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Abstract. We examine a residual and matrix-free Jacobian formulation of compressible and nearly
incompressible (ν→ 0.5) displacement-only linear isotropic elasticity with high-order hexahedral finite
elements. A matrix-free p-multigrid method is combined with algebraic multigrid on the assembled
sparse coarse grid matrix to provide an effective preconditioner. The software is verified with the method
of manufactured solutions. We explore convergence to a predetermined L2 error of 10−4, 10−5 and
10−6 for the compressible case and 10−4, 10−5 for the nearly-incompressible cases, as the Poisson’s
ratio approaches 0.5, based upon grid resolution and polynomial order. We compare our results against
results obtained from C3D20H mixed/hybrid element available in the commercial finite element software
ABAQUS that is quadratic in displacement and linear in pressure. We determine, for the same problem
size, that our matrix-free approach for displacement-only implementation is faster and more efficient
for quadratic elements compared to the C3D20H element from ABAQUS that is specially designed to
handle nearly-incompressible and incompressible elasticity problems. However, as we approach the
near incompressibility limit, the number of Conjugate Gradient iterations required to achieve the desired
solution increases significantly.

Notation Boldface denotes vectors and tensors in symbolic notation. Unless otherwise indicated, all
vector and tensor products in symbolic form are assumed to be inner products, such as vvvvvv= vivi , (aaabbb)ik =
ai jb jk and aaa : bbb = ai jbi j, where repeated indices denote a sum over those indices. Cartesian coordinates
are assumed. The symbol tr(•) is the trace operator, such that tr(σσσ) = σii. The symbol III is the unit tensor,
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i.e., (III)i j = δi j where δi j is the Kronecker delta operator.

1 Introduction

In the solid mechanics framework, it is well-known that for nearly-incompressible isotropic elastic ma-
terials, linear finite elements perform poorly when the standard displacement finite element (FE) formu-
lation is utilized due to volumetric locking of the strain [15, 31]. In order to overcome the locking phe-
nomenon [31] numerous frameworks using mixed/hybrid formulations have been proposed [23, 9, 12].
Most mixed/hybrid formulations for linear elasticity at small strain lead to a system of equations where
two variables of displacement and pressure are treated separately via an additive split of the volumetric
and deviatoric parts of strain [16, 24]. Some displacement-only formulations, such as reduced and selec-
tive integration, have been developed in the literature. Their equivalence to mixed/hybrid methods has
been established and they have proven to be successful in handling near-incompressiblity limits for linear
isotropic elasticity problems [21]. Other alternatives to mixed/hybrid formulations have been adopted in
the literature, e.g., the penalty method [15, 10, 31] has been applied to linearly elastic [28] and viscoelas-
tic materials [6]. Moreover, high-order finite elements may be utilized to overcome element locking in
the nearly-incompressible regime and still avoid a mixed/hybrid formulation that is more computation-
ally expensive, compared to a displacement-only one.

However, high-order finite element methods are often avoided due to significant cost of assembling a
global Jacobian matrix with high memory requirements that lead to expensive solve times [7]. Matrix-
free formulations [7, 19] offer the benefits of high-order finite element methods with more efficient
memory usage. Using tensor product basis evaluation can further improve the performance of high-order
methods, as they have favorable storage and work estimates of O(mpd) and O(mpd+1), respectively,
for discretizations in Rd with m elements of order p [11]. Moreover, the tensor-product-based opera-
tor evaluation can be cast as matrix-matrix products. Iterative solvers, such as Krylov subspace-based
methods, only require the result of matrix-vector products rather than an assembled matrix, which allows
these methods to take advantage of the computational efficiencies offered by matrix-free formulations.
Therefore, storage of large, sparse matrices may be avoided with iterative solvers.

Krylov methods require preconditioning [27] to efficiently and reliably solve large-scale elliptic prob-
lems. Geometric multigrid is a robust preconditioning technique that is an attractive choice for structured
meshes and has been considered in numerous studies with finite difference methods and finite elements
with tensor product bases on CPUs and GPUs [22, 30, 20]. P-multigrid, developed by Rønquist and
Patera [26], is a version of geometric multigrid based on coarsening by decreasing the order of the bases
in high-order or spectral finite elements rather than coarsening by aggregating elements. This technique
is a natural fit for problems on unstructured meshes, and convergence only weakly depends on the poly-
nomial basis degree, p, if properly implemented. Computational costs of the discretization scheme may
be affected by polynomial order p and element size h, among other factors [29, 8] such as adaptive
r-refinement of the mesh [25].

