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Abstract. This paper is motivated by the increasing application of 3D fiber-reinforced composites in

rotating systems [1]. In 2D fiber-reinforced composites, single fibers with a diameter in the range of

micrometers are embedded in a matrix material. But, these composites are prone to delamination damage,

wherefore the development of 3D composites has been undertaken. Here, fiber bundles are woven,

knitted, braided or stitched, in order to fix the fibers before they are surrounded by a matrix material.

From a material modelling point of view, these two kind of composites make a huge difference, because

a fiber bundle has to be considered as a beam-like structure with curvature-twist (bending as well as

twisting) stiffness, in addition to the usual stretching stiffness (cf. [2]). The former is then responsible

for the increasing strength-to-weight ratio of 3D fiber-reinforced composites for thin-walled lightweight

structures. Therefore, 3D fiber-reinforced composites demand for a bespoke simulation technique.

We have to consider a representative volume element, in which secondary effects as a micro inertia

and a curvature-twist stiffness must be taken into account. We introduce these secondary effects in a

continuum formulation by means of independent drilling degrees of freedom (cf. [3]). The resulting non-

isothermal constrained micropolar continuum is derived by a mixed principle of virtual power (cf. [4]).

This variational principle simultaneously generates in the discrete setting a mixed B-bar method and

a Galerkin-based energy-momentum scheme of higher order. We also take into account viscoelastic

material behaviour, which arises from a mixture of organic and inorganic fibers in a polymeric matrix

material. Representative numerical examples demonstrate the twisting and bending stiffness of the fiber

bundles.

1 INTRODUCTION

Since we aim at a finite element method, our strategy starts with consideration of generalized continuum

mechanics and unsymmetric stress tensors. The reason is that anisotropic Cauchy continua with a sym-

metric stress tensor, formulated by idempotent structural tensors AAA0 = aaa0 ⊗aaa0 with ‖aaa0‖= 1, where the

vector aaa0 denotes the fiber direction vector in the initial configuration B0 and ⊗ the dyadic product of

tensors, assume single fibers without a curvature-twist stiffness. But, bending tests with a fiber roving
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Figure 1: Three point bending test: experiment versus Cauchy theory (see Reference [5]). The introduction of

drilling degrees of freedom ααα can be motivated by the bending of a two-dimensional Euler-Bernoulli beam in

applied mechanics. The curvature k(x) of the beam axis can be formulated very easy by a drilling degree of

freedom α with respect to the y-axis, instead of using the displacement w in z-direction.

composite reveal, that the roving bending stiffness has a large influence on the deformation. Beam ends

are stiff and beam curvatures are large, in contrast to finite element simulations with a Cauchy continuum

and structural tensors (see Figure 1). Such curvature effects can be modelled by tensor invariants associ-

ated with (i) a second-order material gradient Grad[FFF] := Grad[Grad[ϕϕϕt ]] with respect to a point XXX ∈ B0

of the deformation mapping ϕϕϕt : B0 → Bt to the current configuration Bt or (ii) a material rotation

gradient GGG := Grad[ααα] of drilling degrees of freedom αααt : Rndim → R
ndim with respect to the Euclidean

ndim-dimensional space.

Therefore, beside the deformation mapping ϕϕϕt , we introduce drilling degrees of freedom αααt as inde-

pendent fields. As we assume a perfect fiber-matrix interface, we arrive at an anisotropic constrained

micropolar continuum. More precisely, we introduce independent axial vectors ΓΓΓ and γγγ with respect

to the initial configuration B0 and the current configuration Bt , respectively. As curvature measure,

we then obtain a curvature-twist tensor KKK = FFFtGGG, where the superscript t denotes the transposition of

a second-order tensor. Analogous to the squared fiber stretch CF := aaat · aaat ≡ aaa0 ·CCC · aaa0 of the deformed

fiber direction vector aaat , being also the trace of the product tensor CCCF := AAA0CCC of structural tensor AAA0 and

right Cauchy-Green tensor CCC := FFF tFFF , we show that the fiber twist TF := aaat ·grad[ααα] ·aaattt ≡ aaa0 ·KKK ·aaa0 per

unit length is the trace of the product tensor KKKF := AAA0 KKK of the structural tensor and the curvature-twist

tensor KKK. Here, we denote by grad[•] the spatial gradient with respect to a point xxx ∈ Bt . Second, we

show that the fiber bending per unit length is described by −2 I
KKKF

2 := BF −T 2
F , with BF := aaa0 ·KKKKKKt ·aaa0,

where I
KKKF

2 denotes the second principal tensor invariant of the fiber curvature-twist tensor KKKF .

