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A B S T R A C T   

Increasing the energy efficiency of the built environment has become a priority worldwide and especially in 
Europe. Because of the relatively low turnover rate of the existing built environment, energy efficiency retro
fitting appears to be a fundamental step in reducing its energy consumption. Last experiences have shown that 
there is a vast energy efficiency potential lying in the building stock, and it is mainly untapped. One of the 
reasons is a lack of robust methodologies able to evaluate the effect of applied energy efficiency measures and 
inform about the expected impact of potential retrofitting strategies. Nowadays, dynamic measured data coming 
from automated metering infrastructure provides valuable information to evaluate the effect of energy conser
vation strategies. For this reason, energy performance modeling and assessment methods based on this data are 
starting to play a major role. In this paper, several methodologies for the measurement and verification of energy 
savings, and for the prediction and recommendation of energy retrofitting strategies, are analysed in detail. 
Practitioners looking at different options for these two processes, will find in this review a thorough and detailed 
overview of the different methods that can be used. Guidance is also provided to determine which method could 
work best depending on the specific case under analysis. The reviewed approaches include statistical learning 
models, machine learning models, Bayesian methods, deterministic approaches, and hybrid techniques that 
combine deterministic and data-driven modeling. Existing research gaps are identified and prospects for future 
investigation are presented within the main conclusions of this research work.   

1. Introduction 

Low energy performance of the built environment is one of the main 
barriers to reach the 2030 European energy efficiency targets [1]. One of 
the most successful ways to address low building energy efficiency is a 
massive and affordable implementation of energy renovation strategies 

[2,3]. However, at present, there are still several barriers hindering the 
adoption of procedures and technologies that improve energy efficiency, 
and limiting the investments in this field. Tuominen et al. [4] found a 
low impact of renovations on property prices, lack of trusted informa
tion, and small prioritization for energy performance improvements, to 
be frequently cited as the main barriers, in the case of privately owned 
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residential buildings. On the other hand, Kontokosta [5] identified in
formation asymmetry between project partners, uncertainty over ex
pected savings, and shortage of expertise in energy technologies, as the 
main obstacles in the retrofitting decision making process for commer
cial office buildings. In the latter case, the author also highlights that 
these issues have been worsened by case-study oriented approaches, 
many times because of lack of extensive data and comprehensive pre/
post analyses of load profiles following an energy efficiency measure 
(EEM) implementation. 

For commercial and public buildings, applied EEMs can have a sig
nificant impact, but the evaluation of this impact with certainty and 
reliability is no easy task. At the same time, no consolidated framework 
exists to evaluate ex-ante the effect of different energy retrofitting 
strategies over buildings. Several techniques to find the most cost- 
efficient set of measures for a particular building have been developed 
[6], but scaling up such methods proves to be a major technical chal
lenge, since the effectiveness of retrofitting actions depends on many 
parameters and this is a clear constraint for any evaluation method. 

The objective of this review paper is to establish the state of 
knowledge related with the modeling-based approaches used to support 
the planning and evaluation of building energy retrofitting strategies. 
More specifically, the paper aims at reviewing methods, as well as tools, 
to: 

� determine the energy savings obtained through an energy retrofit
ting program (commonly referred to as measurement and 
verification).  
� support the process of identification of the most appropriate energy 

renovation action according to the specific features of the analysed 
building (in this paper referred to as prediction and 
recommendation). 

Although few reviews already exist, partially covering the topics 
addressed in this article, to the best of the authors’ knowledge no pub
lished review provides an in-depth and comprehensive analysis such as 
the one presented here. In no other review work the measurement and 
verification, and the prediction and recommendation processes are 
analysed together and in a structured way as in the present article. The 
details of this analysis are described in Chapter 3. This review work 
focuses mainly on data-driven methods, although some deterministic 
and hybrid methods are also analysed. The reason for this is that, in the 
last years, a surge in the number of smart energy monitoring devices has 
significantly increased the amount of building energy performance data 
available. This made possible the setting up of many publicly available 
databases containing energy consumption data and building character
istics of hundreds of thousands of buildings. Data-driven methods are 
hence becoming of increasing interest, as they are able to harness such 
huge amount of information for both evaluating the applied energy 
retrofitting measures and predicting the energy savings potential of new 
EEMs [7]. Moreover, traditional deterministic methods not based on 
data have to face an important issue related with their scalability, since 
the results obtained are usually only valid for the specific building under 
analysis. This means that using these methods to develop large scale 
retrofitting strategies can be a major challenge [8]. It’s also important to 
point out that data-driven techniques are being already widely 
employed in building energy efficiency, and several interesting appli
cations are arising, such as control optimization in demand response, 
efficiency improvement of HVAC systems, energy efficient operation of 
different types of buildings, and more [9–11]. 

The article is organized as follows. Section 2 introduces the reader to 
different key concepts and how they are used in the context of this re
view work: the measurement and verification process, the prediction 
and recommendation process, and the distinction between data-driven 
and deterministic models. In Section 3, a concise overview of previous 
studies focused on building energy consumption modeling and fore
casting techniques is provided. In Section 4, a review of existing M&V 

protocols, as well as data-driven energy baseline estimation methods is 
presented. State-of-the- art techniques for non-routine event detection 
and uncertainty estimation are also reviewed in that section. Section 5 
includes a detailed review of methods to predict the effect of energy 
efficiency measures and to plan energy retrofitting strategies. Finally, in 
Sections 6 and 7 the discussion and conclusions of this review work are 
outlined. The structure of the paper is also illustrated in Fig. 1, where the 
two main processes reviewed in this article are highlighted, together 
with the different applications studied in each case. 

2. Background 

In this section, some concepts which can help to better understand 
the full content of the review, are introduced, namely: the measurement 
and verification process, the prediction and recommendation process, 
and the difference between data-driven methods and deterministic 
methods. 

2.1. The measurement and verification process 

Measurement and verification (M&V) is the process of using mea
surements to accurately estimate real savings generated in a facility 
thanks to the implementation of an energy management strategy [12]. 

2.1.1. Baseline modeling 
Since savings can’t be directly measured, as they represent the 

absence of energy usage, they are determined by comparing measured 
energy consumption before and after the implementation of a retrofit 
measure, considering the relevant adjustments for changes in condi
tions. In order to carry out a comparison between the energy usage 
before and after the EEM application, a model of the consumption prior 
to the implementation of the measures needs to be developed. This is 
model is called the baseline energy model. The baseline model can be 
defined as the energy characterization of the starting situation and has a 
fundamental role in the determination of energy savings. In fact, the 
baseline model allows to isolate the effects of a retrofit intervention from 
the effects of other parameters that can simultaneously affect the energy 
consumption, therefore reducing the uncertainty with which savings are 
estimated. In this article, the most common data-driven methods used to 
develop baseline models are reviewed. 

