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Abstract. This proceeding proposes an efficient generalized beam theory formulation, which accounts
for cross-sectional deformations in slender prismatic structures. It was shown by the authors in a recent
publication [1] that in-plane distortional deformations and accompanied out of plane warping deforma-
tions of the cross-section influence the accuracy of results in beam dynamics especially if thin-walled
cross-sections are applied. The GBT formulation proposed in [1] overcomes the inaccuracies of classi-
cal beam mechanics, however, requires a two-dimensional plane discretization of the cross-section. The
computational complexity can be reduced vastly, if the thin-walled cross-sections can be discretized with
one-dimensional elements. Consequently, this proceeding discusses a corresponding derivation, where
the line mesh which discretizes the cross-section has six degrees of freedom at each node. The membrane
part consists of mass-less micro-polar rotations (drilling rotations) and can be derived independently from
the bending part, where a shear elastic formulation is selected.

1 Introduction

The mechanical properties of slender prismatic homogeneous or inhomogeneous structures made of
Functionally Graded Materials (FGM), referred to as beams, are typically analyzed based on Classi-
cal Beam Mechanics (CBM). There, it is assumed that the cross-section moves rigidly in space, while
out of plane (warping) deformations are only related to non-uniform warping torsion. Any in-plane de-
formations of the cross-section are neglected. The main advantages of such an approach are without any
claim to completeness

• the minimal number of degrees of freedom (three displacements and three rotations of the cross-
section added by a single degree of freedom quantifying warping deformations due to non-uniform
torsion),

• less modeling time due to simple modeling of supports and joints,

• the possibility of analytic analyses in connection with parametric results without multiple models.
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Figure 1: Deficiencies of CBM in analyzing torsional vibrations in shafts made of thin-walled box-type cross-
sections

In CBM most stiffness quantities related to constitutive parameters and to the cross-sectional shape can
be evaluated analytically by simple integration even in case of FGMs where additional homogenization
procedures are introduced (see e.g. Murin et al. [2]). However, this does not hold if a consistent eval-
uation of shear correction factors (required in Timosheko’s shear elastic beam theory) is desired, and if
stiffness quantities for non-uniform warping torsion (depending on the warping field) are needed. In the
former case the procedures by Gruttmann et al. [3] can be applied while in the latter the solution of the
Laplace equation has to be evaluated. In both cases analytical solutions cannot be performed in arbitrary
cross-sectional shapes and a discretization of the cross-section accompanied with numerical schemes
have to be applied. Besides that global displacement fields of the beam or frame structure can be ana-
lyzed analytically (or very efficient beam finite elements can be applied) and the accuracy compared to
continuum mechanics is proper in most load cases if a characteristic dimension of the cross-section χ is
significantly smaller compared to the length l of the beam (χ/l� 1).

However, the authors showed recently that the accuracy of CBM deteriorates significantly especially if
static or dynamic torsion analyses of shafts with thin-walled box-type cross-sections are performed (see
Fig. 1 where torsional vibration is studied in a quite slender shaft, indicating that CBM does not even
come close to continuum (or shell) results since in-plane distortions influence the mechanical properties
significantly [1, 4]1). These effects are also observed by Sapountzakis et al. [5, 6] where also buckling
analyses are considered. In order to circumvent the insufficient accuracy of CBM in thin-walled sin-
gle or multi-cell box type cross-sections, however, maintaining a moderate number of global degrees of
freedom, a Generalized Beam Theory (GBT) can be applied (see [1] and [5] for a comprehensive litera-
ture review and a discussion of main contributions in that field). After all, GBT is a two-step algorithm
consisting of a cross-sectional analysis defining warping and distortional fields, followed by a member
analysis, where those deformation fields are weighed axially along the beam. Kugler et al. propose a
new form of GBT and the main ingredients are summarized subsequently (for additional details refer
to [1, 4]):

