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Deliverable 6.3

Executive summary
This report addresses the general matter of optimisation under uncertainties,
following a previous report on stochastic sensitivities (deliverable 6.2). It describes
several theoretical methods, as well their application into implementable algorithms.
The specific case of the conditional value at risk chosen as risk measure, with its
challenges, is prominently discussed. In particular, the issue of smoothness –
or lack thereof – is addressed through several possible approaches. The whole
report is written in the context of high-performance computing, with concern for
parallelisation and cost-efficiency.
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1 Introduction
The ExaQUte project researches and develops methods and tools to optimise
the shape of tall buildings to withstand wind. This encompasses many scientific
fields, among which is stochastic optimisation constrained by partial differential
equations (PDE), since the wind is modelled as an uncertain loading in a problem
of fluid dynamics. Also immanent to every aspect of the methodology is the need
for high-performance computing (HPC), due to the complexity of the simulations
involved.

The formulation and resolution of this problem of optimisation under uncertain-
ties (OUU) of the shape of a building requires several modelling and methodology
choices. Foremost among them is that of a deterministic quantification of the
risk entailed by a given shape. The conditional value at risk (CVaR) has been
selected for its mathematical properties and pertinence to risk-averse engineering
design. In order to optimise complex shapes, a rich, high-dimensional design space
has to be considered, which bears heavily on the computation of the sensitivity
of the solution of the PDE with respect to the design. The chosen methodology
is to use adjoint-based sensitivities, which leads us to consider gradient-descent
algorithms to solve the optimisation problem. Finally, multi-level Monte Carlo
(MLMC) estimators are meant to leverage parallel computations and sophisticated
remeshing tools in order to accelerate statistical estimations; the ExaQUte project
develops a dedicated library (XMC by Ayoul-Guilmard et al. 2019) for this purpose.

This report follows and continues deliverable 6.2 by Ganesh et al., which
studied a general OUU problem. It derived optimality conditions and expressed the
stochastic sensitivities involved, with examples for some classical risk measures.
Nevertheless, it did not discuss the actual computation of an optimal solution. The
current report proposes methods to perform this optimisation, and is organised as
follows.

Section 2 presents the general case of smooth optimisation. We begin the
definition of the OUU problem, then describe a generic gradient-descent algorithm
for any smooth risk measure. Then we discuss possible ways to discretise the
probability space, in order to implement the algorithm in practice; in particular,
we introduce MLMC estimators. Finally, practical, implementable adaptations of
the generic gradient-descent algorithm are proposed. Section 3 deals with the case
where the risk measure is CVaR, and the specific considerations thereof – chiefly the
non-smoothness of this risk measure. First, the definition and relevant properties
of the CVaR are given and the OUU problem is reformulated accordingly. Then, two
alternative approaches are proposed to solve it. For each approach, we propose a
corresponding algorithm and discuss its practical implementation, including the
issue of non-smoothness. In section 4, we discuss the possible regularisation of
the optimisation problem in order to address the lack of smoothness of the CVaR.
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Two different regularisation approaches are described, along with the consequent
alterations of the previous algorithms. Finally, we conclude with a summary of
the essential points, and an outlook on future developments, either required or
advisable.

2 Optimisation of a smooth risk measure

2.1 Optimisation problem
Let (Ω, ℱ,P) be a probability space. Let 𝑍 denote the Hilbert space of design
variables and 𝒜 ⊂ 𝑍 the subset of feasible designs. For any Banach space 𝐵, we
will denote by 𝐵∗ its dual space and by ⟨⋅, ⋅⟩𝐵,𝐵∗ the duality pairing.

The system to be optimised satisfies a PDE dependent on the design 𝑧 ∈ 𝑍 and
affected by random effects from the aforementioned probability space. We will
write this constraint in abstract form as

𝐹(𝑢(𝑧)(𝜔), 𝑧, 𝜔) = 0, for P-a.e. 𝜔 ∈ Ω, (2.1)