Finally, we derive each weak form by using the principle of virtual power, instead of using the principle

of virtual work or least action. The reason can be explained by the Simo-Taylor-Pister functional

ΠSTP(ϕϕϕ, J̃, p̃) :=

∫
B0

Ψiso(ϕϕϕ)dV +

∫
B0

Ψvol(J̃)dV −

∫
B0

(
J̃−det[Grad[ϕϕϕ]]

)
p̃dV (1)

which introduces an independent volume dilatation J̃ and pressure p̃. The operator det[•] denotes the

determinant of a second-order tensor, whereby the volume densities Ψiso and Ψvol designate an isochoric

and volumetric free energy function, respectively. Both, the principles of virtual work and of least action
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derive a weak form for the volume dilatation on the variable level, given by

∫
B0

G(ϕϕϕ, J̃)δ p̃dV = 0 with G(ϕϕϕ, J̃) := J̃ −det[Grad[ϕϕϕ]] (2)

But, in the energy-momentum time integration, the preservation of the balance law of total energy

∫
B0

Htn+1
dV −

∫
B0

Htn dV =
∫ tn+1

tn

∫
B0

[
∂H

∂ϕ̇ϕϕ
· ϕ̈ϕϕ+

∂H

∂ϕϕϕ
· ϕ̇ϕϕ+

∂H

∂J̃
˙̃J

]

dV dt (3)

of one step [tn, tn+1] on the time axis t, with the energy density

H :=
1

2
ρ0 ϕ̇ϕϕ · ϕ̇ϕϕ+Ψiso(ϕϕϕ)+Ψvol(J̃) (4)

and ρ0 as material volume density in the inital configuration, requires a weak form

∫ tn+1

tn

∫
B0

Ġ(ϕ̇ϕϕ, ˙̃J)δ p̃dV dt = 0 (5)

for the time derivative ˙̃J of the independent volume dilatation J̃. Such a weak form can be directly

obtained by a variational principle

∫ tn+1

tn

δ∗Ḣ (ϕ̇ϕϕ, ˙̃J, p̃)dt = 0 with H :=
1

2

∫
B0

ρ0 ϕ̇ϕϕ · ϕ̇ϕϕdV +ΠSTP(ϕϕϕ, J̃, p̃) (6)

as total energy functional, where δ∗[•] indicates the variational operator

δ∗

∫
B0

f (yyy1, . . . ,yyyn)dV :=
∫

B0

[
n

∑
i=1

Di f ∗δ∗yyyi

]

dV (7)

associated with the symbol Di, used to denote differentiation of a tensor function f with respect to its

i-th argument tensor. Here, the symbol ∗ indicates a corresponding tensor contraction. We also use the

symbol D to denote differentiation if f has only one argument.

2 CONSTITUTIVE MODEL

We begin by deriving the fiber twisting kinematics and the corresponding strain energy. The twist of a

fiber can be easily derived by means of a projection of the drilling degrees of freedom ααα on the current

fiber direction aaat (see Figure 2). The twist of a fiber relative to a point P in the current configuration Bt

with unit length dξ is then the projection

dααα ·aaat = (grad[ααα] ·dxxx) ·aaat = (grad[ααα] ·aaat dξ) ·aaat (8)

of the differential dααα of the drilling degrees of freedom. The twist per unit length is the quadratic form

TF := aaat ·grad[ααα] ·aaat = KKK : AAA0 = KKKF : III (9)
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Figure 2: Twist of a fiber bundle based on drilling degrees of freedom (cf. Reference [6]).

with respect to the spatial rotation gradient grad[ααα], or the trace of the fiber curvature-twist tensor KKKF ,

respectively. The second-order tensor III indicates the identity tensor. In this paper, we restrict us to a

quadratic fiber curvature-twist strain energy

Ψctw
FSVK

:= Ψtwi
F +Ψcur

F =
1

2
Ktwi (TF)

2 +
1

2
µcur (bF)

2 (10)

with a fiber twisting function Ψtwi
F associated with a fiber twisting stiffness parameter Ktwi, and a fiber

bending function Ψcur
F related with a fiber bending stiffness parameter µcur. The fiber bending per unit

length, bF , can be related with a deviatoric part of the curvature-twist strain energy. This is shown in

the following by elaborating in three steps that the function Ψctw
FSVK

coincides with a St. Venant-Kirchhoff

strain energy function with respect to the fiber curvature-twist tensor KKKF .