1. Cross-sectional analysis: The cross-section is discretized with Semi-Analytical Finite Elements

1See [1, 4] where additional deficiencies of CBM are discussed in case of unsymmetrical cross-sections and FGM cross-
sections.
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(SAFE) [7] to efficiently analyze a Reference Beam Problem (RBP) with arbitrary length lRB

continuum-mechanically. There, the displacement fields within the RBP are interpolated based
on finite element type shape functions with respect to the cross-sectional coordinates ym and zm,
while their axial variation is modeled based on a Fourier series. The specific form of the Fourier
series expansion defines the kinematic boundary conditions of the RBP at x = 0 and x = lRB, and
we apply a variation of the transverse displacements based on sine functions and the variation of
the axial displacements based on cosine functions2. Thus, we have on element level, ux(x,ξ,η)

uym(x,ξ,η)
uzm(x,ξ,η)

= ∑
n

 Ncos(αnx) 0 0
0 Nsin(αnx) 0
0 0 Nsin(αnx)


 U(e)n

x

U(e)n
ym

U(e)n
zm

 , (1)

with the bilinear shape functions N(ξ,η) with finite element parameter coordinates ξ and η, and

the nodal displacement amplitudes U(e)n
i =

[
U (1)n

i · · · U (4)n
i

]T
depending on the number of

harmonic n, while αn =
nπ

lRB
. Now, the key idea of our proposed procedure is the application of only

the FIRST wave number n = 1 and use (1) to perform a free vibration analysis (modal analysis
in connection with the principle of virtual work, three-dimensional strain-displacement relations
and three-dimensional elasticity) of the RBP. Each resulting eigenvector Γi (i-th mode shapes) in
ascending order of corresponding eigenvalues (resonance frequencies ωi of the RBP) is split up
into couples consisting of out of plane warping modes,

w(i)(ym,zm) = U(i)
x , (2)

and in-plane distortion modes,

d(i)(ym,zm) =

[
d(i)

ym

d(i)
zm

]
=

[
U(i)

ym

U(i)
zm

]
, (3)

which are scaled independently in order to avoid small numbers. The first four modes i = 1 . . .4
correspond to rigid body movement of the cross-section if lRB � χ (an linear fitting operation is
proposed to extract the pure rigid body modes) and all mode couples i > 4 contribute to a higher
order beam theory. These i = 1 . . . imax mode couples with imax > 4 represent pairs of warping and
distortion modes of the cross-section and are weighed axially in the up-coming member analysis.

2. Member analysis: The true beam problem (opposing to the afore-mentioned artificial reference
beam problem) is discretized with four noded GBT beam elements (cubic finite element type
shape functions to avoid locking phenomena) and the displacement field in each element results
from weighing the warping and distortion mode couples (2) and (3) axially,

ux(ξ,η,x) =
imax

∑
i=1

u(i)x (ξ,η,x) =
imax

∑
i=1

N(ξ,η)w(i)
e αi(x), (4)

uym(ξ,η,x) =
imax

∑
i=1

u(i)ym(ξ,η,x) =
imax

∑
i=1

N(ξ,η)d(i)
ymeβi(x), (5)

2This leads to a simply supported RBP for transverse action, a double sided fork supported RBP for torsional action and an
unrestrained RBP for axial action (see [1] for a thorough discussion).
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uzm(ξ,η,x) =
imax

∑
i=1

u(i)zm (ξ,η,x) =
imax

∑
i=1

N(ξ,η)d(i)
zmeβi(x). (6)

The GBT degrees of freedom αi(x) and βi(x) are interpolated based on cubic shape functions,

αi(x) =
[

NB1 · · · NB4
]

A(i)
1
...

A(i)
4

 , βi(x) =
[

NB1 · · · NB4
]

B(i)
1
...

