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Abstract. The numerical simulation of modern engineering problems via finite elements requires the
solution of sparse linear systems of millions or even billions of unknowns. The algebraic multigrid
(AMG) methods are the most common choice as linear solvers because of their fast convergence even for
large-size problems. In this communication, we propose Chronos, a massively parallel implementation of
a novel AMG framework, specifically designed to address complex problems by adapting its components,
from the smoother, to the coarse grid correction and prolongation to the problem at hand. This work
demonstrates not only the numerical performance of the proposed library, but also its robustness and
adaptability to very challenging matrices, arising from different fields of application.

1 INTRODUCTION

Numerical simulation is a very common tool in a large number of applications, ranging from structural
mechanics, to underground processes, computational fluid-dynamics, electromagnetism and many oth-
ers. All these kinds of simulations usually require a very high resolution with computational domains
easily consisting of several millions or even billions of unknowns [16]. When solving such problems with
implicit numerical methods, the associated matrix is very large and sparse. A single solution suffices for
linear problems. For nonlinear problems, however, within each increment, the system of non-linear equa-
tions is often linearized and solved with a Newton-Raphson iteration scheme, which requires a number
of linear solver solutions. In any case, the use of high performance computing is often necessary, and the
development of efficient and scalable sparse linear solvers is an important research topic.

Algebraic multigrid (AMG) methods are often the best choice as preconditioners for the iterative solu-
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tion of large size 3D problems arising from the discretization of PDEs [14, 15, 17]. The main advantage
of AMG methods is represented by their theoretical optimality, as, at least in the ideal case, the number
of iterations to converge does not increase with the problem size. AMG optimality is obtained through
the complementary action of the smoother, responsible to dump the error components associated to high
frequencies, and the coarse grid correction that takes care of the lower part of the spectrum. Unfortu-
nately, in ill-conditioned real-world problems the standard AMG method is far to be optimal with its
performance strictly related to a proper selection of the set-up parameters [7, 13].

In this work, we propose Chronos a massively parallel implementation of a novel AMG framework [12,
6] which is able to adapt all of its components to the problem at hand, from the smoother set-up, to the
coarse grid hierarchy and prolongation definition. This is achieved by guessing and iteratively improving
in a bootstrap fashion the near-null space of the system, which allows for both testing the smoother and
the prolongation operator as well as for inferring the connection strengths between system unknowns.
In this communication, we restrict our attention to Symmetric Positive Definite (SPD) matrices, and
the Chronos performance is assessed through the solution of several engineering problems including
structural mechanics, CFD and underground applications, on modern super computers. It is shown that
the proposed approach brings together both known and novel algorithms with the aim of improving AMG
performance in ill-conditioned systems requiring no other information but the system matrix.

The remainder of the paper is organized as follows. In the next section, we briefly recall the basic
concepts of classical AMG describing both its set-up and application to a vector. In the third section,
those specif features making Chronos an effective general purpose solver are outlined and assessed in
the fourth section on a wide set of test benchmarks. We finally close the paper with some concluding
remarks and ideas for further investigations.

2 CLASSICAL ALGEBRAIC MULTIGRID

The effectiveness of any AMG method is based on a good interplay between the following components:

• Smoother, which is a simple preconditioner applied to damp the high frequency error modes;

• Coarsening, where coarse level variables are selectd as principal unknowns for the next level;

• Prolongation, which is the transfer operator between coarse and fine variables.

As already mentioned, the present work is focused on the classical AMG setting, and below we will
briefly recall the basic concepts behind this method, referring the interested reader to more detailed and
rigorous descriptions in the works [14, 15, 17]. For clearness, the explanation is restricted to a two levels
only scheme, as the multilevel version can be easily obtained by recursion.

The first component that is typically set-up in AMG is the smoother, a simpler preconditioner used in
a stationary iterative method which is responsible for eliminating the error modes associated with large
eigenvalues of A, sometimes also referred to as the high frequency errors. The smoother is generally a
rough approximation of A−1 'M−1 with its operator represented by the equation below:

S = I−ωM−1A, (1)

with I the identity matrix and ω a relaxation factor necessary whenever ρ(M−1A) > 2, see e.g. [6] for
an explanation. Typilly, the smoother is given by a simple pointwise relaxation method such as (block)
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Giovanni Isotton, Matteo Frigo, Nicolò Spiezia, Seid Koric, Qiyue Lu and Carlo Janna

Jacobi or Gauss-Seidel, with the second one often preferred even though its efficient parallel implemen-
tation is not straightforward. In Chronos, we use the adaptive Factorized Sparse Approximate Inverse
(aFSAI) [9], beacuse of its almost perfect strong scalability and its proven robustness in real engineering
problems [1, 8].