First, we recall the structure of the St. Venant-Kirchhoff strain energy function for a matrix material

based on a spherical and a deviatoric contribution, given by

Ψela
SVK := Ψvol

SVK +Ψdev
SVK =

1

2
K (Evol)2 +

1

2
µ(Edev)2 =

λ

2
[EEE : III]2 +µEEE : EEE (11)

with respect to the Green-Lagrange strain tensor EEE := [CCC− III]/2. The material parameter K denotes the

bulk modulus and µ the shear modulus. The spherical strain

Evol :=
√

ndim sphIII[EEE] : sphIII[EEE] = EEE : III (12)

leads to the volumetric strain energy Ψvol
SVK, and the conjugated deviatoric strain

Edev := 2

√

1

2
devIII [EEE] : devIII [EEE] =

√

2devIII[EEE] : devIII [EEE] =

√

2

[

EEE : EEE −
1

ndim

(Evol)2

]

(13)

generates the energy due to matrix distorsions. The operator sphDDD[(•)] := 1/(DDD : III)[(•) : III]DDD defines

the spherical tensor part with respect to any second-order tensor DDD, and devDDD[(•)] := (•)− sphDDD[(•)]
the conjugated traceless deviatoric tensor. In the end, we obtain in Eq. (11) the well-known St. Venant-

Kirchhoff strain energy function with respect to Lamé’s first and second parameter µ and λ := K −
2µ/ndim, respectively.
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This concept can be also applied in order to design a St. Venant-Kirchhoff fiber strain energy

Ψela
FSVK

:= Ψstr
F +Ψdis

F =
1

2
KF (E

str
F )2 +

1

2
µF (Edis

F )2 =
λF

2
[EEEF : III]2 +µF EEEF : EEEF (14)

with the Lamé parameter λF := KF − 2µF . Now, the spherical contribution of the fiber strain tensor

EEEF := AAA0 EEE with respect to the structural tensor AAA0 introduces the fiber stretch

Estr
F :=

√

sphAAA0
[EEEF ] : sphAAA0

[EEEF ] = EEE : AAA0 = EEEF : III (15)

of the one-dimensional fiber. The deviatoric strain

Edis
F :=

√

2devAAA0
[EEEF ] : devAAA0

[EEEF ] =
√

2
[
J E

5 − (Estr
F )2

]
(16)

includes the basic invariant J E
5 := aaa0 · EEEEEE · aaa0 of the symmetric Green-Lagrange strain tensor. This

contribution leads to a stress component arising from distorsions relative to the fiber direction aaa0. We

highlight that the spherical and deviatoric operator for the fiber is defined with respect to the tensor AAA0.

By using this concept, we obtain a St. Venant-Kirchhoff fiber curvature-twist strain energy

Ψctw
FSVK

:= Ψtwi
F +Ψcur

F =
1

2
Ktwi (TF)

2 +
1

2
µcur (bF)

2 =
λctw

2
[KKKF : III]2 +µcur KKKF : KKKF (17)

with the Lamé parameter λctw := Ktwi − 2µcur. The spherical part describes the twisting energy Ψtwi
F as

shown in Eqs. (9) and (10), and the deviatoric strain

bF :=
√

2devAAA0
[KKKF ] : devAAA0

[KKKF ] =
√

2 [BF − (TF)2] (18)

leads to the bending strain energy. We show this by using the process of linearization of the stress

(cf. Reference [7]), which usually provides a better inside in the physical meaning of strains. We recall

this process by means of the first Piola-Kirchhoff stress tensor

PPPela
SVK(FFF) := FFFSSSela

SVK(EEE(FFF)) = FFF
∂Ψela

SVK(EEE(FFF))

∂EEE
= FFF {λ [EEE(FFF) : III] III+2µEEE(FFF)} (19)

of the St. Venant-Kirchhoff strain energy function of a matrix material. Here, we designate by SSSela
SVK

the second Piola-Kirchhoff stress tensor of the matrix material. The linearization with respect to the

deformation gradient FFF0 = III in the reference configuration B0 leads to the Cauchy stress of Hooke’s law

d

ds

[
PPPela

SVK(III + s∆HHH)
]

s=0
= λ [εεε : III] III +2µεεε =: σσσela

H =
∂Ψela

H

∂εεε
(20)

where εεε := [∆HHH +∆HHHt ]/2 designates the linearized strain tensor. The tensor ∆HHH := ∂∆xxx/∂XXX represents

the linearized displacement gradient. The strain energy function Ψela
H of Hooke’s law then takes the form

Ψela
H =

λ

2
[εεε : III]2 +µεεε : εεε =

1

2
K (evol)2 +

1

2
µ(edev)2 (21)

