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Abstract. The usability of machine learning approaches for the development of in-situ pro-

cess monitoring, automated anomaly detection and quality assurance for the selective laser 

melting (SLM) process receives currently increasing attention. For a given set of real machine 

data we compare two established methods, principal component analysis (PCA) and β-varia-

tional autoencoder (β-VAE), for their applicability in exploratory data analysis and anomaly 

detection. We introduce a PCA-based unsupervised feature extraction algorithm, which allows 

for root cause analysis of process anomalies. The β-VAE enables a slightly more compact di-

mensionality reduction; we consider it an option for automated process monitoring systems.  

 

1 INTRODUCTION 

Machine learning techniques have already entered the stage to analyse SLM process and 

sensor data. Shevchik et al. [1] presented a study using acoustic emission of the SLM process 

as an input into a spectral convolutional neural network (SCNN), which classified the quality 

of the printed layer with an accuracy between 83-89% for three quality categories. Grasso et al. 

[2] proposed a method to detect defects related to overheating by using the principal component 

analysis (PCA) on process images for defining a statistical descriptor and applying a k-means 

clustering on this descriptor subsequently. Uhlmann et al. [3] achieved an accuracy of 63% in 

classifying the outcome of process data by using a Bayes classifier and used k-means clustering 

for identifying the patterns for the given labels in the data. To improve process monitoring for 

the SLM process other authors developed specific tools for in situ process monitoring [4–6]. Qi 

et al. [7] pointing out the need for machine learning tools in the field of additive manufacturing 

(AM) and labelled data, which requires a deep cooperation between computer and materials 

scientists as well as machine operators. Additionally, they are emphasizing among others the 
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importance of a suited data preprocessing and quality assurance for every layer.  

In this work a comparison of the principal component analysis (PCA) and β-variational au-

toencoder (β-VAE) for the purpose of anomaly detection in SLM process data is presented. A 

feature extraction algorithm (FEA) based on the PCA for anomaly detection and root cause 

analysis is introduced. Furthermore, an optimization strategy to detect anomalies by using the 

β-VAE is described.  

2 METHODOLOGY 

Both PCA and the β-VAE can be used for dimensionality reduction and feature extraction 

[8, 9]. The choice of suitable features, however, requires assessment metrics. In this work, we 

compare the performance of both methods for the purpose of anomaly detection, i.e. we relate 

the number of detected anomalies to the total number of anomalies in an expert-labelled dataset.  

In PCA, principal components (PC) are constructed as eigenvectors of the covariance matrix 

of the original data. A standard measure for their relevance is by the corresponding eigenvalue, 

which represents the fraction of the total data variance explained by the PC. This notion of 

relevance, however, does not necessarily agree with their importance for anomaly detection, as 

we will illustrate shortly. Hence, meaningful feature extraction requires selecting those dimen-

sions that are relevant for anomaly detection. For further insights into PCA we refer to the 

ample literature, e.g. [10–12].  

The β-VAE represents input data in a latent space representation of reduced dimensionality. 

An encoder and a decoder unit implement parametrized stochastic mappings between input 

space and latent space as neural networks. Training is by optimizing data reconstruction after 

passage through both the encoder and decoder network. The most important tuneable parame-

ters of the model are the dimensionality of the latent space and the hyperparameter β, which 

regularizes the relative importance of the reconstruction error and disentangling in the latent 

space representation. Further details can be found, for instance, in Kingma and Welling [13, 

14]. Note that training is w.r.t. the reconstruction error, not w.r.t. labels. Subsequent anomaly 

detection schemes can operate as unsupervised learning. Labelled datasets allow assessing their 

performance. For details about the used machine learning classifiers One-Class Support Vector 

Machine (OC-SVM), Mahalanobis Distance (MD) and clustering algorithm Density Based Spa-

tial Clustering for Applications with Noise (DBSCAN) the reader is referred to [11, 15–17].  