The second component of AMG is the so-called Coarse-Grid Correction (CGC), that is the A-orthogonal
projection operation that should take care of the low-frequency error modes. To build CGC in classical
AMG, the unknowns of a given level are divided into a Fine/Coarse (F/C) partition, with coarse variables
those becoming the next level unknowns. Coarse variables choice is crucial in the AMG construction, as
it determines both the rate at which the problem size is reduced and the convergence of the method. A
slow rate of problem size reduction may lead to a too expensive preconditioner, while a too fast rate may
result in a large number of iterations.

In this communication, we rely on the concept of Strength of Connection (SoC), that is we associate to
each edge of the adjacency graph of A a measure of its relative importance. Using SoC, we rank the graph
connections and filter out the smallest ones. A maximum independent set (MIS) is finally constructed on
the filtered graph to determine coarse variables.

Algorithm 2.1 AMG Set-up
1: procedure AMG SETUP(Ak)
2: Define Ωk as the set of the nk vertices of the adjacency graph of Ak;
3: if nk is small enough to allow for a direct factorization then
4: Compute Ak = LkLT

k ;
5: else
6: Compute Mk such that M−1

k ' A−1
k ;

7: Define the smoother as Sk =
(
Ik−ωkM−1

k Ak
)
;

8: Partition Ωk into the disjoint sets Ck and Fk via coarsening;
9: Compute the prolongation matrix Pk from Ck to Ωk;

10: Compute the new coarse level matrix Ak+1 = PT
k AkPk;

11: Call AMG SetUp(Ak+1);
12: end if
13: end procedure

Only for the sake of explanation, the system matrix is ordered according to this (C/F) partitioning, by
numbering first fine variables and second coarse ones:

A =

[
A f f A f c

AT
f c Acc

]
(2)

where A f f and Acc are n f × n f and nc × nc matrices, respectively. Using this F/C ordering (2), the
prolongation operator P takes the following form:

P =

[
W
I

]
, (3)

where W is a n f × nc matrix containing the weights for coarse-to-fine variable interpolation. As the
system matrix is SPD, we assume a Galerkin approach in defining the restriction operator R as the
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transpose of P, with the coarse level matrix Ac simply given by the triple matrix product:

Ac = PT AP (4)

In practice, fast convergence and rapid coarsening, i.e. high F/C ratios, are always desired, and the con-
struction of effective prolongation operators is of paramount importance to conciliate these conflicting
requirements.

Having defined all the above components, the set-up phase of the two-level multigrid method is com-
pleted and the iteration matrix is given by:

(S)ν2
(
I−PAc

−1PT A
)
(S)ν1 (5)

with ν1 and ν2 representing the number smoothing steps performed before and after the coarse-grid
correction, respectively.

Algorithms 2.1 and 2.2 briefly report the general AMG set-up phase and application in a V-cycle, re-
spectively, in a multilevel framework, where it is conventionally assumed that A0 = A, y0 = y and z0 = z.
Some details on the adopted computational kernels sketched in 2.1 will be discussed in the next sections.

Algorithm 2.2 AMG application in a V-cycle
1: procedure AMG APPLY(Ak, yk, zk)
2: if k is the last level then
3: Solve Akzk = yk using Lk, the exact Cholesky factor of Ak;
4: else
5: Compute sk by applying ν1 smoothing steps to Aksk = yk with s0 = 0;
6: Compute the residual rk = yk−Aksk;
7: Restrict the residual to the coarse grid rk+1 = PT

k rk;
8: Call AMG Apply(Ak+1,rk+1,dk+1);
9: Prolongate the correction to the fine grid dk = Pkdk+1;

10: Update sk← sk +dk;
11: Compute zk by applying ν2 smoothing steps to Akzk = yk with z0 = sk;
12: end if
13: end procedure

3 SPECIAL FEATURES AVAILABLE IN CHRONOS TO INCREASE PERFORMANCE

AMG preconditioning is very popular and is available from several open source and commercial pack-
ages. Its parallelization does not present particular difficulties as mainly relies on standard sparse linear
algebra operations such as sparse matrix by matrix and matrix by vector products or other basic tasks
which are nowadays readily handled by the highly optimized Basic Linear Algebra Operations (BLAS)
routines [5]. The only two tasks that present some difficulties from the parallelization viewpoint are the
smoother set-up and application [2] and the coarsening stage [4, 3], which have been deeply investigated
by several authors in recent years.