B(i)
4

 , (7)

and the displacements (4)-(6) are introduced into the principle of virtual work where strains ε and
stresses σ are found using the corresponding three-dimensional definition,

εkl =
1
2
(uk,l +ul,k) , σmn = cmnklεkl. (8)

There, a comma in the index refers to partial derivative and cmnkl denotes the elasticity tensor,
where we assume one-dimensional elasticity for each stress component. A straight forward deriva-
tion detailed in [1] leads to GBT beam element stiffness and mass matrices, which are assembled to
the global problem definition of the true beam problem. Physical convergence of the GBT results
compared to continuum results is ensured by the number of contributing warping and distortion
couples imax, while numerical convergence occurs due to the number of semi-analytical finite ele-
ments in the cross-sectional analysis and due to the number of GBT beam elements in the member
analysis.

It is shown in [1,4] that the proposed solution algorithm improves the performance of CBT significantly,
especially in cases where thin-walled box type cross-section are considered and torsional loading is
applied. Additionally, our GBT formulation enhances the predictive quality in beam problems with
unsymmetric cross-sections where Schramm et al. [8, 9] observed that shear elastic transverse bending
load cases do not decouple based on the eigenvector of the bending stiffness tensor. Further, it can be
shown that stress distributions in FGM cross-sections can be improved by our GBT formulation.

The required computational effort in our GBT formulation is significantly lower compared to three-
dimensional continuum formulations: The cross-section has to be discretized with plane elements (and
three degrees of freedom at each node (1)) in the cross-sectional analysis, while coarse GBT beam
element discretizations suffice in the member analysis due to the cubic shape functions in connection
with 2imax nodal degrees of freedom. Note that the computational complexity is mostly defined by
the number of plane elements in the cross-sectional analysis. Firstly, the cost of the eigenvalue/vector
decomposition of the RBP with 3n degrees of freedom is roughly proportional to (3n)3, secondly in the
member analysis products of large matrices of the type PT AP have to be carried out i2max times, where
A is a 6n× 6n matrix and P is a 6n× 6 projection matrix in order to couple the mode pairs from the
cross-sectional analysis.

From the above analysis of computational complexity and from the observation that the increase of
accuracy of our GBT formulation compared to CBT is most prominent in thin-walled cross-sections
of wall thickness s, we establish the wish for improvement which will be discussed in this procedure:
The continuum mechanics of the RBP with a thin-walled cross-section using SAFE requires at least two
elements in wall-thickness direction and it is well known that the aspect ratio of continuum elements is
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aimed to be one. This means that the flange and web lengths li of the thin-walled cross-section have
to be discretized with 2li/s elements leading to large numbers of nodes n within our GBT approach.
Things can be improved considerably if line meshes can be used to discretize the cross-section. Then,
the gain in efficiency is similar to the application of shell elements in thin-walled structures compared
to an analysis using three-dimensional continuum elements for those structures, which is known to be
enormous. However, this requires a semi-analytical finite SHELL elements (SAFSE) approach within
the RBP (see Sect. 2), which - at least to the author’s knowledge - has never been proposed in literature.
While the classical SAFE approach introduces three degrees of freedom at each node (1) the SAFSE
strategy requires six degrees of freedom (three displacements and three rotations) at each node. From
shell theory it is well known that only five degrees of freedom are present in a classical approach (three
displacements and two bending angles) and the sixth in-plane rotational degree of freedom - frequently
referred to as drilling rotation - is missing. Much literature is available for the introduction of drilling
rotations in membrane elements (unphysical approaches, geometrical approaches using Allman rotations
[10], strategies using enhanced functionals [11], ...), however, the authors recently proposed the inclusion
of drilling rotations based on a micro-polar theory of elasticity, where rotations of a point occur naturally
[12–16]. These ideas will be incorporated here in the membrane part of SAFSE while shear elastic
formulations will be used in the bending part of the formulation. A coupling of membrane and bending
part is not required (and membrane locking is therefore circumvented by principle), if the line mesh of the
semi-analytical finite shell element is straight. Transverse shear locking is circumvented by using cubic
shape functions, while the principal ideas of the GBT formulation originated in [1, 4] and summarized
above remain unchanged.