The trace εεε : III of the linearized strain tensor can be then identified via the divergence div[∆xxx] of the

displacement field ∆xxx as the volume dilatation ∆V/V0 of the deformed configuration with respect to B0.
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We now apply this linearization procedure on the Piola-Kirchhoff couple stress tensor, given by

PPPSVK
K (FFF,GGG) := FFF SSSSVK

K (FFF ,GGG)≡ FFF
∂Ψctw

FSVK
(KKK(FFF ,GGG))

∂KKK
(22)

PPPSVK
K (FFF,GGG) = FFF {λctw [KKKF(FFF,GGG) : III]AAA0 +2µcur KKKF(FFF ,GGG)} (23)

but we linearize with respect to the deformation gradient FFF0 = III as well as the material rotation gradient

GGG0 = OOO in the reference configuration B0. Here, the second-order tensor OOO denotes the zero tensor. In

this way, we arrive at the Kirchhoff couple stress

d

ds

[
PPPSVK

K (III+ s∆HHH,OOO+ s∆GGG)
]

s=0
= λctw [κκκF : III]AAA0 +2µcur κκκF =: µµµH

K =
∂ΨH

K

∂κκκF

∂κκκF

∂∆GGG
(24)

of Hooke’s couple law for the fiber bundles, formulated by the linearized fiber curvature-twist tensor

d

ds
[KKKF(III + s∆HHH,OOO+ s∆GGG)]s=0 = AAA0 ∆GGG =: κκκF (25)

The corresponding Hooke’s couple strain energy function ΨH
K can be written by using Lamé parameters

or a spherical and a deviatoric part, respectively, as

ΨH
K :=

λctw

2
[κκκF : III]2 +µcur κκκF : κκκF (26)

=
Ktwi

2
[κκκF : III]2 +µcur

[

κκκF : κκκF − (κκκF : III)2
]

(27)

ΨH
K =

Ktwi

2
[aaa0 ·∆GGG ·aaa0]

2 +µcur

[

aaa0 ·∆GGG∆GGGt ·aaa0 − (aaa0 ·∆GGG ·aaa0)
2
]

(28)

Now, by employing Cartesian unit directions aaa0 := eeei, i = 1, . . . ,ndim, as fiber directions, we arrive at the

axial strain energy

ΨH
K

∣
∣
aaa0:=eeei

=
Ktwi

2

[
∂∆αi

∂Xi

]2

+µcur

ndim

∑
j=1

i6= j

[
∂∆αi

∂X j

]2

(29)

with respect to the i-th Cartesian unit direction. We recognize in the spherical part (first term) the twisting

modes, and in the remainder deviatoric strain energy the bending modes of the linearized rotation gradient

∆GGG :=
∂∆αi

∂X j

eeei ⊗ eee j (30)

with respect to Cartesian unit directions. Consequently, a curvature-twist law for the fiber bundles reads

ΨK(KKK)
.
= Ψctw

FSVK
(KKK;AAA0) :=

µK (lt)
2

2
(TF)

2 +µK (lb)
2 BF =

µK (lt)
2

2
(KKKF : III)2 +µK (lb)

2 KKKF : KKKF (31)

This St. Venant-Kirchhoff strain energy is our starting point of a development of non-linear curvature-

twist strain energy functions. In the development of energy-momentum schemes, a St. Venant-Kirchhoff
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strain energy function is also recommended as starting point (see Reference [8]). Motivated by Refer-

ence [9], we introduce a curvature-twist stiffness parameter µK associated with length scales lt and lb for

twisting and bending, respectively, of the fiber bundles.

As anisotropic continuum force model, we consider a decoupled thermo-viscoelastic free energy for

matrix and fiber material. In the decoupled elastic strain energy

Ψela(CCC,C̃V ,C̃F ;AAA0) = Ψiso
M (I C

1 , I C
2 , I C

3 , I C
4 )+Ψvol

M (C̃V )+Ψela
F (C̃F) (32)

we consider the volumetric strain invariant CV := (det[CCC ])1/ndim and the squared fiber stretch CF :=CCC : AAA0

as independent fields C̃V and C̃F , respectively. Note that we denote, in this paper, by

I C
1 :=CCC : III I C

2 :=
1

2

[
(I C

1 )2 −CCC2 : III
]