3 DATASET 

The used data set originates from an experimental research group working on a DMG Mori 

Lasertec 30 SLM machine and consists of 38 building jobs with various geometries and variable 

duration between 200 and over 1600 layers. Time series data of 46 sensors has been recorded 

but split into independent time slices for each layer. As process parameters typically develop 

on comparatively long-time scales, aggregated sensor data at ten time points per printed layer 

has been defined and analysed in a layer wise approach. Labels indicating anomalies have been 

assigned to each layer based on the opinion of the machine operators and knowledge of mate-

rials scientists. The whole data set comprises 22215 layers with 95 anomalies from 38 building 

jobs. For algorithm training, we split the data into 60% training, 20% validation and 20% test 

set.  
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4 RESULTS AND DISCUSSION 

4.1 PCA for dimensionality reduction and anomaly detection by classification 

We investigated the performance of anomaly detection algorithms acting on latent spaces of 

variable dimensions. A truncated set of ordered principal components (PC) spans the latent 

space. By extending the set, the fraction of the total variance explained by the latent space 

increases. Starting from the first two PCs, which capture approximately 28% of the total vari-

ance, we observe a clustering of single layer data points w.r.t. building jobs but no clear sepa-

ration of anomalies (compare Figure 1 (a)). This corresponds to our expectations that different 

geometries and building patterns dominate the variance of the data set. The marked ‘Cluster 1’ 

comprises of layers varying in geometry and typical process parameter spreading from the other 

layers. It represents exceptional layers with intended parameter modifications.  

However, we observe that a clear detection of process anomalies is possible in latent spaces 

that include other than just the leading PCs. The 𝐹1 scores for the three different anomaly de-

tection algorithms applied on the latent spaces capturing at least 28% to 99.99% of the total 

variance are shown in Figure 1 (b). The scores are in between 0.15-0.25 on the first two PCs 

for all the classifiers. Adding dimensions to the latent space increases the 𝐹1 score to a range 

between 0.6-0.65 for the DBSCAN and MD respectively and to 0.4-0.6 for the OC-SVM until 

75% of the total variance. Increasing the captured variance to at least 80% (17-dimensional 

space) improves the performance for the DBSCAN and MD to a range between 0.7-0.77, while 

the OC-SVM increases the performance continuously from 0.62 at 81% captured variance to 

0.75 at 99.99% of the total variance. In Figure 1 (c) a subspace determined by FEA for separat-

ing regular process layers and anomalies is shown. For further reference we single out ‘Cluster 

2’, which represent a characteristic malfunction. For detailed discussion see section 4.2.  

(a) (b) (c) 

Figure 1: Results for the PCA are shown for 18 building jobs: (a) the visualization in the first 2 PCs, the 

samples are coloured and dimensioned according to their building process number, (b) the 𝐹1 scores in relation 

to the captured variance and dimension, (c) an optimal subspace for anomaly detection determined by the FEA. 

We understand that the first two PCs represent the variance coming from different building 

processes. Due to the flexibility of the AM process, each building process is unique and varies 

from others. Detection of process anomalies is substantially improved by later PCs, as can be 

seen by the increasing 𝐹1 score with the dimension of the latent space (i.e. captured variance). 

The significant changes in the performance of the classifiers by adding PC 3 and the PCs 14-
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17 to the investigated latent space demonstrates that the anomalies are represented in certain 

PCs and are distinguishable from statistical noise as well as from the variance due to the pro-

cess.  

However, adding PCs to the investigated latent space increases the dimension which poten-

tially leads to higher runtimes for detection algorithms. Furthermore, the captured variance does 

not indicate the relevance of a PC for anomaly detection and the resulting high dimensional 

subspace makes the detection process incomprehensible, because the required time for investi-

gating all eigenvector loadings is prohibitive. Addressing these two issues, a feature extraction 

algorithm based on the PCA for anomaly detection and root cause analysis is presented in sec-

tion 4.2.  

4.2 Feature extraction algorithm and root cause analysis 

We present a quick PCA based feature extraction algorithm (FEA) for dimensionality reduc-

tion and root cause analysis. It rests on two global parameters, the detection threshold (de-

tect_threshold) for outlier detection in each PC and the global detection percentile (globpctl) and 

two optional parameters for the desired captured variance (capvar) and resulting dimension (m). 

The pseudocode is given in Algorithm 1. The FEA takes a z-score standardized dataset matrix 

𝐷 as input and outputs a set of PCs, which are spanning the subspace with an optimal separation 

between anomalous and normal data.  