2.1.2. Advanced measurement and verification (M&V 2.0) 
In recent years, M&V has been transitioning to a new state, known in 

the field as “advanced measurement and verification” (or M&V 2.0). 
This new form of M&V is a result of the breakthroughs in advanced 
metering infrastructure systems and automated analytics techniques. In 
M&V 2.0, high granularity datasets with increased sampling frequency, 

Fig. 1. Illustration of paper structure.  
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volume, and resolution, are analysed, in order to perform an estimation 
of energy efficiency savings which is almost in real-time [13]. This is 
enabling M&V to advance from a static and cumbersome process to a 
more dynamic one, that translates into hourly energy insights, maxi
mized savings and great benefit for all the parts involved in the energy 
retrofitting programs [14]. One of the main drivers of M&V 2.0 is the 
development of accurate baseline models for real-time savings estima
tion, through the application of advanced statistical and machine 
learning techniques. The new features of M&V 2.0 are not only limited to 
savings evaluation, in fact, most of the advanced M&V tools currently on 
the market also provide a range of different services, such as analysis 
and visualization of energy monitoring data, system-level fault detection 
and diagnostics, and building energy benchmarking [15]. 

2.2. The prediction and recommendation process 

The term prediction refers to a group of techniques used to predict the 
effect of a hypothetical EEM application on an individual building or 
facility. The prediction results are then used to recommend the applica
tion of specific EEMs over others, and to plan optimal energy retrofitting 
scenarios. Thanks to prediction and recommendation techniques, it’s 
possible to answer many different questions, such as: “What is the return 
on investment for a specific EEM?“, “Which EEM would perform best in 
the selected building, given its characteristics?“, “Which low capital cost 
measures can be applied to increase the energy performance of the 
selected building?“, “Of all the buildings belonging to the considered 
stock, which ones would benefit the most from an energy renovation 
program?“, “Which EEM would yield the highest energy savings, in a 30 
years time span?” etc. All these questions are commonly answered by an 
engineer, after performing a building energy audit, although the results 
obtained with the audit can be very uncertain. In Section 5, an overview 
is provided of practical data-driven and deterministic methods to predict 
EEM impact and plan energy retrofitting strategies for an individual 
facility or a group of buildings. 

2.3. Data-driven models and deterministic models 

Having clear the goals of the two main processes that are going to be 
studied in this review, let’s now define the two categories of methods 
under analysis: data-driven models and deterministic models. 

Data-driven models are statistical models that find relationships 
between state variables of the analysed system (inputs and outputs) 
without explicit or detailed knowledge of its physical behaviour. In the 
case of models built for M&V, for example, typical input variables can be 
external air temperature, wind speed and direction, solar irradiance, 
building occupancy rate, while typical output variables can be the total 
electrical or thermal load of the building. Depending on the level of 
physical significance of the parameters used, these models are usually 
referred to as grey-box or black-box models. 

The other class of methods reviewed in this article are deterministic 
methods: detailed building energy simulation models based on the dif
ferential equations of the energy transfer flows occurring in the control 
volumes (rooms or spaces) of the buildings. These physics-based models 
are usually referred to as white-box models. 

While for the measurement and verification process, the methods 
reviewed in this article are exclusively data-driven, in the prediction and 
recommendation section, both data-driven and deterministic models are 
analysed, as well as “hybrid” models, in various which data-driven 
techniques are used to analyse results obtained with deterministic 
methods. 

3. Existing review studies 

This paragraph gives a concise but complete overview of previously 
published review works regarding the different topics treated in this 
article. To the best of the authors’ knowledge, there is no published 

review that addresses the same topics presented in this article, that is: an 
up-to-date and detailed analysis of data-driven and deterministic 
methodologies used to verify the effect of EEMs in buildings and to 
predict the impact of future energy retrofitting strategies. The existing 
data-driven and machine learning techniques used to model and forecast 
building energy consumption have been thoroughly analysed in a wide 
range of reviews published over the last years: [16–23]. 

Deb et al. [24] divided state-of-the-art forecasting methods in nine 
different categories and compared them in terms of length of training, 
data needed, accuracy, and computation time required for the estima
tion. Wei et al. [25] extended this analysis to other applications, such as 
energy pattern profile identification, energy-usage mapping, bench
marking of the building stock, and the definition of extensive retrofitting 
plans. Data-driven techniques related to the development of retrofitting 
strategies were also studied in the same review (artificial neural net
works, genetic algorithms, and clustering techniques). 

Harish and Kumar [26] carried out an analysis of different ap
proaches to model and simulate building energy systems and to evaluate 
the impact of energy retrofitting strategies. Different dynamic modeling 
techniques were reviewed, including the forward approach (white-box), 
the data-driven approach (black-box) and the hybrid grey-box approach. 
The different methods were then classified according to the model type, 
the parameters used, the simulation period and, the method of vali
dating the results. A list of building energy simulation software, together 
with their strengths and limitations is also presented in that paper. 

Lee et al. [27] reviewed retrofitting analysis toolkits for commercial 
buildings, classifying them in 3 main categories: toolkits using 
data-driven methods, toolkits using normative calculations, and toolkits 
using physics-based energy models. From the analysis, it appears that 
there is still room for improvement of these methods, especially 
regarding: (i) mitigation of the high degree of uncertainty associated 
with these tools, (ii) interoperability between the different tools, (iii) 
incorporation of human behaviour in the models, (iv) extension of 
output parameters. An overview of the current state of advanced mea
surement and verification tools was also provided by Granderson and 
Fernandes [15]. The authors reviewed sixteen different commercially 
available tools and classified them according to various criteria: the 
standard protocol employed, the type of baseline models used, the input 
data granularity required, the possibility to provide uncertainty esti
mates, and more. Granderson et al. [28] also compared the accuracy of 
ten different baseline energy use models for automated measurement 
and verification of energy savings. The techniques were tested on 537 
commercial buildings in the US using training periods of different 
lengths and without any non-routine adjustment. Two different error 
metrics: normalized mean bias error (NMBE) and coefficient of variation 
of the root mean squared error (CV(RMSE)) were calculated and 
compared, showing similar performances for the ten models. Results of 
this analysis showed that data-driven statistical techniques are better 
candidates for scaling up the adoption of whole-building energy savings 
evaluations using advanced metering infrastructure. In a subsequent 
publication [29], the same authors applied one of the ten methods (the 
time of the week and temperature baseline model) on a set of 84 buildings, 
in an attempt to test the applicability of these M&V approaches on a 
larger scale. It was found that 70% of the buildings of the data set were 
well fit to be analysed with the automated approach, and in 80% of the 
cases savings and uncertainties were quantified to levels above the 
minimum acceptable thresholds defined by the ASHRAE Guideline 14 
[30], a standard protocol used for M&V. 

Although the presented review works are of great importance, there 
is still a shortage of studies covering specifically, and in detail, the 
processes of measurement and verification of energy savings, and of 
energy retrofitting planning. Practitioners looking at different options 
for these two processes, will find in this review a thorough, as well as 
detailed, overview of the different methods that can be used. Guidance is 
also provided to determine which method could work best depending on 
the specific case under analysis. At the same time, it’s important to 
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highlight how this review work is mainly focused on data-driven ap
proaches. Considering the growing attention that statistical and machine 
learning techniques are now receiving in the field of building energy 
performance analysis, such a study appears essential to identify the 
research gaps and to highlight future research lines. 