This paper presents an efficient matrix-free high-order finite element discretization of the linear 3D elas-
ticity problem with p-multigrid preconditioning for which tri-quadratic (Q2) discretization solve time is
roughly the same as for a tri-linear discretization (Q1), for the same mesh size. We aim to answer the fol-
lowing questions about the proposed method: 1) Given the proposed implementation, if a target accuracy
in the error is desired, what combination of mesh-refinement and polynomial order requires the least cost
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in the compressible and nearly-incompressible cases using the standard displacement-only formulation?
2) What combination of mesh-refinement and polynomial order achieves the desired error tolerance the
least amount of time? 3) Is the high-order displacement-only formulation remain competitive as the
Poisson’s ratio approaches the near-incompressibility limit?

Compressible linear isotropic elasticity (e.g., ν = 0.3) is appropriate for modeling metals in their elas-
tic regime, such as in serviceability studies to analyze the stress intensity factor at a crack tip to de-
termine if the crack will propagate and thus estimate the life cycle of the metallic component. Nearly-
incompressible linear isotropic elasticity (ν→ 0.5) is appropriate for modeling small deformations (small
strain and small rotation) of rubber-like materials such as solid rock propellant binders [13]. When metals
or rubber-like materials are loaded beyond their small strain linear elastic limit, then large deformation
hyperelasticity or hyper-elasto-plasticity constitutive models are needed, which are beyond the scope of
this paper. Therefore, in addition to answering the questions raised above, we investigate convergence of
the high-order FE in both compressible and near-incompressible cases. In the proposed implementation,
residual and Jacobian evaluations are performed with tensor product basis evaluation using libCEED [3],
and the parallel computational toolkit PETSc [5] is employed for the linear solver and utilizing AMG as
preconditioner for the coarse-grid solve. In the nearly incompressible cases, the results and performance
of the proposed algorithm are compared with those using mixed/hybrid finite elements in the ABAQUS
software package that uses assembled sparse representation of the high-order Jacobian matrix [1].

The rest of this article is organized as follows: In section §2, we present the constitutive model for the
compressible 3D linear isotropic elasticity problem its variational form. In section §3, the details of a
preconditioning technique used to accelerate convergence are discussed. In section §4, we discuss our
numerical results and a comparison of our results with results from ABAQUS. Finally, in section §5 we
summarize our observations and conclusions for this paper.

2 Compressible Linear Elasticity Problem

For isotropic linear elastic materials, we consider the stored strain energy function as,

Φ(εεε) =
λ

2
tr(εεε)2 +µεεε : εεε (1)

Therefore, its stress-strain relationship is given by its derivative with respect to strain,

σσσ =
∂Φ(εεε)

∂εεε
= λ tr(εεε) III +2µεεε, (2)

where in the constitutive relation (2), σσσ and εεε are stress and strain tensors, respectively, λ and µ are the
Lamé parameters, and III is a 3×3 identity matrix. In addition, the small strain tensor is,

εεε =
1
2

(
∇∇∇uuu+(∇∇∇uuu)T

)
. (3)

The strong form of the static balance of linear momentum is given by the following,
∇∇∇ ·σσσ+ρggg = 000
uuu = uuu0

σσσ ·nnn = t̄tt

(4)
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where the functions uuu0 and t̄tt are prescribed boundary displacement and traction, respectively, ggg is the
body force per unit mass (such as the gravitational acceleration vector), and ρ is the mass density. Intro-
ducing weighting function www for the displacement field, the corresponding variational equation for (4) is
given by, ∫

Ω

∇∇∇www : σσσdv−
∫

∂Ωt̄
www · t̄tt da−

∫
Ω

www ·ρgggdv = 0. (5)

2.1 Residual Evaluation

Discretization of the variational equation (5) can be represented as described in [7] to facilitate matrix-
free evaluation. The residual in the discrete form can be computed as,

∑
e

ET
e

[
(NNNe)T ·WWW ·Λ( fff 0(uuue,∇∇∇uuue))+

dim

∑
i=1

(BBBe
i )