Algorithm 1: Feature Extraction Algorithm (varcap, detect_threshold, globpctl, m) 

Input: A z-standardized dataset matrix 𝐷 

Output: A set 𝑆 of m principal components 

1. (𝑋, 𝜆) ← transformed representation and ordered eigenvalues by PCA(𝐷) 

2. n ← min
𝑛

(∑ 𝜆𝑖
𝑛
1 ≥ 𝑣𝑎𝑟𝑐𝑎𝑝) 

3. For j in 1:n 

4.  𝑋𝑗 ← 𝑃𝐶𝑗(𝑋) = 𝑋[: , 𝑗] 

5.  𝜎𝑋𝑗
← √𝑉𝑎𝑟(𝑋𝑗) 

6.   �̃�𝑗 ← 𝑋𝑗 ÷ 𝜎𝑋𝑗
 

7.  𝑠𝑐𝑜𝑟𝑒𝑙𝑜𝑐𝑎𝑙
𝑗

← �̃�𝑗 ≥ 𝑑𝑒𝑡𝑒𝑐𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

8. dM(�̃�) ← ∑ �̃�[: , 𝑗]𝑛
𝑗=1  

9. 𝑠𝑐𝑜𝑟𝑒𝑔𝑙𝑜𝑏𝑎𝑙 ← {𝑥 in �̃�|Φ(dM(�̃�)) ≥ 𝑔𝑙𝑜𝑏𝑝𝑐𝑡𝑙}, where Φ is CDF 

10. 𝐽 = [1, … , 𝑛]; 𝐴 = [𝑠𝑐𝑜𝑟𝑒𝑔𝑙𝑜𝑏𝑎𝑙]; 𝑆 = [] 

11. For i in 1:m 

12.  For j in 𝐽 

13.   𝐹1
𝑗

← F1(𝐴, 𝑠𝑐𝑜𝑟𝑒𝑙𝑜𝑐𝑎𝑙
𝑗

) 

14.  𝑡 ← max
j

({𝐹1
𝑗
}𝑗∈𝐽) 

15.  𝐽 = 𝐽. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑡) 

16.  𝑆 = 𝑆. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑡) 

17.  𝐴 = 𝐴. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑠𝑐𝑜𝑟𝑒𝑙𝑜𝑐𝑎𝑙
𝑡 ) 

18. Return 𝑆 
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At first, a global score for anomalies is determined by iterating through the 1-dimensional 

representations in the transformed space of the PCs. To obtain local and global scores for anom-

aly detection, the transformed data in each selected PC (𝑋𝑗) is rescaled w.r.t. its standard devi-

ation (σj) to obtain an anomalousness score (�̃�) for each sample 𝑥𝑗
𝑖. By adding the anomalous-

ness scores from each latent space (step 8) the Manhattan distance (𝑑𝑀) for each sample is 

calculated. A global score for anomalies is obtained by applying an introduced percentile 

(globpctl) e.g., 0.995. Simultaneously the samples 𝑥𝑗
𝑖 in each representation are distinguished in 

normal data and outliers by a threshold to receive local candidates for anomalies in every PC 

(step 7). In step 10, three lists are initialized. Here 𝐽 is the list of considered PCs, 𝐴 is the list of 

anomalies defined by the global score and 𝑆 the list of selected PCs. Then the 𝐹1 scores (or any 

other valid metric) from the global scores (list 𝐴) and the local scores are computed. The PCi 

(𝑖 ∈ 𝐽) with the highest 𝐹1 result is selected. For further selection of PCs, the prior determined 

PC is deleted from list 𝐽 and those anomalies, represented by the local score, are removed from 

list 𝐴. Hence, subsequently selected PCs represent further anomalies.  

The determined PCs using the introduced FEA on the investigated data set are PC 16 fol-

lowed by PC 4 and PC 20. The reached 𝐹1 metric on the 3-dimensional space is 0.77. The latent 

space spanned by the first two determined PCs (16 and 4) is presented in Figure 1 (c) and a 

separation of normal and anomalous data points is observable.  

Beside of detecting anomalies, the FEA can be used for root cause analysis. The PCs are 

weighted linear combinations of the attributes. This allows for observation of the most influen-

tial attributes on each PC and to take their covariances into account. Investigating the loadings 

of the selected PCs provides the opportunity to trace back the error signals and the malfunction 

in the system. The loadings from PC 4 and PC 16 are shown in Figure 2, in which the red 

squares indicate the most significant loadings. In PC 16 the two most weighted signals belong 

to a sensor from the powder feeding system and the sonic sieve state for powder processing. In 

the 4th PC two significant loadings are the signals from oxygen measurements and the other two 

are monitoring the valve of the inert gas system.  