I C
3 := det[CCC ] I C

4 :=CCC : AAA0 ≡ aaat ·aaat = ‖aaat‖
2 (33)

the principal tensor invariants of the right Cauchy-Green tensor CCC and the structural tensor AAA0. As

we consider a fiber-reinforced continuum body B, moving in the Euclidean space R
ndim with constant

ambient temperature Θ∞, the field Θ = θ ◦ϕϕϕ indicates the current temperature θ(xxx) at a point xxx ∈ Bt

parametrized by the corresponding material point X ∈ B0. Therefore, in the thermoelastic free energy

Ψthe(C̃V ,C̃F ,Θ) = Ψcap(Θ)− 2

√

C̃
2−ndim

V βM [Θ−Θ∞]DΨvol
M (C̃V )− 2

√

C̃F βF [Θ−Θ∞]DΨela
F (C̃F) (34)

we take into accout a volume expansion, but also expansion in fiber direction. The heat capacity of

matrix and fiber material, respectively, is described by the function Ψcap := Ψ
cap
M +Ψ

cap
F according to the

volume fraction of matrix material and fiber bundles, respectively. The viscoelastic free energy of matrix

material and fiber bundles, given by

Ψvis
M (CCC,CCCv) = Ψela

M (I
CC−1

v

1 , I
CC−1

v

2 , I
CC−1

v

3 ) Ψvis
F (C̃F ,C̃

v
F) = Ψela

F (C̃F [C̃
v
F ]

−1) (35)

depends on the invariants of elastic deformation tensors. Here, the viscous internal variables of the

three-dimensional matrix material and the one-dimensional fiber material are designated by CCCv and C̃v
F ,

respectively. The viscous evolution equation YYY = ΣΣΣv of the matrix material is based on

YYY :=−
∂Ψvis

M

∂CCCv

(36)

as the non-equilibrium stress tensor, and defines the viscous internal dissipation

Dint
M := ĊCCv : ΣΣΣv = ĊCCv : V(CCCv) : ĊCCv ≥ 0 (37)

as non-negative-definite quadratic form with respect to the viscosity tensor

V(CCCv) =
1

4

[

Vvol −
Vdev

ndim

]

CCC−1
v ⊗CCC−1

v +
Vdev

4
CCC−1

v ⊙CCC−1
v with CCC−1

v ⊙CCC−1
v :=−

∂CCC−1
v

∂CCCv

(38)

The material parameters Vvol and Vdev designate viscosities with respect to volumetric and deviatoric in-

elastic deformations of the matrix material. The viscous evolution equation YF = Σv
F of the fiber material

is analogously defined by the non-equilibrium stress

YF :=−
∂Ψvis

F

∂C̃v
F

(39)
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and the viscous internal dissipation

Dint
F := ˙̃Cv

F Σv
F = ˙̃Cv

F

VF

4(C̃v
F)

2

˙̃Cv
F ≥ 0 (40)

with the fiber viscosity parameter VF .

3 VARIATIONAL FORMULATION

The principle of virtual power, in this paper, relies on the total energy balance law of the continuum

Ḣ (ϕ̇ϕϕ, v̇vv, ṗpp, α̇αα, ω̇ωω, π̇ππ, ˙̃FFF, ˙̃GGG,ĊCC,ĊCCv, K̇KK, ˙̃CV ,
˙̃CF ,

˙̃Cv
F ,Θ̇, η̇

︸ ︷︷ ︸

temporally continuous

,Θ̃, P̃PP,SSS, P̃PPK ,SSSK , τ̃ττ
t
skw, S̃V , S̃F ,RRR,h,λ,ZZZ, ω̂ωω

︸ ︷︷ ︸

temporally discontinuous

) = 0 (41)

where H := T tra +T rot +Πext +Πint. Each field in the argument list has to be temporally independent

approximated, but there is a distinction between temporally continuous time rate fields and temporally

discontinuous Lagrange multiplier fields. By a tilde symbol in superscript, we highlight a below spatially

independent approximated field. A hat symbol in superscript highlights pseudo tensors. In the following,

we use a bar symbol in superscript in order to highlight fields, which are parameters of the variational

principle, because they are prescribed by the user or the second law of thermodynamics, respectively. In

Eq. (41), non-standard fields are especially the material rotation gradient G̃GG, the curvature-twist tensor KKK,

the Piola-Kirchhoff couple stress P̃PPK as well as the curvature-twist stress SSSK . In addition to the standard

kinetic power functional

Ṫ
tra(ϕ̇ϕϕ, v̇vv, ṗpp) :=

∫
B0

[ρ0III vvv− ppp] · v̇vvdV −

∫
B0

ṗpp · [vvv− ϕ̇ϕϕ]dV +

∫
B0

ppp · ϕ̈ϕϕdV (42)

introducing the material velocity field vvv and the linear momentum field ppp, we use the rotational kinetic

power functional

Ṫ
rot(α̇αα, ω̇ωω, π̇ππ) :=

∫
B0

[
ρ0

[
(l2

F − l2
0)AAA0 + l2

0III
]

ωωω−πππ
]
· ω̇ωωdV −

∫
B0

π̇ππ · [ωωω− α̇αα]dV +
∫

B0

πππ · α̈ααdV (43)

for introducing a micro-inertia based on two length scales lF and l0. Here, the field ωωω denotes the angular

velocity field pertaining to the continuum rotation ααα, and πππ the corresponding angular momentum field.