T ·WWW ·Λ( fff 1(uuue,∇∇∇uuue))

]
= 000 (6)

where NNNe and BBBe
i are evaluations of the finite element shape functions and their derivatives at the quadra-

ture points in x, y, and z directions, Ee is the element e restriction operator that separates Degrees of Free-
dom (DoF) based on the elements they belong to, and Λ represents pointwise function evaluation. Both
fff 0 and fff 1 come from the constitutive law and its tangent where uuue =NNNe(Eed) and ∇∇∇uuue =∑

dim
I=1 [BBB

e
i (Eed)],

where ddd is the total nodal displacement vector. The basis operators are represented as Kronecker prod-
ucts,

Ne = N̂NN⊗ N̂NN⊗ N̂NN Be
1 = B̂BB⊗ N̂NN⊗ N̂NN (7)

Be
2 = N̂NN⊗ B̂BB⊗ N̂NN Be

3 = N̂NN⊗ N̂NN⊗ B̂BB

where N̂NN and B̂BB are evaluations of the finite element shape functions and their derivatives at the quadrature
points in 1D. Comparing the variational equation in (5) and (6) yields fff 0 = ggg and fff 1 =σσσ, assuming t̄tt = 000.

2.2 Jacobian Evaluation

Similar to a residual evaluation, the action of the Jacobian can be computed using the notation proposed
by [7] and [18]:

∂FFF(uuu)
∂uuu

= ∑
e

ET
e
[
NNNT BBBT ]WWW [

fff 0,0 fff 0,1
fff 1,0 fff 1,1

][
NNN
BBB

]
Ee (8)

where

fff i, j =


∂ fff 0

∂uuu
∂ fff 0

∂∇∇∇uuu

∂ fff 1

∂uuu
∂ fff 1

∂∇∇∇uuu

(uuu,∇∇∇uuu) (9)

In the small strain case, for equation (2), fff 0 is not a function of uuu or ∇∇∇uuu. Therefore, its derivative with
respect to uuu or ∇∇∇uuu is zero, (i.e., fff 0,0 = 000 and fff 0,1 = 000). On the other hand, fff 1 is a function of ∇∇∇uuu, but
it is not a function of uuu. Therefore, fff 1,0 = 000 and fff 1,1 = ∂σσσ/∂εεε; due to linearity, ∂σσσ/∂εεε = λIII⊗ III +2µI,
or equivalently, fff 1,1(∇δuuu) = (∂σσσ/∂εεε) : ∇δuuu = λ tr[εεε(δuuu)]+2µεεε(δuuu), which is equivalent to (2) applied
to a variation δuuu. While these minor simplifications are possible for linear problems in the present
work, our implementation solves the problem as though it were nonlinear, and we’ll continue using the
corresponding terminology.
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3 P-multigrid Preconditioning of Linear Elasticity Problem

Utilizing the notation of section §2 and the formulation in equation (8), we can compute the action of
global Jacobian matrix on uuu with arbitrary user defined polynomial order. An iterative solver is required
with matrix-free operators, which necessitates preconditioning, especially at high-order. With unstruc-
tured meshes, a natural hierarchy of grids does not exist, so h-multigrid can be difficult to implement.
Algebraic multigrid (AMG) is suitable for low order meshes where the Jacobian matrix can be assem-
bled. However, assembly of this matrix is prohibitively expensive for high-order meshes [14]. Therefore,
we use geometric multigrid with p coarsening and utilizing AMG as the coarse grid solver. A Chebyshev
polynomial smoother based upon the operator diagonal [4] is utilized in the multigrid cycle.

In p-multigrid, grid transfer operations increase or decrease the polynomial order of the element basis
functions, and these operations can be implemented in a matrix-free fashion via fff 0,0 of (8) with suitable
basis evaluators NNN. The coarse-to-fine basis operation, NNNctof, interpolates the DoFs on the nodes of a
coarse grid element to the nodes of a fine grid element (NNN27×8 for Q1 prolongation to Q2, for example).
The corresponding coarse and fine grid element restriction operators, Ee,c and Ee, f , are used in the grid
transfer operators. The operator PPP = ∑e ET

e, f NNNctof Ee,c correctly computes the interior degrees of freedom
but over-counts nodes on the interfaces between elements. We can count the multiplicity of each node
on the fine grid by applying the transpose fine grid restriction to the unit vector, ωωω = ∑e ET

e, f 111. Thus, the
p-multigrid prolongation operator is given by,

PPP = ∑
e

ET
e, f ωωω

−1 NNNctof Ee,c, (10)

and the p-multigrid restriction operator is given by RRR = PPPT .