(a) (b) 

Figure 2: Weights of the eigenvectors from the determined PC 4 (a) and PC 16 (b). 

The root cause analysis demonstrates that PC 16 and PC 4 represent two types of anomalies 

in the data set. The PC 16 shows issues with the powder processing system, whereas PC 4 

reveals malfunction in the process atmosphere. The emergence of different failure classes is the 

consequence of the removal of local anomalies in step 17 (compare Algorithm 1), which forms 

disjunct subsets of anomalies. The marked ‘Cluster 2’ belongs to a malfunction in the process 

atmosphere and is primarily represented by PC 4.  



J. Voigt and M. Moeckel 

 6 

4.3 𝛃-variational autoencoder for automatic anomaly detection 

A β-VAE consists of an encoder and decoder unit, which map data between the input and 

the latent space representation. Training is w.r.t. a cost function formed of a reconstruction error 

and a regularization term representing the Kullback-Leibler divergence. The relative weight of 

the regularization is determined by β. The latent space is fixed at dimension 𝑑 = 2. The network 

is trained on unclean data containing anomalies. To separate off anomalies in the 2-dimensional 

latent space, the β-value is adapted and three different standard classifiers (DBSCAN, OC-

SVM, MD) have been used. We evaluate the approach by calculating the 𝐹1 score for detected 

anomalies w.r.t. all known anomalies in the labelled dataset. 

The reached 𝐹1 scores for different β-values are presented in Figure 3 (a). At β = 1 there is 

no significant detection of anomalies (𝐹1 = 0.15) for all three classifiers. By decreasing the β-

value to 10−1 the 𝐹1 metrics increase to a range between 0.5-0.55 and beyond the threshold 

β ≤ 10−2 the 𝐹1 scores are between 0.55-0.71, only depending on the classifier used. Figure 3 

(b) shows the separation of anomalies at threshold β = 10−2 and a clustering marked as ‘Cluster 

2’, which comprises the same data points as the ‘Cluster 2’ obtained from the subspace of PC 

4 and PC 16 above. Zooming into the origin shows separation of the different building jobs as 

illustrated in Figure 3 (c). The ‘Cluster 1’ represents the same data points as ‘Cluster 1’ from 

the leading PCs (cf. section 4.1).  

(a) (b) (c) 

Figure 3: Results for the β-VAE: (a) the 𝐹1 scores for the classifiers in relation to the β-value, (b) the visual-

ized embedding at β = 10−2 with a clear separation of normal and anomalous samples, (c) the disentangling of 

the different building jobs, where the samples are coloured and dimensioned according to their process number.  

On the one hand the smaller β-parameter leads to a less weighted Kullback-Leibler diver-

gence in the loss function and therefore to a less constraint embedding, which improves disen-

tangled and information conserving encodings of the data. On the other hand the decoder sam-

ples from this embedding to reconstruct the input data. A clear distinction of most anomalies is 

possible in latent space for 𝛽 below threshold. This is achieved as the reconstruction loss dom-

inates the objective function. The remaining regularization confines the distribution in latent 

space such that informative graphical representations can be obtained.  

We identify most anomalies which form ‘Cluster 2’ in Figure 1 (c) and observe that these 

anomalies form a well-located cluster in latent space of the β-VAE. Similarly, we confirmed 

the localization of elements of ‘Cluster 1’ in latent space. The ‘Cluster 1’ represents the variance 
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due to geometry and typical process parameter spreading, whereas ‘Cluster 2’ is formed by one 

class of malfunctions in the gas system. These results are similar to the findings of Alemi et al. 

[18], who showed the separation of the MNIST images and clustering of same or similar look-

ing numbers on adapted β-parameters and to the findings of Higgins et al. [19] who presented 

an automatic unsupervised routine for interpretable image data representation.  

The results in this section demonstrate that the encoding of the neural network can be used 

for anomaly detection and effective information conserving dimensionality reduction by adapt-

ing the β-parameter below a certain threshold. On different scales of the latent space variables 

two contributions to the total variances can be separated: close to origin the variance due to the 

building jobs is visible, outside of a 𝛽-dependent boundary around the origin process anomalies 

can be found. This makes the β-VAE a promising technique for automatic anomaly detection 

and exploratory data analysis (EDA) in process monitoring.  