2 Main part

Figure 2: Four noded semi-analytical finite shell element
(SAFSE)

Consider a four noded semi-analytical finite shell
element (SAFSE) of constant wall-thickness s and
elemental length le depicted in Fig. 2 which dis-
cretizes the profile center-line of an arbitrary thin-
walled cross-section formulated in a global ym-
zm coordinate system. The element formulation
is derived in a local Cartesian y-z coordinate sys-
tem, we assume that the element is straight and
the four nodes have equal distances between each
other. Any transformation between the local and
the global coordinate system can be carried out
using a orthogonal rotation matrix R,[

aym

azm

]
=

[
cosβ −sinβ

sinβ cosβ

][
ay

az

]
, (9)

where we assume −π≤ β≤ π and a denotes any vector. In the first step (cross-sectional analysis) a ref-
erence beam problem (RBP) of length lRB has the arbitrary thin-walled cross-section which is discretized
using the SAFSEs (x = xm). Each node has three displacement and three rotational degrees of freedom,
ui and ϕi with i = x,y,z, which can be grouped into membrane and bending degrees of freedom and
the derivation of the corresponding part of the stiffness matrix can be carried out independently as long
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as the SAFSE is straight. In order to derive the cross-sectional analysis based on the RBP introduced
in [1, 4] (see footnote 2), the the analytical variations in axial direction are proportional to sine or cosine
functions, and we have,

membrane


ux ∼ cosαx
uy ∼ sinαx
ϕz ∼ cosαx

, bending


uz ∼ sinαx
ϕx ∼ sinαx
ϕy ∼ cosαx

, (10)

with α = π/lRB. In contrast the variations of those degrees of freedom in y-direction are based on cubic
finite element type shape functions Ni(y) with i = 1 . . .4.

The RBP’s membrane part is modeled due to the virtual work of inner forces,∫
δuT

mρamdV +
∫

δε
T
smCεsmdV +2µ

∫
δεamεamdV = 0, (11)

where the first term models inertia with density ρ, acceleration am = üm = ∂2/∂t2um and um =
[

uxm uym
]T

denoting membrane displacements. A variation symbol is depicted as δ. The second part in (11) refers
to the classical symmetric membrane strain tensor εs =

[
εs

xx εs
yy γs

xy
]T with

ε
s
xx = ux,x , ε

s
yy = uy,y , γ

s
xy = ux,y +uy,x , (12)

where a comma in the index denotes a partial derivative. The elasticity matrix C is the plane stress
elasticity matrix,

C = E


1

1−ν2
ν∗

1−ν2 0
ν∗

1−ν2
1

1−ν2 0
0 0 1

2(1+ν)

 , (13)

where E denotes the Young’s modulus, ν the Poisson’s ratio and ν∗ = ν a possibly scaled Poisson’s ratio
defining the coupling between normal stresses and normal strains. The third part in (11) stems from the
functional proposed in [12] and is related to antimetric strains,

εa =
1
2
(ux,y−uy,x)+ϕz, (14)

while µ denotes a constitutive parameter which is related to the possibly scaled local shear modulus
µ = κE/(2(1+ν)). The assumed displacement field then reads,

[
uxm

uym

]
=

([
0 0 0
0 N 0

]
sin(αx)+

[
N 0 0
0 0 0

]
cos(αx)

) Ux

Uy

Φz

 , (15)

with N =
[

N1(y) · · · N4(y)
]

and α = π/lRB, the symmetric strain tensor is given by, εsm
xx

εsm
yy

γsm
xy

=

 −αN 0 0
0 N,y 0
0 0 0

sin(αx)+

 0 0 0
0 0 0

N,y αN 0

cos(αx)

 Ux

Uy

Φz

 , (16)
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and the antimetric strain component is

εam =
[ 1

2 N,y −1
2 αN N

]
cos(αx)

 Ux

Uy

Φz

 . (17)

In (15)-(17) the elemental nodal degree of freedom vector for membrane action dme =
[

UT
x UT

y Φ
T
z
]T

consists of the nodal values UT
i =

[
Ui1 · · · Ui4

]
with i = x,y and Φ

T
z =

[
Φz1 · · · Φz4

]
and in

connection with (11) we find on element level

Mmed̈me +Kmedme = 0. (18)

There, it has to be pointed out that the volume integration dV = sdxdy can be carried out analytically, and
we observe that no rotary inertia is assigned to the drilling rotations Φz leading to a positive semi-definite
mass matrix.