4 Problem Statement and Computational Costs in Terms of Time

In this section, we provide numerical results based on using the 3D linear elastic constitutive model in
equation (2) on structured box meshes using polynomials of order 1 through 4 for a range of box meshes.
We consider a method of manufactured solution (MMS) on the problem’s mesh where different Poisson’s
ratios are considered. For the MMS, we produce a contrived right hand side ρggg based on uuu = [u1,u2,u3]

T

with u1 = e2x sin(3y) cos(4z), u2 = e3x sin(4y) cos(2z) and u3 = e4x sin(2y) cos(3z). In the compressible
case, we consider Poisson’s ratio of ν = 0.3, and for the nearly-incompressible cases, ν ranges from 0.49
to 0.499999 with polynomials of order 1 through 4 on parallel platforms.

We employ PETSc to perform mesh management, domain decomposition, parallel assembly operations
and handle communication over all MPI processes. In addition, a matrix-free operator is implemented
using libCEED and PETSc for equation (8). Preconditioning with p-multigrid and AMG is accessed
through PETSc’s multigrid interface with grid-transfer and operator application at each level imple-
mented in libCEED. Vectorized tensor-product operations for 8 element batches in the matrix-free oper-
ator evaluation on AVX-2 architecture for each local processor are performed through libCEED.

4.1 Achieving Target Error Tolerances using High-Order Polynomials on Box Meshes

The platform to run FE simulations with high-order polynomials and a range of box meshes is a two-
socket AMD EPYC 7452 machine; each socket contains 32 CPU cores with base clock speed of 2.35GHz
and 128MB of L3 cache. The NPS4 BIOS configuration was used and processes were bound to cores us-
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ing MPICH-3.3.2 and ch3:nemesis. PETSc version 3.14 and libCEED version 0.7 are used to discretize
and solve the formulations represented in equations 6 and 8 on a [0,1]× [0,1]× [0,1] structured box mesh
available from PETSc. We utilize the box mesh to create a family of meshes of n×n×n elements by sub-
dividing each side of the box. A non-homogeneous essential (Dirichlet) boundary condition is imposed
on each side of the box as described in section 4.

For a given n, the resulting 3D mesh contains n3 elements (n× n× n). Utilizing polynomials of order
1 through 4, we perform FE simulations for Poisson ratios of 0.3, 0.49, 0.49999 and 0.499999. Due to
the locking phenomena, polynomial order 1 is avoided as we approach the incompressible limit. The
desired achievable L2 error tolerances in the solution of FE for ν = 0.3 and ν = 0.49 are 10−4, 10−5,
and 10−6, and 10−4 and 10−5 for ν = 0.49999 and ν = 0.499999. Therefore, for each polynomial
order, the grid sizes are increased to achieve the desired error tolerances. For a given Poisson’s ratio,
polynomial order and grid size n, the FE simulations are repeated three times on 16, 32 and 64 CPU
cores to reduce noise in the performance timing. Theoretically, it is expected that the total time to
solution decreases for a scalable parallel implementation as the number of CPU cores utilized increases
for a large enough problem. However, in the case of small problems, the cost of parallel communication
may surpass the cost of computation as the number of CPU cores increases which translates to longer
time to solution. Therefore, without any assumption about the scalability of the proposed implementation
and the algorithm, we perform the simulations on a small number of CPU cores for comparison.

Hence, as we approach near-incompressibility limit, for any grid size n < 25 the simulations are also
performed with 1 and 4 CPU cores leading to 729 simulations for the entire study. The “Total CPU time”
and “L2 Error” from each run are accumulated for analysis. The profiler available from PETSc provides
the “Total Time” and “Solve Time” associated with each run but does not provide the time consumed
by libCEED alone as an external package. An internal profiler is not currently available from libCEED,
therefore, a bash script is used to time each simulation from start to end.