where 𝑢(𝑧)(𝜔) ∈ 𝑈 is the state of the system and 𝐹 ∶ 𝑈 × 𝑍 × Ω → 𝑌 ∗ represents
the residual of the PDE, with 𝑈 and 𝑌 suitable Banach spaces. We assume that,
for any 𝑧 ∈ 𝒜, there exists a unique 𝑢(𝑧) ∈ L𝑝(Ω, ℱ,P; 𝑈) satisfying (2.1), with
𝑝 ∈ [1, +∞]. Thus, the map 𝑢 ∶ 𝑍 → L𝑝(Ω, ℱ,P; 𝑈) is well-defined over 𝒜. Here,
L𝑝(Ω, ℱ,P; 𝑈) denotes the Bochner space of random variables from (Ω, ℱ,P) to
𝑈 with at least 𝑝 finite moments. From now on, we will simplify this notation
to L𝑝(Ω, 𝑈). We also assume that ∃𝑛′ ∈ [1, +∞[, s.t. ∀𝑧 ∈ 𝑍, ∀𝑦 ∈ L𝑝(Ω, 𝑈),
𝐹(𝑦(⋅), 𝑧, ⋅) ∈ L𝑛′(Ω, 𝑌 ∗); i.e. the residual of the PDE has 𝑛′ finite moments,
whenever evaluated on a candidate solution that has 𝑝 finite moments.

The quantity of interest (QoI) with respect to which an optimal design is sought
is a function 𝑄 ∶ L𝑝(Ω, 𝑈) → L𝑟(Ω,R) of the state, for some 𝑟 ∈ [1, +∞]. In
particular, to simplify the exposition, we consider only a QoI 𝑄 that does not
depend explicitly on the random effects, nor on the design. We assume that there
exists 𝑄̄ ∶ 𝑈 → R such that

∀𝑣 ∈ L𝑝(Ω, 𝑈), 𝑄(𝑣)(𝜔) = 𝑄̄(𝑣(𝜔)), for P-a.e. 𝜔 ∈ Ω.

Let us consider problem 1.

Problem 1 (Generic OUU). Find the optimal design 𝑧⋆ ∈ 𝒜 solution of

{
min{𝐽(𝑧) ≔ ℛ(𝑄(𝑢(𝑧))) + 𝑃(𝑧) ∶ 𝑧 ∈ 𝒜}
s.t. 𝐹(𝑢(𝑧)(𝜔), 𝑧, 𝜔) = 0, for P-a.e. 𝜔 ∈ Ω.

(2.2)
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The objective function 𝐽 in (2.2) features a risk measure ℛ ∶ L𝑟(Ω,R) → R, where
R ≔ [−∞, ∞], and a penalisation term 𝑃 ∶ 𝑍 → R to oppose expensive or otherwise
undesirable designs.

Definition 1 (Proper risk measure). A risk measure ℛ ∶ L1(Ω,R) → R is said to
be ‘proper’ if and only if (iff.) the two following properties hold

∀𝑋 ∈ L1(Ω,R), ℛ(𝑋) > −∞;
dom(ℛ) ≔ {𝑋 ∈ L1(Ω,R) ∶ ℛ(𝑋) < +∞} ≠ ∅.

Definition 2 (Coherent risk measure). A risk measure ℛ ∶ L1(Ω,R) → R is said
to be ‘coherent’ if it satisfies the following properties for any 𝑋, 𝑌 ∈ L1(Ω,R).
Monotonicity:

𝑋 ⩽ 𝑌 a.s. ⟹ ℛ(𝑋) ⩽ ℛ(𝑌 ).
Equivariance by translation:

∀𝑎 ∈ R, ℛ(𝑋 + 𝑎) = ℛ(𝑋) + 𝑎.
Convexity1:

∀𝑏 ∈ ]0, 1[, ℛ(𝑏𝑋 + (1 − 𝑏)𝑌 ) ⩽ 𝑏ℛ(𝑋) + (1 − 𝑏)ℛ(𝑌 ).
Positive homogeneity:

∀𝑐 ∈ [0, +∞[, ℛ(𝑐𝑋) = 𝑐ℛ(𝑋).

As an example of the above definition, it is immediate to see that the expectation
is a coherent risk measure, whereas the variance is not (it is not monotonous). In
this report, we only consider the case of a proper and coherent risk measure ℛ.