The external power functional

Π̇ext := −
∫

B0

ρ0BBB · ϕ̇ϕϕdV −
∫

∂T B0

T̄TT · ϕ̇ϕϕdA +
∫

∂QB0

Θ̃H̄ dA

+

∫
B0

Grad[Θ̃] ·HHH dV +

∫
B0

Θ̃

Θ

(
Dcdu +Dint

)
dV +

∫
B0

ΣΣΣv : ĊCCv dV

+

∫
∂ΘB0

λ
[
Θ̃−Θ∞

]
dA −

∫
∂Θ̇B0

h
[

Θ̇− ˙̄Θ
]

dA −

∫
∂ϕB0

RRR ·
[
ϕ̇ϕϕ− ˙̄ϕϕϕ

]
dA

−

∫
∂αB0

ZZZ ·
[
α̇αα− ˙̄ααα

]
dA −

∫
∂αB0

ω̂ωω ·
[
ε̂εε : τ̃ττt

skw

]
dA −

∫
∂W B0

W̄WW · α̇ααdA

+

∫
B0

1

2
S̄SS : ĊCC dV +

∫
B0

1

2
S̄V

˙̃CV dV +

∫
B0

1

2
S̄F

˙̃CF dV

+

∫
B0

Σv
F

˙̃Cv
F dV +

∫
B0

S̄SSK : K̇KK dV +

∫
B0

M̄v
F LF[

˙̃CF − ˙̃Cv
F ]dV

(44)
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with

H̄ :=
Q̄

Θ
Dint := Dint

M +Dint
F LF[•̇] =

˙
ln(•)

2
(45)

includes algorithmic stresses S̄SS, S̄V , S̄F , S̄SSK and M̄v
F in order to obtain an energy-momentum scheme, a

mass specific volume load BBB and traction loads T̄TT on the Neumann boundary ∂T B0, thermal loads Q̄ on

the thermal Neumann boundary ∂QB0, the Fourier heat conduction

HHH :=−
1

Θ

[
kF0

− k0

C̃F

AAA0 + k0 [F̃FF
t
F̃FF ]−1

]

Grad[Θ] with Dcdu := −Grad[Θ] ·HHH ≥ 0 (46)

as corresponding dissipation, the viscous time evolutions, Dirichlet boundaries ∂ΘB0 ∪∂Θ̇B0 := ∂B0 \
∂QB0 with ∂ΘB0 ∩ ∂Θ̇B0 = /0 for prescribing the ambient temperature Θ∞ or the time evolution Θ̄ of

the temperature, respectively, as well as prescribed displacements ϕ̄ϕϕ−XXX on ∂ϕB0. This constrained

micropolar continuum also allows for a Neumann boundary ∂W B0 for prescribing boundary couples

W̄WW , and a Dirichlet rotation boundary ∂αB0 := ∂B0 \ ∂W B0, which allows for boundary rotations ᾱαα.

Since the Dirichlet boundaries have to be formally introduced by Lagrange multiplier terms, λ denotes a

boundary entropy flux, h a boundary entropy and RRR Newtonian boundary forces. The Lagrange multiplier

field ZZZ includes the reaction couples on the boundary ∂αB0, and ω̂ωω the reaction angular velocities arising

from the orthogonality property with the skew-symmetric Kirchhoff stress τ̃ττt
skw. Here, we applied the

third-order permutation tensor ε̂εε. The skew-symmetric Kirchhoff stress τ̃ττt
skw is a Lagrange multiplier

field, defined in the internal power functional

Π̇int :=
∫

B0

{[

2
∂ΨM

∂CCC
+ S̃V AAAvol + S̃F AAA0 −SSS

]

:
1

2
ĊCC+

[

2
∂ΨM

∂C̃V

− S̃V

] ˙̃CV

2
+

[

2
∂ΨF

∂C̃F

− S̃F

] ˙̃CF

2

}

dV

+
∫

B0

{
[
Θ− Θ̃

]
η̇+

[
∂Ψ

∂Θ
+η

]