The results of the entire study in terms of L2 error versus solve time and versus cost (in core seconds)
are summarized in Figures 1 and 2 respectively. A point on these diagrams is called Pareto optimal
if one cannot decrease error (moving down on the y axis) without increasing time (or cost) by moving
to the right. The set of Pareto optimal configurations is known as the Pareto front, which evidently
consists exclusively of higher degree finite element spaces (p ∈ {3,4}). The low order p ∈ {1,2} cases
are increasingly far from the Pareto front as ν increases.

In addition, Figure 2 represents that the minimal cost to achieve any order of accuracy occurs in the lower
left pane of the figure indicating higher order p’s are the most cost-effective polynomial orders to exploit
in both the compressible and nearly incompressible cases. Larger problems with more DoFs to be amor-
tized among CPU cores exhibit better strong scaling since computation time surpasses communication
time. The strong scaling occurs when larger dots land on smaller dots.

We address the first question raised in the introduction section in regards to the minimal computational
cost for a desired error tolerance in the solution. For each Poisson’s ratio in this study, we compute
the minimum amount of CPU work to reach the desired error tolerance. To do this, for each polynomial
order, p, we accumulate the time spent for all n to reach the desired accuracy in a list. Then we determine
the minimum of time in the list and multiply it with the number of processors (“np”) that are exploited
for the minimum time. Tables 1, 3, 5 and 7 summarize the minimum cost (“Min. Cost”) to achieve the
desired error tolerance in the FE solution for the Poisson’s ratios considered in this study. In addition,
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Figure 1: Error versus time for ν = 0.3, ν = 0.49, ν = 0.49999 and ν = 0.499999. The
Pareto optimal configurations are toward the lower left of each pane, with p = 3 and p = 4
giving the fastest solutions for any error tolerance, while low order (p = 1 and p = 2) are
increasingly further from the Pareto front for larger values of ν. Each horizontal series of the
same color represents strong scaling of a given resolution h and p; cf. Figure 2 to quantify
the cost of suboptimal strong scaling.

for each simulation, the smallest n that achieves the desired error tolerance is reported.

For ν = 0.3 in table 1, the smallest n that achieves 10−4 and 10−5 error tolerance are 26 and 77 respec-
tively. However, running the simulation with n = 140 does not improve the error tolerance. In addition,
for error tolerance of 10−5 in the compressible case (ν = 0.3), the smallest number of CPU cores utilized
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Figure 2: Error versus cost for ν= 0.3, ν= 0.49, ν= 0.49999 and ν= 0.499999. The Pareto
optimal configurations are toward the lower left of each pane indicate higher order p is most
cost-efficient. Each horizontal series of the same color represents a strong scaling study at
fixed h and p, with perfect strong scaling manifesting when all the dots are collocated. The
more expensive models tend to exhibit better strong scaling because they have more work
over which to amortize the inherent communication costs, while small models are much
more cost-efficient to run on a single core.

with polynomial order 1 is 16 due to the size of the problem. However, for small n, as table 1 indicates,
the minimum cost to achieve the desired error tolerances are with 1 CPU core. For Poisson ratio of 0.49,
n < 45 are also run with 1 and 4 CPU cores. As table 3 indicates, the minimum cost to achieve the
desired accuracy in the L2 error tolerance is with 1 CPU core. Tables 5 and 7 show that the minimum
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cost to achieve the desired error tolerances is with 1 CPU core except when polynomial order 2 is used
which necessitates a much larger n (39 as apposed to 8 with polynomial order 3).

We now aim to answer the second question raised in the introduction section: what is the least amount of
time to achieve a certain error tolerance in the solution given enough resources? To answer that question,
we turn to tables 2, 4, 6 and 8 which summarize the best time and corresponding number of CPU cores
required to achieve a certain error tolerance for different values of ν, n and p. From those tables, it can be
concluded that increasing the number of CPU cores with higher order polynomials may reach a desired
error tolerance faster as long as the size of n dictates a large enough problem for which the time spent
with higher number of CPU cores is not spent in the communication of the parallel scheme. For example,
in the compressible case from tables 2, to achieve the error tolerance of 10−4 with polynomial order 1,
n must be increased to 26 which provides enough work for 16 CPU cores to reach the solution with the
desired error tolerance in less time compared to using 1 or 4 CPU cores. However, utilizing more than 16
CPU cores for that problem size, due to communication costs, increases the amount of time to achieve
the solution for the desired error tolerance. In addition, from table 8, in the incompressible case with
ν = 0.499999 and polynomial order 2 that necessitates an n of 39, utilizing all 64 CPU cores available
in the platform reaches the solution with the desired error tolerance the fastest. However, for the same
Poisson’s ratio, if polynomials of order 3 or 4 are utilized, n can decrease to 8 and 5 respectively. For
those small problem sizes, as table 8 indicates, 16 CPU cores can reach the desired accuracy in the
solution the fastest.