We choose aFSAI as a smoother which has proven effective in several applications. By distinction
to Gauss-Seidel smoother, aFSAI application is perfectly parallel also in the application as, giving an
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explicit approximation of the system inverse, it can be applied simply by a matrix-vector product. The
price to pay for the use of aFSAI is a not always negligible set-up cost that is usually compensated
by a faster covergence, especially in ill-conditioned problems [12, 6], where standard smoother fail in
dumping high frequencies.

Another important ingredient included in Chronos is the availability of different prolongation approaches,
allowing its use in different context. Chronos provides the classical interpolation formula, which is usu-
ally the best compromise between complexity and effectiveness for standard Poisson problems, as well
as extended plus i interpolation for more challenging diffusion-like problems. Traditionally, these pro-
longation methods are not completely satisfactory for 3D elasticity, where aggregation-based AMG is
usually preferred. To overcome this issue, Chronos also makes available the so-called BAMG prolonga-
tion whose coefficients are computed by fitting a set of test vectors through a least square minimization
process. The test vectors must represent, at least approximately, the near null space of the operator and,
in the case of elasticity, they can be guessed using the Rigid Body Modes (RBM) of the free body [6].

4 NUMERICAL RESULTS

In this section, we assess Chronos robustness and efficiency on a set of benchmarks from various ap-
plication fields. We test the solver on the Marconi100 supercomputer which is hosted at Cineca, the
Italian center for high performance computing. Marconi100, classified within the first ten positions of
the TOP500 ranking at the time of writing, is composed by 980 nodes based on the IBM Power9 archi-
tecture each equipped with two 16-cores IBM POWER9 AC922 processors at 3.1 GHz. The matrices
chosen for the tests are shown in Table 1 along with the number of rows, the number of non-zeroes and
the application fields they arise from.

Table 1: Matrices used in the test examples. The table provides the matrix name along with the number
of rows, the number of non-zeroes and the application field each matrix arises from

Matrix name # of rows # of non-zeroes Application Field
FINGER4M 4,718,592 23,591,424 3D flow
GUENDA11M 11,452,398 512,484,300 3D geomechanics
AGG14M 14,106,408 633,142,730 3D mesoscale
M20 20,056,050 1,634,926,088 3D mechanical
TRIPOD24M 24,186,993 1,111,751,217 3D mechanical
C4ZZ44M 44,798,517 747,633,815 3D biomechanics
GEO61M 61,813,395 4,966,380,225 3D geomechanics
POI65M 65,939,264 460,595,552 3D flow
PFLOW73M 73,623,733 2,201,828,891 3D flow
C4ZZ134M 134,395,551 10,806,265,323 3D biomechanics

The matrices listed in Table 1 have been generated from real-world problems, arising from different
domains such as mechanics, geomechanics, biomechanics, fluid dynamics, porous flow and so on. For
example Figure 1a shows the mesh corresponding to the matrix GUENDA11M, while Figure 1b shows
the mesh corresponding to matrix C4ZZ44M. The former is a numerical simulation commonly used to
asses the geomechanical effects related to subsurface resource exploitation, such as water, oil and gas
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(a) GUENDA11M (b) C4ZZ44M

Figure 1: Examples of real-world problems that give rise to two of the matrices presented in this section.

withdraw/injection. The latter represents the complex conformation of the urethral duct, with particular
regard to the bulbar region. The relevance of computational modeling of this anatomical region per-
tains to the investigation of interaction phenomena between artificial sphincter devices and biological
tissues [10, 11]. For both these examples, the creation of accurate computational grid is of paramount
importance.

For each matrix, we allocate a different number of nodes which is proportional to its number of non-
zeroes and we use different preconditioning techniques precisely to highlight how an appropriate choice
may greatly reduce the solution time. We use PCG as iterative solver and we consider convergence
achieved when the norm of the residual relative to the right-hand-side falls below a tolerance of 10.0−8.
Moreover, to ensure that the iterative solution is accurate enough, we validate the final solution against
that obtained through a direct solver.

As can be noticed from Table 2, the time reduction may be significant. For some mechanical problems,
we also report the performance obtained by using only aFSAI preconditioning instead of AMG. In those
cases, it can be noted that the number of iterations is greatly reduced with respect to pure aFSAI at the
price of a more expensive preconditioner. Nevertheless, BAMG interpolation always outperforms aFSAI
with the exception of GEO61M, which proves a relatively easy problem as also aFSAI needs just few
iterations to converge.