Θ̇+
∂ΨM

∂CCCv

: ĊCCv +
∂ΨF

∂C̃v
F

˙̃Cv
F +

[
F̃FFSSS+ G̃GG(SSSK)

t − P̃PP
]

: ˙̃FFF + P̃PP : Grad [ϕ̇ϕϕ]

}

dV

+

∫
B0

{

P̃PPK : Grad [α̇αα]+ τ̃ττt
skw : ε̂εε ·

[
1

2
ε̂εε : ˙̃FFFF̃FF

−1
+ α̇αα

]

+
[
F̃FFSSSK − P̃PPK

]
: ˙̃GGG+

[
∂ΨK

∂KKK
−SSSK

]

: K̇KK

}

dV

(47)

with

AAAvol(CCC) :=
1

ndim

det(CCC)
1

ndim CCC−1 ΨM := Ψiso
M +Ψvol

M +Ψvis
M +Ψthe

M ΨF := Ψela
F +Ψvis

F +Ψthe
F (48)

in order to introduce the strain power arising from the drilling degrees of freedom. The free energy Ψ :=
ΨM +ΨF indicates the total free energy of the composite. The assumed temperature field Θ̃ replaces a

thermal displacement field, being not explicitly involved in the total free energy according to the assumed

Fourier heat conduction, and η denotes the entropy density of the composite. After varying the total

energy balance law in Eq. (41) with respect to temporally continuous time rate fields and temporally

discontinuous Lagrange multipliers, we apply the fundamental theorem of calculus of variations in

δ∗Ḣ (ϕ̇ϕϕ, v̇vv, ṗpp, α̇αα, ω̇ωω, π̇ππ, ˙̃FFF , ˙̃GGG,ĊCC,ĊCCv, K̇KK, ˙̃CV ,
˙̃CF ,

˙̃Cv
F ,Θ̇, η̇

︸ ︷︷ ︸

temporally continuous

,Θ̃, P̃PP,SSS, P̃PPK ,SSSK , τ̃ττ
t
skw, S̃V , S̃F ,RRR,h,λ,ZZZ, ω̂ωω

︸ ︷︷ ︸

temporally discontinuous

) = 0 (49)
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and arrive at non-standard weak forms on the volume of the constrained micropolar continuum, given by
∫

B0

δ∗K̇KK :

[
∂ΨK

∂KKK
+ S̄SSK −SSSK

]

dV = 0 =
∫

B0

δ∗
˙̃GGG :

[
F̃FF SSSK − P̃PPK

]
dV (50)

∫
B0

δ∗P̃PPK :
[

Grad [α̇αα]− ˙̃GGG
]

dV = 0 =
∫

B0

δ∗π̇ππ · [α̇αα−ωωω]dV (51)

∫
B0

δ∗ω̇ωω ·
[
ρ0

[
(l2

F − l2
0)AAA0 + l2

0III
]

ωωω−πππ
]

dV = 0 =
∫

B0

δ∗SSSK :
[

˙̃FFFtG̃GG+ F̃FF
t ˙̃GGG− K̇KK

]

dV (52)

∫
B0

δ∗α̇αα ·
[
π̇ππ+ ε̂εε : τ̃ττt

skw

]
dV +

∫
B0

P̃PPK : Grad [δ∗α̇αα]dV =
∫

∂αB0

δ∗α̇αα ·ZZZ dA+
∫

∂W B0

δ∗α̇αα ·W̄WW dA (53)

∫
B0

δ∗τ̃ττt
skw : ε̂εε ·

[
1

2
ε̂εε : ˙̃FFFF̃FF

−1
+ α̇αα

]

dV =

∫
∂αB0

ω̂ωω · ε̂εε : δ∗τ̃ττt
skw dA (54)

In Eqs. (50), we obtain the weak forms corresponding to the curvature-twist stress tensor SSSK and the

Piola-Kirchhoff couple stress tensor P̃PPK , respectively. Eqs. (51) show the weak forms of the material

rotation gradient G̃GG and the rotational velocity ωωω. The weak form of the rotational momentum and the

curvature-twist tensor are given in Eqs. (52). In Eq. (53), we show the balance of spin angular momentum

for determining τ̃ττt
skw, where Eq. (54) includes the weak form defining the continuum rotation vector or

drilling degrees of freedom, respectively, ααα. The remainder weak forms and the algorithmic stresses S̄SS,

S̄V , S̄F and M̄v
F are presented in Reference [10], and references therein.