Let us now introduce a few notations on differentiation. We denote by ℒ(𝑉 , 𝑊)
the space of linear operators from a vector space 𝑉 to a vector space 𝑊. Let
𝑽 ≔ 𝑉1 × 𝑉2 × … × 𝑉𝑛 be a product of 𝑛 ∈ N vector spaces, 𝑓 ∶ 𝑽 → 𝑊 a
differentiable multivariate function and 𝑣 ∈ 𝑽. The partial differential of 𝑓 in 𝑣
with respect to the 𝑘-th variable is denoted by D𝑘 𝑓(𝑣), and D𝑘 𝑓(𝑣) ∈ ℒ(𝑉𝑘, 𝑊).
If 𝑉𝑘 is a Hilbert space and 𝑊 = R, then the Riesz representation theorem states
that

∃! ∇𝑘 𝑓(𝑣) ∈ 𝑉𝑘, ∀𝑥 ∈ 𝑉𝑘, D𝑘 𝑓(𝑣)(𝑥) = ⟨∇𝑘 𝑓(𝑣), 𝑥⟩𝑉𝑘
,

where ⟨⋅, ⋅⟩𝑉𝑘
denotes the inner product of 𝑉𝑘. This dual representation of D𝑘 𝑓(𝑣) ∈

𝑉 ∗
𝑘 is called the ‘gradient’ of 𝑓 at 𝑣 in 𝑉𝑘, or in the 𝑘-th direction. The subscript 𝑘

will be omitted for univariate functions.
In this section, we assume that ℛ and 𝑃 are continuously differentiable. Since

ℛ ∶ L𝑟(Ω,R) → R, we have that ∀𝑋 ∈ L𝑟(Ω,R), D ℛ(𝑋) ∈ ℒ(L𝑟(Ω,R),R). Then,
1Sometimes replaced by the weaker property of sub-additivity. Both are equivalent under

assumption of positive homogeneity.
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a consequence of theorem 6.10, p. 267 of Shapiro et al. 2009 is that there is a unique
element ∇ ℛ(𝑋) of the dual space2 L𝑟′(Ω,R) such that

∀𝑌 ∈ L𝑟(Ω,R), D ℛ(𝑋)(𝑌 ) = E(𝑌 ∇ ℛ(𝑋)). (2.3)

Optimality conditions for an OUU problem such as problem 1 were inferred
in deliverable 6.2. A design 𝑧⋆ ∈ 𝒜 optimal in the sense of (2.2) satisfies

⟨D 𝑃(𝑧⋆) − E(D2 𝐹 ∗(𝑢(𝑧⋆)(⋅), 𝑧⋆, ⋅)(𝜆(𝑧⋆)(⋅))), 𝑧⋆ − 𝑧⟩𝑍∗,𝑍 ⩾ 0, ∀𝑧 ∈ 𝒜.(2.4)

where, for P-a.e. 𝜔 ∈ Ω, 𝑢(𝑧⋆) ∈ L𝑝(Ω, 𝑈) satisfies

𝐹(𝑢(𝑧⋆)(𝜔), 𝑧⋆, 𝜔) = 0 (2.5)

and 𝜆(𝑧⋆) ∈ L𝑛(Ω, 𝑌 ) verifies

D1 𝐹 ∗(𝑢(𝑧⋆)(𝜔), 𝑧⋆, 𝜔)(𝜆(𝑧⋆)(𝜔)) = ∇ ℛ(𝑄(𝑢(𝑧⋆)))(𝜔) D 𝑄̄(𝑢(𝑧⋆)(𝜔)). (2.6)

In (2.6), we denote D1 𝐹 ∗(𝑢(𝑧)(𝜔), 𝑧, 𝜔) ∈ ℒ(𝑌 , 𝑈 ∗) the adjoint of D1 𝐹(𝑢(𝑧)(𝜔), 𝑧, 𝜔) ∈
ℒ(𝑈, 𝑌 ∗), and 𝑛 ≔ (1 − 𝑛′−1)−1.

Equations (2.4)–(2.6) are the first-order optimality conditions for problem 1.
We refer the reader to deliverable 6.2 for a more detailed explanation.

2.2 Gradient-descent algorithm
Algorithm 1 outlines a generic gradient-descent algorithm based on optimality
conditions (2.4)–(2.6). By assumption, 𝐽 ∶ 𝑍 → R is differentiable and 𝑍 is a
Hilbert space, so ∀𝑧 ∈ 𝑍, D 𝐽(𝑧) ∈ 𝑍∗ and there exist a unique ∇ 𝐽(𝑧) ∈ 𝑍 defined
as in (2.3). In line 5, we denote ∏𝒜 ∶ 𝑍 → 𝒜 the projector onto 𝒜.

The stopping criterion on line 1 has been set on the stagnation:

‖𝑧𝑘+1 − 𝑧𝑘‖
‖𝑧𝑘‖

⩽ 𝜂,

for a chosen relative tolerance 𝜂 ∈ ]0, +∞[. The step size 𝛾𝑘 may be chosen either
a priori or adaptively; in the latter case, the adaptation is to ensure reduction of
the objective value, e.g. as in a backtracking line-search method (see Armijo 1966).
This choice is unspecified in algorithm 1.