4. Measurement & verification: review of methods and data- 
driven applications 

This section aims at reviewing the most popular M&V methods 
currently in use, with special focus on the data-driven techniques used to 
estimate baseline energy models. In the first part of the section, four 
frequently employed M&V protocols are introduced. Following, a re
view of state-of-the-art data-driven techniques to develop baseline en
ergy models and estimate retrofit savings is presented. The last 
paragraphs of the section present a review of data-driven approaches to 
the problems of non-routine event detection and savings uncertainty 
estimation. 

4.1. Measurement & verification protocols 

M&V is an evolving science and various methods and best practices 
were drawn up and documented in different guidelines. Attempts have 
been made to create a unique standard for the M&V process, but 
depending on the analysed facility’s geographical location, principal use 
(residential, commercial, industrial, etc.), and type of metering data 
available, practitioners still employ different protocols. The optimal 
degree of standardization that will ultimately be required for advanced 
M&V is an open issue and currently under discussion among stakeholder 
groups [15]. 

4.1.1. International performance measurement and Verification Protocol 
(IPMVP) 

The International Performance Measurement and Verification Pro
tocol [12], proposed by Efficiency Valuation Organization (EVO), de
fines standard terms and suggests best practices to quantify energy 
savings following the application of one or more energy efficiency 
measures. According to this protocol, four different options are available 
to determine energy efficiency savings:  

� Option A: Partially Measured Retrofit Isolation. This option involves 
the use of measurement instruments to monitor the consumption of 
the equipment affected by the applied EEM, isolated from the energy 
usage of the rest of the building. In this option, only partial mea
surement is used, meaning that some parameter(s) are estimated 
rather than measured. 

Option B: Retrofit Isolation. This case is equivalent to option A, with 
the exception that no estimations are allowed and full measurement of 
all the relevant parameters is required.  

� Option C: Whole Building. In this approach, utility meters are used to 
evaluate the energy performance of the whole building. Option C 
determines the total savings of all implemented EEMs and is only 
applicable in projects where savings are expected to have a sub
stantial impact, making them distinguishable from energy variations 
unrelated to the applied measures.  
� Option D: Calibrated Simulation. This option involves using building 

energy modeling software that allows the prediction of energy con
sumption in different scenarios. The models used for this scope are 
first calibrated, making sure that the predicted energy load of the 
building matches the real (metered) data. 

4.1.2. ASHRAE guideline 14 
The ASHRAE Guideline 14 for measurement of Energy, Demand and 

Water Savings [30], published by the American Society of Heating, 

Refrigerating and Air- Conditioning Engineers (ASHRAE), also specifies 
three different approaches to determine energy savings:  

� Retrofit Isolation Approach, similar to IPMVP option B  
� Whole Facility Approach, similar to IPMVP option C  
� Whole Building Calibrated Simulation Approach, similar to IPMVP 

option D 

Furthermore, the ASHRAE guideline provides different metrics to 
evaluate the validity of the applied models, such as thresholds for net 
determination bias or the maximum acceptable uncertainty of the esti
mated savings. 

4.1.3. DOE Uniform Methods Project 
The US Department of Energy (DOE), is also building a set of pro

tocols to assess savings due to energy renovation programs. These pro
tocols, joined together under the name Uniform Methods Project [31], 
provide a simple and clear method to determine energy savings for 
residential, industrial, and commercial buildings. The protocols are 
based on IPMVP, but supplementary practices are included, that can be 
used to aggregate savings from single retrofitting actions and assess 
program-wide effects. 

4.1.4. CalTRACK 
CalTRACK [32] is a protocol that was born from the efforts of the 

California Energy Commission and the California Public Utilities Com
mission to have a standardized protocol for the evaluation of energy 
savings in the residential sector. Cal- TRACK specifies a set of methods to 
measure and report changes in the energy consumption of a building 
following the application of an EEM. These methods have the goal of 
estimating the energy that would have been consumed in the building if 
the intervention had not taken place. The techniques implemented have 
been empirically tested by a technical team with several different 
stakeholders and developed under an open-source license model. The 
data required to apply the CalTRACK methods includes one full year of 
consumption data before the EEM application, local weather data, and 
the date of implementation of the measure. 

4.2. Data-driven baseline estimation methods 

Several baseline energy modeling approaches, using both monthly 
billing and interval meter data, are presented in the next paragraphs. 
The reviewed methods are classified into statistical learning, machine 
learning, and Bayesian techniques, Fig. 2 shows an overview of how this 
section is structured. At the end of the section, some existing tools to 
perform M&V calculations are also reviewed. To conclude, a brief 
analysis of existing techniques for non-routine event detection and un
certainty estimation is performed. At the end of the Section, Table 1 
summarizes the characteristics of all the models analysed. 

4.2.1. Statistical learning techniques 
Statistical learning is a branch of data-driven modeling that is based 

on building a statistical model by inferring relationships between 
different variables in the analysed dataset. This model is then used to 
make predictions on other datasets supposed to be similar to the one 
used to build the model. 

4.2.1.1. Linear and nonlinear regression. Regression analysis has been 
the first implemented statistical method for the evaluation of energy 
savings in buildings. Its origins can be traced back to the development of 
the PRInceton Scorekeeping Method (PRISM) [33], a statistical pro
cedure formulated to include weather normalization in the estimation 
(scorekeeping) of energy savings. This model is obtained by applying a 
regression technique that takes into account different variables 
frequently having an impact on energy usage, such as occupancy, 
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climate, and equipment operation. Common variables chosen for the 
regression can be: average outdoor temperature, relative humidity, 
cooling degree days (CDD), heating degree days (HDD), building occu
pancy and building working days. Mathieu et al. [34] used linear 
regression to estimate building energy baselines using high granularity 
(15-min-interval) consumption data. The model proposed includes an 
indicator variable that marks the hour of the week and a 
piecewise-linear temperature regressor having fixed change points. In 
addition, two different regression models are fit for when the building is 
considered occupied or unoccupied. This method has been shown to be 
highly accurate [28] and has been used as a benchmark model in several 
recent publications regarding measurement and verification methods 
[35–37]. 

Mohd et al. [38] also tested a linear regression approach to evaluate 
the effect of an EEM over the HVAC system in an office complex in 

Malaysia. Both single variable and multivariate linear regressions were 
fitted, using monthly billing data, temperature readings, and occupancy 
details. A similar approach was followed by Wang et al. [39], who tested 
different linear and nonlinear regression models to assess the energy 
savings caused by a mechanical system retrofitting in a healthcare fa
cility in Dallas, Texas. The models were fitted with electricity and gas 
monthly billing data and using average outdoor temperature and 
degree-day as independent variables. The regression model approach 
was also tested in the industrial sector: Kissock and Eger [40] built a 
baseline energy model with multivariable piece-wise linear regression, 
that was used to disaggregate savings in an industrial facility. The 
facility’s consumption was supposed linearly dependent on its produc
tion and on the outdoor air temperature. 