5 COMPARISON 

We compare the two investigated methods with each other regarding their performance for 

anomaly detection and exploratory data analysis. If PCA is applied for representing data as a 

truncated expansion in terms of PCs with respect to the captured variance, the 𝐹1 score saturates 

roughly for a 17-dimensional space. This naïve conclusion on the required size of the latent 

space, however, does not account for the particular nature of the discussed anomalies.  

However, applying Algorithm 1, the introduced feature extraction algorithm (FEA), and de-

manding 𝐹1 ≥ 0.7, results in a 3-dimensional latent space. This massive reduction of latent 

space dimensionality is possible as FEA implements a further description of anomalies based 

on two predefined parameters: detect_threshold for defining local scores within each PC as well 

as the globpctl for global scoring. It facilitates performing a root cause analysis on the small 

number of selected PCs.  

The 𝛽-VAE showed a comparable 𝐹1 for only 2 dimensions. Anomaly detection could be 

achieved for 𝛽 ≤ 𝛽𝑡ℎ, i.e. below a certain threshold value 𝛽𝑡ℎ ≈ 0.01. Small but nonzero 𝛽-

values allow for informative visualization of total variance, which may support exploratory data 

analysis. Table 1 summarizes the results from these different methods.  

Table 1: Summary of the used methods for reducing the dimension and anomaly detection. The given 𝐹1 

scores are those reached at the shown dimension.  

Technique Metrics 

 𝐹1 
Root cause 

analysis 

Exploratory 

data analysis 
Dimension 

PCA 0.75 0 0 17 

PCA & FEA 0.77 + 0 3 

β-VAE 0.71 − + 2 
  ‘+’ = Advantage | ‘0’= fair | ‘−‘ = Not possible 

 

All three approaches agree on clustering exceptional layers (‘Cluster 1’) and particular 

anomalies (‘Cluster 2’). However, root cause analysis is only possible by using PCA based 

methods.  
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6 CONCLUSION AND OUTLOOK 

We investigated the applicability of PCA and 𝛽-VAE for the purpose of dimensionality re-

duction and unsupervised anomaly detection in machine process data. The time-series data was 

obtained from 38 SLM printing processes, for which process anomalies have been labelled by 

experts. We perform exploratory data analysis and compare three approaches for semi-auto-

matic feature extraction. Each of them comprises of a method for dimensionality reduction and 

a subsequent standard classifier for anomaly detection. From this comparison the following 

conclusions can be drawn:  

• Anomalies can be detected by all three techniques, which, however, require for 

comparative performance latent spaces of different dimensions.  

• A straightforward approach by truncating an expansion in principal components 

following the objective to capture a pre-defined amount of explained variance 

with a minimum of PC, leads to unnecessary high dimensional subspaces.  

• Massive reduction can be achieved by selecting latent spaces with respect to 

anomaly characteristics. For this purpose, a specific Feature Extraction Algorithm 

(FEA) based on PCA has been introduced.  

• FEA provides the opportunity for root cause analysis by inspecting selected prin-

cipal components.  

• We use a 𝛽-VAE to project the data into a 2-dimensional latent space. The degree 

of separation between anomalies and regular data can be tuned by the 𝛽-parame-

ter, which allows for exploratory data analysis, visualization, and anomaly detec-

tion. For the sole purpose of anomaly detection, no significant advantages have 

been found at 𝛽 > 0.  

• Data points located within a boundary around the origin of latent space represent 

data of regular building processes. Anomalies can be found outside. For values of 

𝛽 below a certain threshold (𝛽 <  𝛽𝑡ℎ) the separation of anomalies measured by 

𝐹1 score gets independent of 𝛽.  

• Both FEA and 𝛽-VAE detect and cluster anomalies in a similar way. Clusters 

formed by FEA can be re-discovered as clusters in latent space of the 𝛽-VAE. 

 

We consider FEA and 𝛽-VAE both candidates for semi-automatic and unsupervised anom-

aly detection. We suggest further studies to evaluate the computational efficiency of the pre-

sented methods and to include further anomaly detection techniques e.g., by measuring the re-

construction error of an autoencoder trained on practically anomaly-free data.  
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