The curvature-twist strain energy ΨK also leads to a new contribution in the balance law of potential

energy on a time step, given by

Πint
n+1 −Πint

n =

∫ tn+1

tn

∫
B0

[
Ψ̇M + Ψ̇F + Ψ̇K

]
dV dt =

∫ tn+1

tn

∫
B0

[

Ψ̇M + Ψ̇F +
∂ΨK

∂KKK
: K̇KK

]

dV dt (55)

whose discrete preservation is essential for an energy-momentum time integration. Usually, we need

for an algorithmic stress S̄SSK , which preserve this time integral equation for any hn = tn+1 − tn. Setting

δ∗K̇KK = K̇KK and δ∗SSSK = SSSK , we obtain the weak forms

∫ tn+1

tn

∫
B0

K̇KK :

[

∂Ψ̂K

∂KKK
+ S̄SSK −SSSK

]

dV dt = 0 and

∫ tn+1

tn

∫
B0

SSSK :
[

K̇KK − ˙̃FFFtG̃GG− F̃FF
t ˙̃GGG

]

dV dt = 0 (56)

and arrive by employing Eq. (55) at the integral equations
∫ tn+1

tn

∫
B0

S̄SSK : K̇KK dV dt = Πint
n+1 −Πint

n −
∫ tn+1

tn

∫
B0

{
Ψ̇M + Ψ̇F +SSSK : K̇KK

}
dV dt

= Πint
n+1 −Πint

n −

∫ tn+1

tn

∫
B0

{

Ψ̇M + Ψ̇F +SSSK :
[

˙̃FFFtG̃GG+ F̃FF
t ˙̃GGG

]}

dV dt (57)

In this way, a constraint for the algorithmic stress S̄SSK for any time step size hn can be written as (cf. [11])

ΨKn+1
−ΨKn

−

∫ 1

0
SSSK :

∂KKK

∂α
dα =

∫ 1

0
S̄SSK :

∂KKK

∂α
dα α(t) :=

t − tn

hn

(58)

But, by approximating in Eq. (58) the curvature-twist tensor KKK and the time integral such, that

KKK(α) :=
k+1

∑
I=1

MI(α)KKKI MI(α) :=
k+1

∏
J=1
I 6=J

α−αJ

αI −αJ

IGauss{ f}=
k

∑
l=1

f (ξl)wl (59)
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Figure 3: Boundary conditions and fiber bundles indicated by colors, markers and black arrows, respectively.

with Lagrange polynomials MI(α), I = 1, . . . ,k+1, in time, a Gaussian quadrature rule IGauss with Gauss

points ξl and weights wl, l = 1, . . . ,k, Eq. (58) is satisfied for St. Venant-Kirchhoff material. Therefore,

an algorithmic curvature-twist stress S̄SSK vanishes in this case, which is well-known from a St. Venant-

Kirchhoff matrix material (cf. Reference [8]).

4 NUMERICAL EXAMPLE

We demonstrate by numerical examples the behaviour of the St. Venant-Kirchhoff fiber curvature-twist

stress. We consider Taylor’s bar with fiber bundels along the bar axis (see Figure 3). First, we con-

sider a dynamic torsion by using an axial transient couple load Wz(XXX) =∓Wz [ fL sinωLt]2 on each point

XXX ∈ ∂W B0. On the yellow bar end, we prescribe the time evolution of the torque in −z-direction, and on

the blue end in z-direction. Both ends, are also a thermal Dirichlet boundary ∂ΘB0 with Θ(XXX) =Θ∞. The

green, red and light blue lateral surfaces are thermally and mechanically insulated in these examples. As

usual for Taylor’s bar, we also prescribe an initial velocity field vvv(XXX) = −v0 eeez. The time integration is

performed by the 121-em energy-momentum scheme with linear finite elements in time for mechanical

and viscous quantities, and quadratic finite elements in time for thermal quantities. The space approxi-

mation follows from Reference [12]. Then, we consider a dynamic bending by using a transient couple

load Wy(XXX) =∓Wy [ fL sinωLt]2, where ωL denotes the excitation frequency, and fL a load cycle weight.

11
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5 CONCLUSIONS

Motivated by precise simulations of fiber roving composites with fiber twisting and bending stiffness on

the micro scale, we aim at energy-momentum schemes for constrained micropolar continua, derived by

a principle of virtual power for continua. Therefore, we introduce independent fields for the continuum

rotation, and discretize by using new mixed finite elements. Important results are that a torsional and

flexural rigidity of fibers can be prescribed, even separately. Next design steps are a nonlinear curvature-

twist strain energy function and the corresponding algorithmic curvature-twist stress tensor.
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