The RBP’s shear elastic bending part is derived based on the functional [13, 14],∫
δuT

b ρabdV +
∫

δε
T
sbCεsbdV +

Eαs

2(1+ν)

∫
δγγdV = 0, (19)

with ab denoting the second time derivative of bending displacements ub =
[

uxb uyb uzb
]T , εsb =[

εb
xx εb

yy γb
xy
]T refer to classic symmetric bending strains found from (12), C denotes the plane stress

elasticity matrix from (13), while γ =
[

γxz γyz
]

is the vector of mean transverse shear strains. The
third summand in (19) is proportional to the shear correction factor αs, which accounts for the well
known mismatch between true nonlinear transverse shear strains γxi and their constant mean value γxi (in
homogeneous cases we assume αs = 5/6). The bending displacement fields now read, uxb

uyb
uzb

=

 0 0 0
0 −zN 0
N 0 0

sin(αx)+

 0 0 zN
0 0 0
0 0 0

cos(αx)

 Uz

Φx

Φy

 , (20)

the bending strain tensor is εsb
xx

εsb
yy

γsb
xy

=

 0 0 −zαN
0 −zN,y 0
0 0 0

sin(αx)+

 0 0 0
0 0 0
0 −zαN zN,y

cos(αx)

 Uz

Φx

Φy

 , (21)

and the transverse shear strains are found from γxz = uxb,z +uzb,x and γyz = uyb,z +uzb,y as,

[
γxz
γyz

]
=

([
0 0 0

N,y −N 0

]
sin(αx)+

[
αN 0 N
0 0 0

]
cos(αx)

) Uz

Φx

Φy

 . (22)

Using the interpolations (20)-(22) in connection with the virtual work (19) leads to the finite element
equation for the bending part

Mbed̈be +Kbedbe = 0, (23)
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with dbe =
[

UT
z Φ

T
x Φ

T
y
]T and the nodal values UT

z =
[

Uz1 · · · Uz4
]

and Φ
T
i =

[
Φi1 · · · Φi4

]
with i = x,y. Again, all integrations can be carried out analytically and we note that rotary inertia is as-
signed to the bending angles leading to a positive definite mass matrix for bending Mbe.

The RBP’s semi-analytical finite shell element (SAFSE) is found easily by assembling the membrane
and bending part, [

Mme 0
0 Mbe

][
d̈me

d̈be

]
+

[
Kme 0

0 Kbe

][
dme

dbe

]
= 0, (24)

a classical assembly procedure from elemental to global matrices is understood after transforming the
matrices to the global member coordinate system ym-zm using (9),

Md̈+Kd = 0, (25)

and an eigenvalue problem is set up based on the Ansatz d = d̂sinωt. The eigenvalues ωi are used to
order the eigenvectors d̂i ascendingly, and the cross-sectional analysis is according to [1,4] completed by
extracting from each eigenvector i the nodal warping and distortional modes wi =

[
uxi ϕyi ϕzi

]T and

di =
[

uyi uzi ϕxi
]T , respectively. Independent scaling is only performed based on the displacement

components and the first four modes are fitted to true rigid body modes according to [1, 4]. These mode
couples from i = 1 . . . imax are the basis for the upcoming member analysis.

The member analysis is derived similarly to the procedures in [1, 4], where each warping mode wi

and each distortional mode di is weighed axially based on a independent degree of freedom, αi(xe) and
βi(xe), i.e.