The algorithm is called ‘ideal’ because it requires exact evaluation of the risk
measure, as well as exact resolution of the primal and adjoint equations (2.5)
and (2.6), a.e. in Ω.

2L𝑟(Ω,R)∗ = L𝑟′(Ω,R) with 𝑟′ ≔ (1 − 𝑟−1)−1.
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ALGORITHM 1: Generic ideal gradient-descent algorithm
1 INITIALISE: 𝑧0, 𝛾, 𝜂
2 WHILE ‖𝑧𝑘+1 − 𝑧𝑘‖ ⩾ 𝜂‖𝑧𝑘‖ DO
3 Find 𝑢 s.t. 𝐹(𝑢(𝜔), 𝑧𝑘, 𝜔) = 0 for P-a.e. 𝜔 ∈ Ω
4 Find 𝜆 s.t., for P-a.e. 𝜔 ∈ Ω,

D1 𝐹 ∗(𝑢(𝜔), 𝑧𝑘, 𝜔)(𝜆(𝜔)) = ∇ ℛ(𝑄(𝑢))(𝜔) D 𝑄̄(𝑢(𝜔))
5 Compute descent direction ∇ 𝐽(𝑧𝑘) ≔ ∇ 𝑃(𝑧𝑘) − E(D2 𝐹 ∗(𝑢, 𝑧𝑘, ⋅)(𝜆))
6 Set new design 𝑧𝑘+1 ≔ ∏𝒜(𝑧𝑘 − 𝛾𝑘 ∇ 𝐽(𝑧𝑘))
7 RESULT: 𝑧𝑘+1

In this report, we discuss only the case where 𝑄 is linear; however, this study
can easily be extended to a class of functions with suitable regularity. With this
assumption, ∃𝑞 ∈ 𝑈 ∗, s.t. ∀𝑣 ∈ L𝑝(Ω, 𝑈), 𝑄(𝑣)(𝜔) = ⟨𝑞, 𝑣(𝜔)⟩𝑈,𝑈∗ for a.e. 𝜔 ∈ Ω.
This allows the following simplification in line 4 of algorithm 1:

D 𝑄̄(𝑢(𝜔)) = 𝑞. (2.7)

Furthermore, we will assume that, ∀𝑧 ∈ 𝒜, the cumulative distribution function
(CDF) of 𝜓𝑧 ≔ 𝑄(𝑢(𝑧)) is absolutely continuous, in order to be able to define a
probability density function (PDF) 𝑓𝜓𝑧

∈ L1(R) such that

E(𝑄(𝑢(𝑧))) = E(𝜓𝑧) = ∫
R

𝑥𝑓𝜓𝑧
(𝑥) d𝑥.

2.3 Discretisation of the OUU problem
In the previous section we have discussed an idealised algorithm in the continuous
setting, with an exact resolution of problem 1 a.e. in Ω and exact evaluation of the
risk measure. However, practical, implementable algorithms will require discretising
the PDE as well as the probability space. We focus first on the latter, which also
entails an approximation of the expectation of any random variable on Ω.

Hereafter, we discuss two strategies for approximating the probability space and
expectation, namely the Monte Carlo (MC) and multi-level Monte Carlo (MLMC)
methods. Then, we will propose practical adaptations of idealised algorithm 1,
using either MC or MLMC approximations, combined with two common approaches
of stochastic programming: sample-average approximation (SAA) and stochastic
approximation (SA).
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2.3.1 Monte Carlo and multi-level Monte Carlo quadratures

Estimation of the expectation Let us choose 𝑚 ∈ N and draw randomly and
independently 𝝎 = (𝜔𝑖)𝑚

𝑖=1 ∈ Ω𝑚 from the measure P. From this we define an
empirical measure as follows:

∀𝐴 ∈ ℱ, 𝜇𝑚(𝐴) ≔ 1
𝑚

𝑚
∑
𝑖=1

𝟙(𝜔𝑖 ∈ 𝐴),

with

𝟙(𝐵) = {
1 if 𝐵 is true,
0 if 𝐵 is false.