Regression analysis is appealing for its simplicity and the possibility 
of applying it even when low resolution data is available. On the other 
hand, the linear approach can sometimes be too simple to capture 
complex relationships between variables. 

4.2.1.2. Kernel regression. Kernel regression belongs to a special class of 
regression models, called time-varying coefficient models, where the 
regressors are not considered constant, but dynamically changing over 
time. The use of kernel regression to estimate building energy con
sumption baselines was first proposed by Brown et al. [41], with the goal 
of improving the predictive accuracy of standard linear regression 
models. The idea behind kernel regression is that the regressors are not 
estimated using the whole historical dataset. Instead, the regressors are 
evaluated for each timestep, by estimating a weighted average of all the 
timesteps with the nearest values of the regression parameters (e.g. 
weather conditions, time of the day, etc.). The main advantages of kernel 
regression are an increased estimation accuracy, compared to standard 
linear regression, and the ability to provide robust and reasonable re
sults even in case of small training sets. On the other hand, since the 
coefficients are evaluated for a rolling time window and not considering 
the whole timeseries dataset, when making predictions for longer time 
frames (e.g. one year or more) the model might not be able characterize 
the existing seasonal variations and generalize properly. 

4.2.1.3. Transfer functions. Transfer functions have been shown to be 

Fig. 2. Load profiles identified for the office building.  

Table 1 
Characteristics of the analysed baseline estimation methods for M&V.  

Model Advantages Limitations Explanatory variables used in the referenced articles References 

Linear and 
nonlinear 
regression 

Easy to interpret and explain Sometimes too simple to capture 
complex relationships 

Indoor air temperature, outdoor air temperature, HVAC schedule [33,34, 
38–40] 

Kernel regression Better fitting than traditional 
regression 

Not ideal to predict long time 
intervals 

Indoor air temperature, outdoor air temperature, HVAC schedule [41] 

Transfer 
functions 

Can model dynamic effects 
caused by thermal inertia 

Requires indoor temperature data Indoor air temperature, outdoor air temperature, solar radiation, 
HVAC schedule 

[46] 

Artificial neural 
networks 

Performs well with non- 
linear timeseries 

Requires large amounts of data, tends 
to overfit, slow to train 

Outdoor air temperature, wind speed and direction, visibility, air 
pressure, operating time, refrigerant tonnage, running time of the 
system, refrigerating capacity, power rating of water pumps, 
differential temperature 

[47–49] 

Support vector 
machine 

Performs well even with 
small training datasets 

Long computational time for large 
datasets 

Outdoor air temperature, relative humidity, global solar radiation [25,50] 

Random forest High predictive accuracy Hyper-parameters optimization and 
cross-validation are needed to avoid 
overfitting 

Outdoor air and dew point temperatures, relative humidity, hour of 
the day, day of the week, number of occupants booked in the hotel, 
energy consumption of previous hour 

[52,53] 

Gradient 
boosting 
machine 

Higher predictive accuracy 
than random forest 

Hyper-parameters optimization and 
cross-validation are needed to avoid 
overfitting 

Outdoor air temperature, time of the week, U.S. federal holidays [36] 

Bayesian 
inference 

Accurate uncertainty 
estimation 

Priors are often difficult to justify and 
can be a major source of inaccuracy 

Cooling Degree Days [57] 

Gaussian 
processes 

Able to capture complex 
(nonlinear) building energy 
behaviour 

Computational and memory 
complexity 

Outdoor air temperature, HVAC supply temperature, occupancy, 
relative humidity 

[58–60] 

Gaussian 
mixture 
regression 

Dynamic confidence 
intervals 

The optimization problem is not 
trivial to solve, long computation 
time 

Outdoor air temperature, solar radiation, outdoor humidity [61]  
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capable of accurately estimating the thermal parameters of buildings 
[42–45], their application for verification of energy savings is now also 
being tested. The great advantage of transfer functions is the possibility 
to take into account the building dynamics connected to its thermal 
inertia. Furthermore, the coefficients of the transfer function model are 
coupled with the features of the building, thus avoiding the requirement 
of large amounts of data to obtain reliable results. One of the drawbacks 
of the method is that the calculations are based on the internal tem
perature of the building, which is not always known when performing 
M&V. This baseline estimation methodology was first suggested by Díaz 
et al. [46], who combined two transfer function models to assess energy 
efficiency savings in a building of the University of Granada. 

4.2.2. Machine learning techniques 
The term machine learning (ML) identifies algorithms that make use 

of statistical models in order learn from data without any specifically 
programmed instruction. ML algorithms identify patterns in the dataset 
through iteration and are then able to harness the gained information to 
make predictions. 

4.2.2.1. Artificial neural networks. Artificial neural networks (ANN) 
have been applied in several cases to develop baseline energy models 
[17–20]. The black-box nature of these models makes them very pop
ular, since they can be easily applied to many different problems after 
just a quick data pre-processing phase. But their simplicity comes at the 
expense of feature interpretability, making the process of debugging and 
model improvement considerably more difficult. Low model interpret
ability and the need for large amounts of training data are the main 
drawbacks of ANNs. Yalcintas [47] tested ANN models using 
Levenberg-Marquardt back-propagation to evaluate energy retrofitting 
savings in two hotel buildings. Adnan et al. [48] used an Hybrid Arti
ficial Neural Network, in combination with Evolutionary Programming, 
to quantify the savings achieved for a chiller unit in Malaysia, using 
three different inputs: operating time, refrigerant tonnage and differ
ential temperature. Chang et al. [49] also assessed post retrofit energy 
savings for an air conditioning system, using ANNs and an energy saving 
evaluation model based on a parameter named Refrigeration Operation 
Energy saving Effect Ratio (ROEER). 

4.2.2.2. Support vector machine. Support vector machine (SVM) was 
first applied to estimate building energy baselines by Dong et al. [50]. 
This machine learning approach is usually preferred when the training 
data available is small, since it proves to be very powerful in solving 
problems with non-linear formulations, even with small training data
sets. The training time of this technique scales cubically with the size of 
the dataset [51], making SVM not ideal when dealing with large-size 
problems. In Ref. [25], an overview of the most recent applications of 
SVM to building energy consumption prediction is presented. 

4.2.2.3. Random forest. Random forest is an ensemble learning algo
rithm that constructs several decision trees and then outputs the mean of 
their prediction, in order to correct for the individual trees’ tendency to 
overfit the data. This powerful methodology has been used for several 
applications in the domain of building energy prediction. Ahmad et al. 

[52] used random forests to predict hourly HVAC energy consump
tion, while Araya et al. [53] proposed their use for fault detection and 
diagnosis. In the measurement and verification framework, the use of 
random forests was outlined both in Ref. [15,28]. Random forests prove 
to be very accurate in the prediction of building energy usage, although 
the black-box nature of this algorithm means that the computational 
time associated with this calculation is quite high, due to the necessity of 
optimizing the hyperparameters and performing cross-validation to 
avoid overfitting. 