Table 1: ν = 0.3

Error
10−4 10−5 10−6

p n Min. Cost np n Min. Cost np n Min. Cost np
1 26 12.78 1 77 371.79 16∗ - - -
2 6 0.62 1 11 1.07 1 19 3.47 1
3 4 0.71 1 5 0.74 1 7 0.96 1
4 3 1.15 1 3 1.18 1 4 1.24 1

Table 2: ν = 0.3

Error
10−4 10−5 10−6

p n Min. Time(s) np n Min. Time(s) np n Min. Time(s) np
1 26 3.37 16 77 18.72 32 - - -
2 6 0.62 1 11 1.07 1 19 3.47 1
3 4 0.71 1 5 0.74 1 7 0.96 1
4 3 1.15 1 3 1.18 1 4 1.24 1

In addition, for the compressible case, we provide an h-refinement plot for polynomials of order 1 through
4 to determine the global rate of convergence of our implementation as the grid size is decreased. Figure
3 is a log-log plot of h versus L2 error that represents the convergence of our implementation using grid
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Table 3: ν = 0.49

Error
10−4 10−5 10−6

p n Min. Cost np n Min. Cost np n Min. Cost np
2 13 2.26 1 23 11.43 1 41 67.40 1
3 5 0.91 1 9 2.26 1 13 5.70 1
4 3 1.27 1 7 1.43 1 9 2.90 1

Table 4: ν = 0.49

Error
10−4 10−5 10−6

p n Min. Time(s) np n Min. Time(s) np n Min. Time(s) np
2 13 1.29 4 23 3.24 16 41 7.55 16
3 5 0.91 1 9 1.44 4 13 2.38 4
4 3 1.27 1 7 1.43 1 9 1.97 4

Table 5: ν = 0.49999

Error
10−4 10−5

p n Min. Cost np n Min. Cost np
2 38 801.36 16∗ 97 17084.97 16∗

3 8 18.25 1 17 204.86 1
4 4 4.90 1 6 19.28 1

Table 6: ν = 0.49999

Error
10−4 10−5

p n Min. Time(s) np n Min. Time(s) np
2 38 32.88 32 97 511.43 64
3 8 4.08 16 17 12.67 32
4 4 3.74 16 6 5.20 16

sizes h= 1/3 to h= 1/80 for ν= 0.3. All plots in this article are prepared using matplotlib [17] library
from Python 3. We calculate the slope of the line that is the best fit in the least square sense in Figure 3.
The slopes are 2.07, 4.00, 4.45, 4.75 for polynomials of order 1 through 4 respectively. PETSc’s default
tolerances are utilized across all runs. Therefore, in figure 3, for p = 3 and p = 4, we notice stagnation
of the solver for h = 1/40 and h = 1/80 respectively. For polynomial of order 1, we notice accelerated
convergence behavior for coarse meshes, therefore they are not considered in the computation of the
slope.
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Table 7: ν = 0.499999

Error
10−4 10−5

p n Min. Cost np n Min. Cost np
2 39 2178.20 16∗ - - -
3 8 31.11 1 17 523.15 1
4 5 14.23 1 6 31.43 1

Table 8: ν = 0.499999

Error
10−4 10−5

p n Min. Time(s) np n Min. Time(s) np
2 39 63.40 64 - - -
3 8 5.31 16 17 21.75 32
4 5 4.24 16 6 5.82 16