αi(xe) = NBAi , βi(xe) = NBBi, (26)

where NB with respect to the GBT elemental xe-axis denotes cubic finite element type shape functions,
NB =

[
N1B(xe) · · · N4B(xe)

]
(see (7)). However, here we have to apply an independent derivation

for the membrane and the bending part as seen in the cross-sectional analysis. Following closely the
notations in [1] we get for each SAFSE e and each mode couple i membrane and bending displacement
interpolations. The membrane displacement part reads[

u(i)mxe

u(i)mye

]
= Nm

3Du(i)m
u , (27)

with

Nm
3D =

[
N(y) 0 0

0 N(y) 0

]
, (28)

and
u(i)m

u = ℵ
(i)m
ue Nm

BuΞ
(i)
e =

=

 U(i)
xe 0 0
0 U(i)

ye 0
0 0 Φ

(i)
ze


 NB(xe) 0

0 NB(xe)
NB(xe) 0

[ Ai

Bi

]
, (29)
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while the bending displacement part is  u(i)bxe

u(i)bye

u(i)bze

= Nb
3Du(i)b

u , (30)

with

Nb
3D =

 0 0 zN(y)
0 −zN(y) 0

N(y) 0 0

 , (31)

and
u(i)b

u = ℵ
(i)b
ue Nb

BuΞ
(i)
e =

=

 U(i)
ze 0 0
0 Φ

(i)
xe 0

0 0 Φ
(i)
ye


 0 NB(xe)

0 NB(xe)
NB(xe) 0

[ Ai

Bi

]
. (32)

The corresponding strain interpolations for the membrane part are divided into their symmetric and
antimetric part, and this results with (12) and (14) into, ε

(i)sm
xxe

ε
(i)sm
yye

γ
(i)sm
xye

= Bm
s u(i)m

ε , ε
(i)am
xye = Bm

a u(i)m
ε , (33)

with

Bm
s =

 0 N 0 0 0 0
0 0 N,y 0 0 0

N,y 0 0 N 0 0

 , Bm
a =

[ 1
2 N,y 0 0 −1

2 N N 0
]
, (34)

and
u(i)m

ε = ℵ
(i)m
εe Nm

BεΞ
(i)
e =

=



U(i)
xe 0 0 0 0 0
0 U(i)

xe 0 0 0 0
0 0 U(i)

ye 0 0 0
0 0 0 U(i)

ye 0 0
0 0 0 0 Φ

(i)
ze 0

0 0 0 0 0 Φ
(i)
ze





NB(xe) 0
N′B(xe) 0

0 NB(xe)

0 N′B(xe)
NB(xe) 0
N′B(xe) 0


[

Ai

Bi

]
, (35)

where N′B denotes the derivative of NB with respect to xe. The bending and transverse shear strains are
found as,  ε

(i)b
xxe

ε
(i)b
yye

γ
(i)b
xye

= Bbu(i)b
ε ,

[
γ
(i)
xze

γ
(i)
yze

]
= Bsu(i)b

ε , (36)
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with

Bb =

 0 0 0 0 0 zN
0 0 −zN,y 0 0 0
0 0 0 −zN zN,y 0

 , Bs =

[
0 N 0 0 N 0

N,y 0 −N 0 0 0

]
, (37)

and
u(i)b

ε = ℵ
(i)b
εe Nb

BεΞ
(i)
e =

=



U(i)
ze 0 0 0 0 0
0 U(i)

ze 0 0 0 0
0 0 Φ

(i)
xe 0 0 0

0 0 0 Φ
(i)
xe 0 0

0 0 0 0 Φ
(i)
ye 0

0 0 0 0 0 Φ
(i)
ye





0 NB(xe)

0 N′B(xe)
0 NB(xe)

0 N′B(xe)
NB(xe) 0
N′B(xe) 0


[

Ai

Bi

]
. (38)

It has to be noted that U(i)
ke and Φ

(i)
ke with k = x,y,z refer to the corresponding nodal values for each

SAFSE element e extracted from the global warping and distortional mode couples wi and di found in
the cross-sectional analysis.