4.2.2.4. Gradient boosting machine. Similar to random forest, the 

gradient boosting machine (GBM) is a powerful machine learning al
gorithm based on the concept that a “strong learner”, having high pre
diction accuracy, can be obtained by iteratively combining several less 
complex models, called “weak learners”. Touzani et al. [36] used this 
approach to build an energy consumption baseline model that can be 
applied for energy savings estimation. The algorithm has four 
hyper-parameters that were optimized using grid search with 5-fold 
block cross-validation. The results of the GBM method were compared 
to the ones obtained with a piecewise linear regression model and a 
random forest algorithm. This analysis showed that the GBM was able to 
improve both R2 prediction accuracy and CV(RMSE) in most of the 
analysed cases. 

4.2.3. Bayesian methods 
As an alternative to the more traditional frequentist approach, 

several researchers studied the application of the Bayesian paradigm to 
the measurement and verification process. In Bayesian statistics, a 
probability model is fit to a dataset, with the goal of obtaining a prob
ability distribution on the model parameters and on other values, like 
predictions for unobserved data [54]. Then, as new data becomes 
available, Bayes’ theorem is used to update these probability distribu
tions. Among the advantages of Bayesian methods, authors list: the 
possibility of automatically and exactly quantifying the uncertainty of 
the models (including different sources of uncertainty, like measure
ment errors and weather variability), lower sensitivity to outliers, the 
possibility to have real-time updates of the estimates, and more [55,56]. 

4.2.3.1. Bayesian parameters inference. Lindel€of et al. [57] applied 
Bayesian inference to analyse energy invoices and climate data to esti
mate the impact of the installation of a model-predictive controller for a 
heating system in an office building in Switzerland. The approach tries 
to estimate the probability density function (PDF) of three parameters: 
the building’s heat-loss coefficient, the building’s balance temperature, 
and the stochastic variations of the heating demand, conditioned on the 
information contained in the utility invoices. The impact of the EEM is 
assessed by estimating the variations of the heat loss coefficient, through 
the analysis of a PDF obtained by fitting a Bayesian model to the billing 
data before and after the EEM application. The Bayesian approach al
lows to extract high amounts of information from the data and proves to 
be especially useful in the case of data with monthly granularity. One of 
the main challenges of this method is that the first probability model, 
called prior, is often not easy to find and justify, and can be a major 
source of inaccuracy. 

4.2.3.2. Gaussian process. The application of Gaussian processes (GP) in 
the M&V process was first proposed by Heo and Zavala [58], with the 
goal of solving certain limitations of the linear regression method. The 
Gaussian process approach is non-parametric, since its aim is not finding 
the parameters of a given function that can best fit the data, but to look 
for a distribution over the functions f (x) potentially consistent with the 
observations. GPs can capture complex building energy behaviour, such 
as nonlinear trends, multivariable interactions and time correlations. At 
the same time, since GPs belong to the framework of Bayesian statistics, 
this method allows the savings’ uncertainties to be quantified thor
oughly. Burkhart et al. [59] suggested the use of Monte Carlo expecta
tion maximization (MCEM) to enhance GP modeling and grant more 
accurate predictions in case of uncertain input data. Maritz et al. [60] 
published a guideline to perform M&V using GPs, with special emphasis 
on the process of kernel selection. The approach is described step by step 
and then applied to adjust the baseline consumption of an academic 
facility. A two-stage grid search technique is used to determine the best 
fit coefficients for the model, which is then applied to calculate savings 
in two different case studies. One of the main issues associated with this 
method is its computational and memory complexity, that increases 
cubically with the size of the training dataset. 
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4.2.3.3. Gaussian mixture regression. Srivastav et al. [61] tested the 
performance of Gaussian mixture regression (GMR) for building baseline 
energy prediction. The approach was tested on both simulated data from 
the US Department of Energy and on real data from a commercial 
building in California, accuracy was compared with a linear regression 
model. The model showed an estimation accuracy comparable with the 
multivariate regression approach in both cases, although GMR has the 
key advantage of allowing the computation of confidence intervals that 
adapt locally for different circumstances, according to the uncertainty of 
training data. At the same time, GMR seems to be less sensitive to data 
sparsity and to regressors correlation. Similarly to GPs, the main chal
lenges of GMR are linked to its long computational time. 

4.3. Non-routine event detection 

The issue of non-routine event detection is a known challenge in the 
M&V research community and is common to all the previously intro
duced baseline estimation methods. Non-routine events (NREs) are 
defined as fluctuations in the energy usage of a building that are not 
caused by any variation of the explanatory variables of the baseline 
model, and that are not attributable to the applied measure itself. In 
order to achieve a precise evaluation of the energy savings, non-routine 
events must be detected, and accounted for as non-routine adjustments 
in the estimation of avoided energy use. This process is usually per
formed manually and, depending on the kind of event, it might require 
some engineering expertise and knowledge of what the NRE was [29]. 
This is a considerable issue in automated M&V, as failing to identify such 
events could lead to an over (or under) estimation of the savings. 
Recently, Touzani et al. [62] proposed an automated technique, based 
on statistical change point detection, to identify non-routine events and 
adjust the savings calculations. The preliminary results of this study, 
carried out on a set of synthetic data created using energy simulation 
software EnergyPlus, show a high identification rate for true positives, 
as well as for false positives, suggesting that the algorithm might still be 
improved to achieve better results. 

4.4. Uncertainty estimation 

In the M&V context, determining the uncertainty of the obtained 
results proves to be an issue of major importance. Providing a range of 
uncertainty, together with the point estimate result, can help estab
lishing the amount of risk associated with a given investment, and 
support stakeholders in making more informed decisions [63]. Energy 
savings estimates usually provide results in form of a single point value, 
the uncertainty can then be interpreted as the interval of doubt around 
this estimate [37]. According to the IPMVP, when dealing with energy 
savings, three kinds of quantifiable uncertainties are identified: sam
pling uncertainty, arising from the fact that in some projects not all the 
devices can be monitored, hence sampling techniques are used, mea
surement uncertainty, related to the accuracy of the monitoring infra
structure used to measure the energy consumption, and modeling 
uncertainty, related to the errors of the baseline models used to estimate 
the savings. 

Reddy and Claridge [64] argued that the uncertainty in the con
sumption baseline model is the key factor in determining the uncertainty 
in the measured savings and proposed a formula to estimate it taking 
into account the CV(RMSE) of the employed statistical model and the 
relative influence of the EEM on the baseline energy consumption. Koran 
et al. [65] compared four different methods to calculate the uncertainty 
of energy efficiency savings estimated using metering data: a formula 
found in the ASHRAE Guideline 14 [30], an improved version of the 
ASHRAE formula, an exact formula that can be used in the case of or
dinary least squares regression, and a bootstrapping technique. All the 
four methods presented provided reasonable results, although the ac
curacy of the methods was not evaluated. Subsequently, a work by 
Touzani et al. [37] compared the accuracy of two different approaches 

to determine the uncertainty of energy efficiency savings estimations. 
Four different baseline models were applied: two hourly models and two 
daily ones. 