Finally, we compare our results with the ABAQUS software package when ν = 0.499999. ABAQUS
offers a mixed/hybrid element known as C3D20H that is quadratic in displacement and linear in pressure
especially developed to handle nearly incompressible problems. As Table 8 indicates, in order to achieve
10−4 error tolerance on the cube, we require n = 39. Therefore, a [0,1]× [0,1]× [0,1] box mesh with
n = 39 in each direction is generated in Trelis [2] software for ABAQUS. In addition, the same boundary
conditions and physics as in section 4 are imposed on the imported mesh into ABAQUS. The mesh type is
Hex20 Serendipity which contains a total of 398,641 mesh nodes with 64,000 Hex20 elements. ABAQUS
is installed on a parallel platform with 28 cores @2.4 GHz and 128 GB RAM. For C3D20H element,
ABAQUS only allows a direct solver. The total “CPU TIME”s reported by ABAQUS for this problem
size utilizing C3D20H element on 28, 14 and 10 CPU cores are 4,372.3 seconds, 4,002.0 seconds and
3,858.1 seconds respectively when all outputs are turned off. Also, the “WALLCLOCK TIME” for 28,
14 and 10 CPU cores are 195 seconds, 322 seconds and 421 seconds.

Exploiting smaller than 10 CPU cores for this problem size causes ABAQUS to stop prematurely due to
memory issues. Therefore, we consider the fastest time to reach a solution for the desired error tolerance
with ABAQUS to be 3,858.1 seconds using 10 CPU cores. Comparing this result to those for error
tolerance of 10−4 in table 8, we notice that our implementation can achieve the desired error tolerance
for the same size problem in 2,178.20 seconds using 16 processors with polynomial order 2. However,
we note that the platform chosen for the proposed implementation to run on contains faster CPU cores.
In addition, according to table 8, it is possible to reach the same error tolerance using smaller h’s with
polynomials of order 3 and 4 on 1 CPU core which reduces the time to solution to 31.11 and 14.23
seconds, respectively.

5 Conclusions

This paper presents a matrix-free approach to finite element simulation of nearly-incompressible linear
isotropic elasticity with p-multigrid preconditioning. We have investigated how varying the polynomial
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Figure 3: log-log plot of L2 Error vs. h, where h = 1/n, for polynomials of order 1-4 in
the compressible case ν = 0.3. For each polynomial order, we calculate the slope of the
line that is the best fit in the least square sense. The slopes are 2.07, 4.00, 4.45, 4.75 for
polynomials of order 1 through 4 respectively. The stagnation for p = 3 and p = 4 are due
to fixed algebraic tolerances across all runs.

order and grid size affects the time it takes to achieve a specific error tolerance using a manufactured
solution over a range of Poisson’s ratio from 0.3 to 0.499999. We observed the expected spectral con-
vergence; fixing the grid size constant while increasing the polynomial order provides the fastest time to
converge to the desired solution given a target error tolerance. The particular MMS chosen for this study
contains only smooth functions and thus high order methods exhibit their design order of accuracy (cf.
Figure 3). Real engineering problems almost always have singularities arising from reentrant corners or
transitions between Dirichlet and Neumann boundaries, and thus all methods exhibit the same low order
of accuracy. In many cases, high-order methods still have sufficiently better constants to justify their use
in our setting, where the cost per degree of freedom decreases with increasing p (due to more structured
computation and more efficient quadrature). A systematic evaluation of accuracy vs time/cost tradeoffs
in the presence of natural singularities is left for future work.
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For the test problems in this study, we showed the h and p convergence of our method for compressible
and nearly-incompressible cases and compared it with ABAQUS’s specially-designed mixed element to
handle nearly-incompressible elasticity. Although our method is designed to be scalable for large number
of CPU cores, it already outperforms ABAQUS’s Q2P1 element in the nearly-incompressible cases on a
small number of CPU cores.

In comparison to C3D20H element from ABAQUS, we demonstrated that displacement-only high-order
FEM with matrix-free operator implementation may be utilized with nearly-incompressible linear elas-
ticity problems as a substitute for the mixed/hybrid formulation when the mixed/hybrid implementation
requires assembling matrices based on Q2P1 element and utilizes direct solvers. However, as we ap-
proach the incompressible limit for the linear elasticity problem, the number of CG operations increases
significantly. Therefore, for future research, it is desirable to implement a two-field matrix-free approach
where displacement and pressure fields are independent variables.
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