The displacement interpolations (27) and (30) are introduced in the virtual work of inertia terms∫
δu( j)

m ρü(i)
m dV ,

∫
δu( j)

b ρü(i)
b dV, (39)

to arrive at the GBT mass matrices. The strain interpolations (33) and (36) are put into the corresponding
terms of virtual work (11) and (19)∫

δε
( j)T
sm Credε

(i)
smdV +2µ

∫
δε

( j)
amε

(i)
amdV, (40)

∫
δε

( j)T
sb Credε

(i)
sb dV +

Eα̂s

2(1+ν)

∫
δγ

( j)
γ
(i)dV, (41)

to find the GBT stiffness matrices, where Cred = C(ν∗ = 0) from (13). The resulting GBT formulation
then reads,

MBΞ̈+KBΞ = FB, (42)

with 2imax of generalized degrees of freedom at each node.

3 Example

For sake of the space only one example can be introduced here, where the performance of the proposed
formulation can be shown. Consider a shaft of length l = 1m with a homogeneous thin-walled (s =
3mm) box-type cross-section of flange-width w = 0.1m and web-height h = 0.04m (profile center-lines
are dimensioned, see Fig. 1). The left end x = 0 is fully clamped and a harmonic torsional moment
(M0 = 1kNm, excitation frequency ν) is applied onto a rigid mass-less load-sharing plate at x = l. Figure
1 shows the frequency response function (amplitude of torsion angle ϕx at x = l of steady state vibration
with modal damping ζ = 0.01) evaluated by CBM (Vlasov’s theory of torsion). A comparison to three-
dimensional continuum formulations and to an analysis using shell elements indicates the CBM results
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Figure 3: Frequency response function

do not even come close to reality (Fig. 1). The GBT procedure discussed in [1, 4] resolves those issues
(see Fig. 3(a)), however, the applied two dimensional plane coarse mesh consists of n = 564 nodes and
376 elements (two elements in wall-thickness direction), while the corresponding fine mesh has n= 2808
nodes and 2340 elements (five elements in thickness direction). As a result, the cross-sectional analysis
is based on a rather large eigenproblem with 3n degrees of freedom. Figure 3(a) also indicates that the
present procedure delivers the same accuracy compared to [1, 4], however, causes an eigenproblem with
6n degrees of freedom with n = 30 (ten SAFSEs). The coarsest discretization possible consists of only
four elements with n = 12 (flanges and webs of the cross-section are discretized with only one element).
Figure 3(b) indicates that first three resonance spikes can be found accurately by using only five beam
elements and imax = 5 mode couples. Accuracy in higher frequency bands then requires more mode
couples and more than one SAFSE in the flanges.

4 Conclusion

A generalized beam theory, where cross-sectional distortions and accompanied warping deformations
can be introduced to overcome inaccuracies of classical beam mechanics, is typically a two-step algo-
rithm consisting of a cross-sectional analysis and followed by a member analysis. The warping and
distortional deformations of the cross-section are proposed to be extracted from a specific vibration anal-
ysis of a reference beam problem (cross-sectional analysis), and the resulting warping and distortion
modes are then weighed and coupled axially in the member analysis. This fundamental strategy [1, 4]
was shown to achieve high accuracy in problems where classical beam mechanics does not even come
close to reality. In the present proceeding a line mesh formulation is proposed in the context of the GBT
strategy discussed in [1, 4]. We focus on cubic shape functions and derive membrane and bending prop-
erties independently. The membrane part consists of drilling rotations (mass-less micro-polar in-plane
rotations) which are introduced based on an enhanced functional. In the bending part a shear elastic
formulation is selected. The resulting SAFSE consists of six degrees of freedom at each node. The
gain in efficiency compared to the procedures proposed in [1, 4] is overwhelming, and the high accuracy
especially in beam dynamics with thin-walled box-type cross-sections remains.
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