The uncertainty of the model estimates was then analysed using two 
methods: the ASHRAE Guideline 14 approach and the k-fold cross- 
validation approach, a method to assess model accuracy commonly 
utilized in the machine learning community. The study was carried out 
on a dataset comprising whole-building electricity consumption data, 
sampled every 15 min, from 69 commercial buildings located in Central 
California, Northern California, and Washington DC. The results showed 
that both methods underestimated the uncertainty of all the four base
line models tested, although this tendency proved to be stronger for 
hourly models, probably due to higher autocorrelation of residuals. 

Among the few authors to take into account other uncertainties than 
the modeling one, Olinga et al. [66] proposed a method to optimally 
allocate budget and effort in M&V while handling both sampling and 
modeling uncertainties. The results of their case study show a 42% 
reduction of the sampling cost and an 11% reduction of the total M&V 
cost thanks to the implementation of the proposed approach. 

5. Prediction and recommendation: review of the methods 

In this section, various techniques to predict the effect of energy 
efficiency measures and to plan energy retrofitting strategies for specific 
buildings or groups of buildings, are analysed. As many methods are 
involving the combination of deterministic models based on simulations 
and data-driven approaches, this section of the review presents three 
different categories of methods: deterministic, hybrid, and purely data- 
driven. Table 2 shows an overview of the methods discussed this section; 
the type of buildings where they were applied and the categories of the 
analysed retrofitting measures are also schematized. 

5.1. Deterministic methods (building energy simulation) 

The approaches presented here are based on the application of 
building energy simulation (BES) to predict the energy performance of 
buildings in different scenarios. 

5.1.1. BES models for retrofit and NZEB comparative analysis 
Zangheri et al. [68] used building energy modeling software Ener

gyPlus [69] to identify which would be the most cost-optimal retrofit 
combination to reach nearly zero-energy building (NZEB) levels in 
different building/climate combinations. The study analyzes four 
different building typologies of 60s–70s and ten different climate areas 
within the European Union. In order to perform the study, first a “base 
refurbishment level” was defined, as the minimum possible level of 
refurbishment to which compare the deeper ones. The base refurbish
ment level was defined following the assumption that it is not possible to 
not intervene at all on a building older than 40 years, and includes the 
rehabilitation of the building envelope, and the substitution of the old 
heating or cooling systems with comparable equipment. It was found 
that cost-optimal and NZEB scenarios are characterized by an average 
increased investment cost, with respect to the base refurbishment level, 
of 50% and 115% respectively. The energy efficiency potential of the 
cost-optimal cases proved to be substantial (between 36% and 88% 
primary energy savings), with associated 30 years global costs many 
times lower than their respective base refurbishment levels. Similarly, 
Rysanek and Choudhary [70] used TRNSYS [71], a simulation tool for 
transient systems, to analyse different energy retrofitting scenarios for a 
mid-sized office building in Cambridge (UK), while taking into consid
eration both technical and economic uncertainty. The authors also 
provide an analysis of how relevant the approach is to real-world con
texts. TRNSYS was also used by Valdiserri et al. [72] to evaluate the 
thermal demand reduction of a tertiary building in Italy, due to an 
improvement of the thermal envelope and installation of high efficiency 
windows. An investment cost analysis was also performed, using the Net 
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Present Value (NPV) method. 

5.1.2. BES combined with data collected from bills and questionnaires 
Another frequently applied method to predict the energy savings of 

specific energy efficiency measures is to use building energy simulation 
tools and compare the simulation with the real consumption obtained 
from metering or energy bills. Suastegui et al. [73] used this method to 
evaluate potential savings in the residential sector in Mexico due to 
replacement of oversized HVAC units. A sample of 300 houses was 
analysed and questionnaires were used to gather data about the 
households size and HVAC units capacity. An energy simulation of these 
buildings was then run using a model based on the Transfer Function 
Method. The model provides the optimal HVAC sizing for the analysed 
households, which is then used to calculate the kWh that could be saved 
in these households by replacing oversized units. 

5.2. Hybrid methods 

Hybrid methods make use of data-driven techniques to optimize the 
results obtained with deterministic methods. The reviewed approaches 
involve the use of different data-driven algorithms to scale up the results 
obtained to a higher amount of buildings, or to find the optimal solution, 
within the BES results, according to a given cost function. 

5.2.1. BES combined with artificial neural networks 
This method, presented by Ascione et al. [74], proposes the use of 

EnergyPlus simulations and artificial neural networks to predict build
ing energy retrofitting effects and evaluate different renovation sce
narios. The approach takes advantage of the reliable and rigorous 
assessment of EEM impact granted by building energy simulation soft
ware and scales the results obtained to a large number of buildings, 
through the application of artificial neural networks. This combination 
grants high accuracy of results, while keeping the computational times 
reasonably low. The method employs two different families of ANNs, 
one trained with pre-retrofit building simulation data and one with 
post-retrofit building simulation data, the difference between the out
puts is considered as the improvement due to the implemented energy 
retrofit. The approach was tested on office buildings built in Southern 
Italy in the period between 1920 and 1970, about 8800 units, repre
senting approximately 13% of the office buildings in Italy. Three inde
pendent networks are modeled in the first family (pre-retrofit), each of 
them having a different output: primary energy demand for heating, 
primary energy demand for cooling, and percentage of annual discom
fort hours. The second category of neural networks (targeting the 

refurbished building stock), consists of four ANNs with single output: the 
three networks introduced for the pre-retrofit case, plus a new network 
included to predict the electricity produced by photo-voltaic panels and 
used in the building. The accuracy of the ANNs were assessed by ana
lysing regressions and distributions of relative error between the net
works’ outputs and the results obtained with EnergyPlus models. In both 
cases (pre and post-retrofit), the accuracy of the models showed to be 
quite high, with the average absolute value of relative errors ranging 
between 6.1% and 11%. 

5.2.2. Multi-objective and multi-criteria optimization of BES data using 
genetic algorithms 

In the framework of decision aid systems for energy retrofitting 
strategies, two very popular solutions are multi-objective and multi- 
criteria optimizations. Asadi et al. [75] wrote a detailed review on the 
topic, explaining also the conceptual distinction between multi criteria 
and multi objective models: in multi-criteria optimization, the group of 
possible alternatives is finite and explicitly known a priori, to be eval
uated according to multiple criteria, while in multi-objective optimiza
tion models, the potential solutions are implicitly determined by the 
optimization variables and constraints. A very popular technique, 
frequently used by scientists in both these cases, is the genetic algorithm 
(GA). Following, different applications of genetic algorithms in the 
building energy retrofitting field are presented. 