Consequently, the expectation of a random variable 𝑋 ∶ Ω → R is approximated as

E(𝑋) ≈ 1
𝑚

𝑚
∑
𝑖=1

𝑋(𝜔𝑖) ≕ 𝜇𝑚(𝑋). (2.8)

The estimator 𝜇𝑚 is called a MC estimator, and its mean squared error (MSE) is

MSE(𝜇𝑚(𝑋)) ≔ E((𝜇𝑚(𝑋) − E(𝑋))2) = Var(𝑋)
𝑚

,

where the expectation is taken here with respect to the random sample 𝝎. The rate
of convergence 𝒪(𝑚−1) of the MSE is notoriously slow, and the cost of a sample
is typically high in our applications of interest. Numerous methods have been
proposed to accelerate the convergence or improve the complexity of Monte Carlo
estimators; we discuss here the MLMC approach.

Let us assume that the random variable 𝑋 is inaccessible; however, we can draw
samples from suitable approximations (𝑋𝑙)𝐿

𝑙=0 of it, where the index 𝑙 quantifies
the accuracy of the approximation: the higher the index, the more accurate the
approximation. With 𝒎 ∈ N𝐿+1, we make the following approximation:

E(𝑋) ≈ E(𝑋𝐿) = E(𝑋0) +
𝐿

∑
𝑙=1

E(𝑋𝑙 − 𝑋𝑙−1)

≈ 𝜇𝑚0
(𝑋0) +

𝐿
∑
𝑙=1

𝜇𝑚𝑙
(𝑋𝑙 − 𝑋𝑙−1) ≕ 𝜇𝒎(𝑋𝐿)

The estimator 𝜇𝒎 is called a MLMC estimator, with 𝐿 + 1 levels and the associated
sets of events in Ω𝒎 ≔ ∏𝐿+1

𝑖=1 Ω𝑚𝑖 . In particular, for any two distinct levels
𝑘, 𝑙 ∈ {0 … 𝐿}, the MC estimators 𝜇𝑚𝑘

and 𝜇𝑚𝑙
use distinct and independent sets

of events 𝝎𝑘 ∈ Ω𝑚𝑘 and 𝝎𝑙 ∈ Ω𝑚𝑙 .
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The associated MSE is

MSE(𝜇𝒎(𝑋𝐿)) ≔
statistical error

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞E((𝜇𝒎(𝑋𝐿) − E(𝑋𝐿))2) +
bias error

⏞⏞⏞⏞⏞⏞⏞(E(𝑋𝐿) − E(𝑋))2 (2.9)

= Var(𝑋0)
𝑚0

+
𝐿

∑
𝑙=1

Var(𝑋𝑙 − 𝑋𝑙−1)
𝑚𝑙

+ E(𝑋𝐿 − 𝑋)2 (2.10)

Since 𝑋 per se is not accessible, we had implicitly introduced the additional
approximation E(𝑋) ≈ E(𝑋𝐿), hence the two terms in the right-hand side of (2.9).
One could likewise consider the MC estimator 𝜇𝑚(𝑋𝐿), which would then have the
same bias contribution to the MSE as in (2.9). In the context of MLMC methods,
one typically assumes the existence of a converging sequence of approximations
(𝑋𝑙)𝑙∈N such that lim𝑙→+∞ E(𝑋𝑙 − 𝑋) = 0. The highest approximation level 𝐿
should then be chosen large enough to keep the bias error below a prescribed
tolerance. Likewise, the sample sizes 𝒎 should be chosen large enough to control
the statistical error, as per (2.10).

For differential equations, 𝑋 is generally a function of the solution of the
differential problem posed over an infinite-dimensional function space, and the
sequence (𝑋𝑙)𝑙∈N corresponds to increasingly-fine discretisations of that function
space. Therefore, the bias error is sometimes referred to as ‘discretisation error’.
Henceforth, for any 𝑙 ∈ N we will denote by 𝐹𝑙 ∶ 𝑈𝑙 × 𝑍 × Ω → 𝑌 ∗

𝑙 the discretised
version of 𝐹 for suitable finite-dimensional spaces 𝑈𝑙 and 𝑌𝑙.

Although a MC estimator is simpler to implement and preserves convexity,
a MLMC estimator achieves a better complexity with a good choice of 𝐿 and
𝒎. The celebrated complexity result by Giles 2008 assumes suitable decays of
Var(𝑋𝑙 − 𝑋𝑙−1) and E(𝑋𝑙 − 𝑋) and reasonable increase of the sampling cost, with
respect to 𝑙. Verifying these assumptions is not always trivial, but will not be
discussed in this report. Adaptive methods to tune a MLMC estimator from suitable
error estimations have been studied, in particular by Giles 2015 and Collier et al.
2015.