In Figure 2, we report the set-up and solve times divided by the number of unknowns assigned to each
Marconi100 node and normalized over the average. This quantity is defined to compare our benchmark
problems having different sizes and requiring different amount of resources. The purpose of this graph is
to show that Chronos, with a proper set-up, is able to solve each problem in a time that depends only on
its size and on the allocated computational resources. In the ideal case, we would have obtained an height
equal to 1.0 for each column. If we exclude the matrix PFLOW73M which is extremely ill-conditioned, we
can observe that the normalized times are very close to 1.0 as is desired.

We finally close this section with strong and weak scalability tests. Figure 3 shows how the total solution
time for the matrix C4ZZ134M varies with the allocated resources, from 25 to 200 nodes. The dashed line
represents the ideal time, that is the time that would have been obtained with a perfect scaling. It can
be observed that Chronos result is very close to the ideal profile. For the weak scalability test, we use
a 7 point discretization of the Poisson problem assigning about 7,040,000 unknowns to each node and
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Table 2: Performance of Chronos on the test matrices. For each matrix it is provided the number of
Marconi100 nodes allocated, the type of preconditioning, the number of iterations, the grid and operator
complexities, the set-up time Tp, the solve time Ts and the total time Tt = Tp + Ts in seconds.

Matrix name # nodes prec # iters gr. comp op. comp Tp [s] Ts [s] Tt [s]
FINGER4M 1 EXTI 17 1.452 2.555 2.2 0.4 2.6

CLAS 38 1.467 1.870 2.1 0.9 3.0
HYBC 20 1.464 2.051 2.2 0.5 2.6

GUENDA11M 2 aFSAI 3831 - - 58.3 197.8 256.2
BAMG 726 1.040 1.118 33.1 75.7 109.0

AGG14M 4 aFSAI 647 - - 36.0 21.5 57.6
BAMG 133 1.085 1.286 33.5 22.3 55.8

M20 4 aFSAI 3972 - - 72.2 368.0 440.2
BAMG 151 1.054 1.677 170.5 70.1 240.7

TRIPOD24M 5 aFSAI 2821 - - 60.8 127.6 188.4
BAMG 222 1.041 1.116 24.2 22.2 46.5

C4ZZ44M 12 EXTI 16 1.573 2.580 34.0 3.0 37.0
CLAS 46 1.611 1.944 23.2 6.5 29.7
HYBC 35 1.585 2.032 26.6 6.1 32.7

GEO61M 12 aFSAI 609 - - 27.2 37.2 64.4
BAMG 224 1.029 1.048 55.4 48.9 104.0

POI65M 8 EXTI 15 1.344 4.475 37.7 1.84 39.5
CLAS 26 1.381 2.332 30.6 4.12 34.7
HYBC 16 1.360 2.881 24.1 1.79 25.9

PFLOW73M 8 EXTI 2233 1.234 2.345 46.6 544.0 590.6
CLAS 1987 1.236 1.391 19.4 472.5 491.9
HYBC 1991 1.234 1.448 20.8 399.7 420.5

C4ZZ134M 25 aFSAI 4393 - - 108.9 317.9 426.8
BAMG 173 1.028 1.189 204.6 59.4 264.0

increasing the number of nodes from 8 to 64. Again, it can be observed that both solution time and the
number of iterations remain almost constant for every test, as is theoretically expected.

5 CONCLUSIONS AND FUTURE WORK

This work presents Chronos, an effective general purpose AMG solver. The proposed framework brings
together both well known and novel algorithms adapting all of its components to the specific prob-
lem at hand regardless to the application it arose from. A set of real world problems, including struc-
tural mechanics, CFD and underground applications, are solved on the modern super computer Mar-
coni100 to assess the numerical performance of Chronos. It is shown through an extensive experi-
mentation that the package is robust and effective in addressing a wide range of industrial applications
with several solution strategies. Chronos is available along with the source of a sample program from
https://www.m3eweb.it/chronos/ for research purpose and benchmarking. The next steps will be the ex-
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Figure 2: Set-Up and Solve times divided by the number of equations per node.

Figure 3: Strong scalability test on C4ZZ134M (left) with total solution time, Tt , vs. number of Mar-
coni100 nodes. Solid line represents the true wall time, dashed line ideal time. Weak scalability test on a
3D Poisson problem (right) showing both total solution time and number of iterations to converge. The
computational load on each Marconi100 node is kept constant at about 7,040,000 equations.

tensive benchmarking of the GPU-accelerated version and the development of a new implementation for
the next generation FPGA systems.
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