Siddharth et al. [76] built an IT tool that uses GAs to create several 
combinations of building variables correlated with energy consumption. 
For each of these combinations, the energy consumption of the building 
is simulated and a nonlinear regression model is fit between the system 
characteristics and the annual energy demand of the building. In this 
way, different system configurations are determined, allowing the 
evaluation of hypothetical energy efficiency measures. The tool was 
successfully tested in three different climate zones in India and the US. 
Genetic algorithms and other optimization techniques, such as particle 
swarm optimization and sequential search, were also applied by Bichiou 
and Krarti [77] to optimize the selection of building envelopes and 
HVAC systems for houses in five different US cities, with the goal of 
minimizing their operating costs. The comparative analysis showed that 
savings in computational effort could be as high as 70% when using 
genetic algorithms in place of particle swarm or sequential search. 

Ascione et al. [78–80] also used GAs to analyse EnergyPlus simula
tion data in both multi-objective and multi-criteria analyses. The 
approach was successfully used first to determine the optimal renewable 
energy mix in a building and then to identify optimal energy retrofitting 
strategies in typical hospital and office reference buildings. 

Table 2 
Characteristics of the analysed prediction and recommendation methods.  

Method Type Test buildings Measure categories References 

BES Deterministic Single family houses, offices, 
schools, apartment blocks 

Building envelope, HVAC systems, domestic hot water, PV and solar system 
installation, lighting system 

[67,69, 
71] 

BES þ data from bills and 
questionnaires 

Deterministic Single family houses, apartment 
blocks 

Building envelope, cooling system Building envelope, solar shading, [72] 

BES þ ANN Hybrid Offices ventilation system, heating system, cooling system, PV system installation [73] 
BES þ GA Hybrid Hospitals, offices, single family 

houses, apartment blocks 
Heating, cooling and ventilation systems, building envelope, domestic hot 
water, PV system installation 

[75–79] 

BES þ NSGA-II Hybrid Offices, schools Building envelope [80,82] 
BES þ GA þ ANN Hybrid Schools, apartment blocks Building envelope, HVAC systems, solar collectors installation [83,84] 
Mixed integer linear 

programming 
Hybrid Apartment blocks Building envelope [85] 

Linear regression Data-driven Commercial buildings Building envelope, HVAC systems, lighting system [89] 
ANN with audit data Data-driven Schools, sport buildings, libraries, 

offices 
Building envelope, HVAC systems, management system, lighting system, 
solar thermal installation, water pumping system 

[87] 

Clustering Data-driven Schools, apartment blocks Building envelope, heating system, PV and solar thermal installation 
Building envelope, HVAC systems, 

[8,88] 

FRL with audit data Data-driven Apartment blocks, offices, hotels DHW systems, PV and solar thermal installation, lighting system, building 
management system Building envelope, solar shadings, 

[86] 

GA þ A* graph search Data-driven Offices water management, HVAC systems, lighting system, building management 
system 

[91]  
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5.2.3. Multi objective optimization of BES data using NSGA-II 
Chantrelle et al. [81] developed MultiOpt, a multi-criteria tool that 

uses NSGA- II (a non-dominated sorting genetic algorithm) [82] coupled 
with environmental databases and assessment software (TRNSYS), to 
optimize the retrofitting process of buildings across a variety of different 
objectives. NSGA-II was also used by Delgarm et al. [83], in combination 
with EnergyPlus, to analyse how different architectural parameters 
affect the energy consumption of a building in four different climate 
regions of Iran. The analysis shows that the optimization process could 
decrease the building’s energy consumption by up to 42.2%. 

5.2.4. Multi-objective optimization of BES data using genetic algorithms 
and artificial neural networks 

This optimization methodology, that combines different approaches 
introduced in the previous paragraphs, was used by Magnier and 
Haghighat [84] to reduce the energy usage while keeping the optimal 
thermal comfort in a residential building. The approach features the use 
of NSGA-II to solve the optimization problem and a multilayer 
feed-forward ANN to reduce the time of computation required by the 
analysis. 

More recently, Asadi et al. [85] used a similar technique to analyse 
TRNSYS data and identify optimal building energy retrofitting strate
gies. The set of possible retrofitting actions was summarized in five 
decision variables introduced as inputs for the ANN: external wall 
insulation materials, roof insulation materials, window types, solar 
collector types, HVAC system. The ANN, trained with building simula
tion results, had four different outputs: total percentage of discomfort 
hours, and energy demands for space heating, space cooling and sanitary 
hot water. A multi-objective GA was then applied to analyse the results 
of the ANN analysis and find the optimal solutions in terms of energy 
usage, renovation cost, and thermal discomfort hours. 

5.2.5. Mixed-Integer Linear Programming 
Iturriaga et al. [86] used a Mixed-Integer Linear Programming model 

to design the energy renovation of an existing building, with the goal of 
achieving the nearly Zero Energy Building standard. The proposed 
approach attempts to model the energy demand of the building through 
a linear model, introducing the EEMs as virtual energy sources that 
produce, at specific points in time, the energy that would be saved. To 
calculate the exact demand reduction corresponding to each EEM, dy
namic TRNSYS simulations are run. The linear programming approach is 
then used to optimize the obtained results for the optimal cost case and 
the Zero Energy Building case. The method was successfully imple
mented to obtain the system configuration that minimizes the annual net 
costs for a real building located in the city of Bilbao (Spain). 

5.3. Data-driven methods 

The data-driven methods analysed in this section have the goal of 
providing recommendations for building energy retrofit by drawing 
conclusions based on the analysis of collected data from real use-cases. 

5.3.1. User-facing fallen rule list using audit data 
This method, presented by Marasco and Kotokosta [87], proposes the 

application of a fallen rule list classifier to how different building would 
react to different groups of EEMs. The classifier uses binary features 
obtained from energy audit data for over 1000 buildings in the city of 
New York and has the goal of providing a tool for decision-makers with 
the capability of either supporting, or potentially replacing, a complete 
energy audit. The classifier analyzes the correlation between building 
specific data and the EEM recommended by energy consultants after 
performing a building audit. The model was trained on 764 buildings 
and then tested on 192 buildings, showing a good overall performance 
for predicting the EEMs of the following categories: cooling system, 
distribution system, domestic hot water, fuel switching, lighting and 
motors, representing collectively 62% of EEMs analysed in this study. 

5.3.2. Artificial neural networks using audit data 
Beccali et al. [88] implemented artificial neural networks to create a 

decision aid tool able to evaluate energy performance and possible 
refurbishment strategies for tertiary buildings in Southern Italy. The 
networks were trained using audit data from 151 non-residential 
buildings, located in different regions of Southern Italy. The audits 
collected information about the buildings’ geometric and equipment 
characteristics, as well as data about ten different proposed retrofitting 
actions. This data was employed to determine the ideal architecture 
configuration for two ANNs and for their subsequent training. One of the 
networks estimates the effective energy performance of any building, 
while the other assesses key economic indicators, allowing users to gain 
information about possible energy savings, payback time and invest
ment costs per kWh saved. 