Multi-level estimation of a general risk measure Hereafter we will use
exclusively MLMC estimators, of which the standard (single-level) MC estimator
is a particular case (setting 𝐿 ≔ 0). Let us assume that, for 𝑚 ∈ N, we have an
unbiased estimator ℛ𝑚 of ℛ associated with the empirical probability defined by a
set of events 𝝎 ∈ Ω𝑚. The precise definition of the unbiased estimator ℛ𝑚 depends
on ℛ; e.g. if ℛ = E then 𝜇𝑚 as defined in (2.8) is such an estimator. Let us choose
𝒎 ∈ N𝐿+1 then draw randomly and independently 𝝎 ≔ (𝝎𝑙)𝐿

𝑙=0 ∈ Ω𝒎 from the
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measure P. We can write a multi-level estimator of ℛ(𝑋) as

ℛ(𝑋) ≈ ℛ(𝑋𝐿) ≔ ℛ(𝑋0) +
𝐿

∑
𝑙=1

ℛ(𝑋𝑙) − ℛ(𝑋𝑙−1)

≈ ℛ𝑚0
(𝑋0) +

𝐿
∑
𝑙=1

ℛ𝑚𝑙
(𝑋𝑙) − ℛ𝑚𝑙−1

(𝑋𝑙−1) ≕ ℛ𝒎(𝑋𝐿)

Since the estimators are all unbiased, E(ℛ𝒎(𝑋𝐿)) = ℛ(𝑋𝐿): ℛ𝒎(𝑋𝐿) is an
unbiased estimator of ℛ(𝑋𝐿) – albeit not of ℛ(𝑋).

In this section, we will assume that ℛ remains continuously differentiable after
discretisation; i.e. ℛ𝑚𝑙

(for any 𝑙 ∈ {0 … 𝐿}), and hence ℛ𝒎, are continuously
differentiable. In particular, for any 𝑋 ∈ L𝑟(Ω,R), we can define ∇ ℛ𝑚𝑙

(𝑋) and

∇ ℛ𝒎(𝑋) ≔ ∇ ℛ𝑚0
(𝑋0) +

𝐿
∑
𝑙=1

∇ ℛ𝑚𝑙
(𝑋𝑙) − ∇ ℛ𝑚𝑙−1

(𝑋𝑙−1).

Neither this smoothness assumption nor the unbiasedness assumption hold if the
risk measure ℛ is the CVaR. We will come back to this issue in § 3.

2.3.2 Sample-average approximation

In this approach, a discretisation of the probability measure P is performed a priori,
and then the OUU problem is solved for the finite set of MLMC realisations. The
sample-average approximation of problem 1 is then problem 2.
Problem 2 (SAA of problem 1). Let 𝐿 ∈ N, 𝒎 ∈ N𝐿+1 and 𝝎 ∈ Ω𝑚. Find the
optimal design 𝑧⋆ ∈ 𝒜 solution of

⎧{
⎨{⎩

min{𝐽𝒎(𝑧) ≔ ℛ𝒎(𝑄(𝑢(𝑧))) + 𝑃(𝑧) ∶ 𝑧 ∈ 𝒜}

s.t. ∀𝑙 ∈ {0 … 𝐿}, ∀𝑖 ∈ {1 … 𝑚𝑙}, {
𝐹𝑙(𝑢𝑙(𝑧)(𝜔𝑙,𝑖), 𝑧, 𝜔𝑙,𝑖) = 0,

𝐹𝑙−1(𝑢𝑙−1,𝑖(𝑧)(𝜔𝑙,𝑖), 𝑧, 𝜔𝑙,𝑖) = 0.

This approach is straightforward to implement. To illustrate it, algorithm 2
presents the SAA version of algorithm 1. By convention, lines 7 and 12 are skipped
if 𝑙 = 0. Note that the whole algorithm, including the MLMC estimator on line 13,
uses the same set of events 𝝎 ∈ Ω𝒎 drawn on line 2. Without further assumption
on ℛ, the two inner loops must be separated by line 8: the computation of ∇ ℛ𝒎
may require all solutions to the primal problems; e.g. the case of the variance
in deliverable 6.2, § 3.4.1.

