation test
cases reported in this work, showing promising improvements with respect to the vortex flow develop-
ment and accuracy related to the experimental data.

As an outlook to the research, additional test cases are ongoing to be investigated to further address the
potential of the methodology for different flow cases. Moreover, the machine learning extension can be
further improved by means of increase the complexity of the neural network and the amount of data in
parallel.
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