5.3.3. Clustering techniques 
This method is based on the assumption that clustering techniques 

can help in the development of renovation plans for groups of buildings 
that respond similarly to the application of EEMs. Geyer et al. [8] tested 
the application of clustering algorithms using performance-based in
dicators of the impact of applied measures. The impact of the measure 
on the considered building is described by a parameter equal to the 
quotient of the emission reduction caused by the measure, and the in
vestment costs. To assess the impact of an applied EEM, different 
calculation methods are applied: simplified estimations, monthly sums, 
dynamic simulations or building energy simulations. Two different 
clustering methodologies are tested: hierarchical clustering and parti
tioning k-means clustering. A set of six different retrofit measures, as 
well as their combination, was simulated. To estimate their effect, 
simplified calculations using monitored energy consumption and geo
metric information about the buildings were realized. This method al
lows the evaluation of how buildings with different characteristics react 
to applied EEMs and to identify the clusters (groups of buildings) with 
highest priority for action. Salvalai et al. [89] also investigated the 
combination of clustering algorithms and building energy simulation, to 
evaluate optimal renovation strategies for a sample of school buildings 
in Northern Italy. 

5.3.4. Linear regression 
Walter and Sohn [90] trained a multivariate linear regression model 

using data contained in a large building energy database, to estimate 
energy savings due to the implementation of particular retrofits. The 
model’s input parameters are both categorical and numerical variables, 
while the response variable is the annual source energy usage intensity 
(EUI). Through this method, it’s possible to analyse the impact of spe
cific building properties and installed systems on the EUI, predict for 
possible combinations of explanatory variables not included in the 
database and yield predictions that have clear and well-known statistical 
properties. The predictors chosen include the majority of the fields in the 
US Building Performance Database [91], in case of highly correlated 
fields only one of them is chosen. This method proves to be highly 
effective, as the data required to perform this type of analysis is gener
ally affordable and easy to obtain, making this approach cheaper and 
faster than other methods that involve the creation of building energy 
simulation models. 

5.3.5. Genetic algorithm combined with A* graph search 
This method was examined by Yi-Kai et al. [92], with the goal of 

analysing all possible retrofitting actions, and their trade-offs, to identify 
optimal solutions. Six experienced building renovation stakeholders 
were interviewed to determine the assessment scores of different reno
vation actions, as well as the cost information for each action. Based on 
this data, a two-stage hybrid GAA* algorithm (combination of Genetic 
Algorithm and the best first (A*) algorithm) was used to test all the 
possible scenarios and identify the optimal solutions. This approach was 
compared to two commonly adopted methods: zero-one goal 
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programming (ZOPG) and Genetic Algorithm (GA) proving be better 
than either of them alone. 

6. Discussion 

In this article, two fundamental processes required for the 
improvement of building energy performance have been studied: the 
measurement and verification process, and the prediction and recom
mendation process. After describing their goals and main challenges, 
different methods found in literature were reviewed. The analysis was 
focused mainly on data-driven approaches, although for the prediction 
and recommendation process, deterministic methods were also consid
ered, since their combination with data-driven techniques is becoming 
of increasing interest. 

In the first part of the article, different methods for energy baseline 
estimation were reviewed. For every method, advantages and limita
tions were examined. The reviewed articles show that more complex 
methods generally provide more accurate estimations, although the 
bias-variance trade-off should be always kept in mind: as the models’ 
complexity increases, they can become more accurate, but also more 
likely to overfit (fail to properly fit additional data, as new observations 
are added to the dataset) [93]. This said, it was found that different 
models still have different specific cases where they work best, regard
less of their level of complexity. Another interesting insight that 
emerged from the review is that, when comparing different methods, 
being able to accurately determine the uncertainty of the results ob
tained is a very valuable feature. If the main concern of the M&V 
practitioner is to obtain the best possible estimation of model uncer
tainty, Bayesian methods seem to be the most optimal choice, as they 
provide accurate uncertainty estimations without assuming normally 
distributed errors. On the other hand, statistical learning techniques 
seem to be favoured when the main concern is the interpretability of the 
model, and machine learning techniques are most frequently employed 
when large amounts of data are available and the practitioner is inter
ested in optimizing the model’s predictive accuracy. 

In the second part of this review, several deterministic and data- 
driven methods to predict the effect of energy retrofitting actions on 
buildings were analysed and presented. Although many of the methods 
reviewed use deterministic building energy simulations for this task, the 
analysis of the simulations’ results is often performed with data-driven 
techniques. These approaches, classified as “hybrid” models, appear to 
be quite popular because of the possibility to combine the accuracy of 
deterministic methods and the computational efficiency of large scale 
optimization techniques. 

In conclusion, it’s important to remark that the comparison of the 
presented methods is no trivial work, as they were all applied in 
different use cases, with data of different granularity, and not using the 
same explanatory variables. This issue is a known problem in the 
building performance research community and was already pointed out 
by Miller [94], who proposed and worked on the creation of a public 
dataset from electricity meters of non-residential buildings, to test and 
compare prediction algorithms and feature extraction techniques [35, 
95]. 

7. Conclusions and future work 

In order to improve the energy performance of the current building 
stock, it is essential to implement energy renovation programs. One of 
the main barriers to the widespread application of such programs is the 
lack of information regarding the impact of retrofitting actions. It ap
pears clear that quantifying energy savings from implemented measures 
and determining the uncertainty of the obtained results, are two key 
steps towards the achievement of a more efficient built environment. 
The set of calculations performed to collect this data, is often referred to 
as the measurement and verification process. At the same time, another 
major task is to be able to find tailored effective renovation strategies for 

specific buildings or groups of buildings, in the article this process was 
referred to as the prediction and recommendation process. 

In this review, the main methods currently utilized for these two 
processes were studied, with a special focus on data-driven approaches, 
as they are innovative techniques proving to be more effective and 
scalable than other traditional methods [16,20]. All of the reviewed 
techniques have different characteristics and have been applied in some 
specific cases, their characteristics were discussed in detail and then 
schematized in Tables 1 and 2 Some existing analysis tools currently in 
use for M&V have also been reviewed, while no tool was found 
combining M&V and the prediction and recommendation process in a 
single platform. State-of-the-art methods to identify non-routine events 
and estimate uncertainty in M&V were also reviewed. Thanks to the 
additional analysis provided by these methods, it’s possible to obtain 
more accurate estimates of the calculated savings and of their 
uncertainty. 

From the review work, it was also seen that, while the M&V process 
seems to have a well-defined structure, with different established stan
dardization protocols and a range of published scientific articles 
addressing the topic, the prediction and recommendation process seems 
to lack such a structure and a considerable standardization effort would 
be needed in order to establish metrics of comparison and standardized 
approaches for the different methods currently in use. 

Finally, it appears clear that, with more and more data being 
collected by automated metering infrastructure, data-driven methods 
are becoming a fundamental tool to plan effective strategies for the 
energy demand reduction of the existing building stock. For this reason, 
it is essential that governments and institutions quickly operate to 
develop policies that can facilitate the collection and analysis of building 
energy data. 
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