A major drawback of the SAA is the lack of flexibility to adapt the sample size.
Consequently the probability-discretisation error can only be controlled a priori,
and reliable a priori error estimators are not often available. For this reason, and
because a SAA is often more straightforward to develop, we will focus henceforth
on the stochastic approximation.
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ALGORITHM 2: SAA-MLMC version of algorithm 1
1 INPUT: 𝑧0, 𝛾, 𝜂, 𝒎
2 INITIALISE: Draw 𝝎 ∈ Ω𝒎

3 WHILE ‖𝑧𝑘+1 − 𝑧𝑘‖ ⩾ 𝜂‖𝑧𝑘‖ DO
4 FOR 𝑙 ∈ {0 … 𝐿} DO
5 FOR 𝑖 ∈ {1 … 𝑚𝑙} DO
6 Find 𝑢𝑙(𝜔𝑙,𝑖) s.t. 𝐹𝑙(𝑢𝑙(𝜔𝑙,𝑖), 𝑧𝑘, 𝜔𝑙,𝑖) = 0
7 Find 𝑢𝑙−1(𝜔𝑙,𝑖) s.t. 𝐹𝑙−1(𝑢𝑙−1(𝜔𝑙,𝑖), 𝑧𝑘, 𝜔𝑙,𝑖) = 0

8 Compute ∇ ℛ𝒎(𝑄(𝑢))(𝜔), ∀𝜔 ∈ 𝝎
9 FOR 𝑙 ∈ {0 … 𝐿} DO

10 FOR 𝑖 ∈ {1 … 𝑚𝑙} DO
11 Find 𝜆𝑙(𝜔𝑙,𝑖) s.t.

D1 𝐹 ∗
𝑙 (𝑢𝑙(𝜔𝑙,𝑖), 𝑧𝑘, 𝜔𝑙,𝑖)(𝜆𝑙(𝜔𝑙,𝑖)) = 𝑞 ∇ ℛ𝒎(𝑄(𝑢))(𝜔𝑙,𝑖)

12 Find 𝜆𝑙−1(𝜔𝑙,𝑖) s.t.
D1 𝐹 ∗

𝑙−1(𝑢𝑙−1(𝜔𝑙,𝑖), 𝑧𝑘, 𝜔𝑙,𝑖)(𝜆𝑙−1(𝜔𝑙,𝑖)) = 𝑞 ∇ ℛ𝒎(𝑄(𝑢))(𝜔𝑙,𝑖)

13 Compute descent direction
∇ 𝐽𝒎(𝑧𝑘) ≔ ∇ 𝑃(𝑧𝑘) − 𝜇𝒎(D2 𝐹 ∗(𝑢, 𝑧𝑘, ⋅)(𝜆))

14 Set new design 𝑧𝑘+1 ≔ ∏𝒜(𝑧𝑘 − 𝛾𝑘 ∇ 𝐽𝒎(𝑧𝑘))
15 RESULT: 𝑧𝑘+1
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2.3.3 Stochastic approximation

This approach picks a new discretisation of the measure P at every iteration of the
algorithm, unlike SAA which fixes it a priori. The main difference with SAA is that
the samples are drawn independently at every iteration. We can distinguish two
strategies. In the first case, an accurate evaluation of the gradient ∇ 𝐽 is computed
at every iteration 𝑘 ∈ N and the step size 𝛾𝑘 is either kept constant or estimated
by some backtracking line-search method, as in algorithms 1–2. In the second
case, a very crude approximation of the gradient of the risk measure is evaluated
at each iteration. This could comprise even only a single realisation (one primal
and one adjoint solutions), provided that the estimator is unbiased3. In this case,
the step size should be progressively reduced over the iterations (e.g. 𝛾𝑘 ≔ 𝛾0𝑘−1)
to achieve convergence. Since the first case is a straightforward modification of
algorithm 2, hereafter we present only the second case.

Stochastic gradient This well-known approach was introduced by Robbins
and Monro 1951 for gradient-descent algorithms. If we consider a single-level MC
approximation, this approach can be summarised as follows.

𝑧𝑘+1 = ∏
𝒜

(𝑧𝑘 + 𝛾0
𝑘

∇ 𝐽1(𝑧𝑘)) = ∏
𝒜

(𝑧𝑘 + 𝛾0
𝑘

(∇ 𝑃(𝑧𝑘) + 𝜇1(D2 𝐹 ∗(𝑢, 𝑧𝑘, ⋅)(𝜆)))).

In particular, only a single event is used by the MC estimator. The gist is that the
algorithm will converge regardless of the variance of the estimator of ∇ 𝐽, provided
that it is unbiased, that ∑+∞

𝑘=1 𝛾𝑘 = +∞ and ∑+∞
𝑘=1 𝛾2

𝑘 < +∞. It was shown by
Martin, Krumscheid et al. 2018, (see table 1 p. 21) that it could achieve better
complexity than SAA, for a strongly-convex, Lipschitz-continuous optimal control
problem.

In our context, an obvious drawback is the lack of parallelisation. However, the
single sample can be replaced with a small sample size, still delivering inaccurate
gradient estimations, yet leveraging parallelisation. E.g., we may choose the sample
size at every iteration so as to use all computing resources currently available. This
strategy is sometimes called ‘stochastic gradient with mini-batches’.

Combinations of the stochastic gradient (SG) with MLMC estimators have been
proposed in Martin, Nobile et al. 2019. We review hereafter the two strategies
they developed: multi-level stochastic gradient (MLSG) and randomised multi-level
stochastic gradient (RMLSG).

3The estimator is not always unbiased; we will come back to this issue when discussing SA
methods for the CVaR.
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Multi-level stochastic gradient This is the intuitive generalisation of the SG
method from MC estimators to MLMC ones: at every step 𝑘, 𝒎𝑘 ∈ N𝐿𝑘+1 is chosen
and 𝜔 ∈ Ω𝒎𝑘 is drawn. The rest is identical to algorithm 2, using the MLMC
estimator 𝜇𝒎𝑘

.
Since the SG approach relies on an unbiased estimation to converge, the bias error

E(𝑋 − 𝑋𝐿) defined in § 2.3.1 is an issue here. This can be solved by choosing the
sequence (𝐿𝑘)𝑘∈N such that lim𝑘→+∞ 𝐿𝑘 = +∞, so that lim𝑘→+∞ E(𝑋 − 𝑋𝐿𝑘

) =
0. For the choice of the cost-optimal rate of increase of 𝐿𝑘, we refer the reader
to Martin, Nobile et al. 2019, theorem 3.7. An alternative, yet less sophisticated,
view is the one often taken with single-level MC estimator: to consider 𝑋𝐿 to be
the reference instead of 𝑋, and so disregard this possible source of bias.

Regarding the choice of 𝒎𝑘, this should be chosen as small as possible while
using all available computing resources. Adaptive algorithms such as described
by Giles 2015 and Collier et al. 2015 can be used to distribute the resources over
the levels (through the samples sizes 𝒎𝑘) so as to minimise the complexity of the
MLMC estimator. We refer again to Martin, Nobile et al. 2019 for cost-optimal
choices of 𝒎𝑘.

Randomised multi-level stochastic gradient Let us define a discrete proba-
bility measure 𝑝 on {0 … 𝐿}; for any 𝑙 ∈ {0 … 𝐿}, we denote the probability mass
by 𝑝𝑙 ≔ 𝑝(𝑙). The RMLSG estimator originally proposed by Rhee and Glynn 2015
draws a single sample from the level 𝑙 randomly chosen. With the convention
𝑋−1 ≔ 0, the estimator reads

𝜇1,𝑝(𝑋) ≔ 1
𝑝𝑙

(𝑋𝑙 − 𝑋𝑙−1), 𝑙 ∼ 𝑝.

In the interest of parallelisation, this estimator can be replaced with a mini-batch
of size 𝑚 ∈ N as

𝜇𝑚,𝑝(𝑋) ≔ 1
𝑚𝑝𝑙

𝑚
∑
𝑖=1

𝑋𝑙(𝜔𝑖) − 𝑋𝑙−1(𝜔𝑖); 𝑙 ∼ 𝑝; 𝜔𝑖 ∼ P i.i.d.

The issue of the bias error applies here as well as for the MLSG case. The original
proposition by ibid. was to define 𝑝 over N, which leads to an unbiased estimator.
However, the cost of this unbiased estimator has a large variance and entails a
risk of untractable computations. We prefer the solution discussed for the MLSG
estimator: to choose a sequence of highest levels 𝐿𝑘 such that lim𝑘→+∞ 𝐿𝑘 = +∞,
leading to a RMLSG estimator that is asymptotically unbiased.

Algorithm 3 illustrates this approach, whose consistency relies on ∇ 𝐽𝑚,𝑝(𝑧𝑘)
being an unbiased estimator of ∇ 𝐽 independently of 𝑚, at least as the highest-level
𝐿 diverges to infinity along the iterations. Therefore, on line 3, 𝐿 is chosen so as
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to satisfy a tolerance 𝜖𝑘 on an estimator 𝐸bias of the bias error, where the sequence
𝜖 ⊂ ]0, +∞[ is chosen a priori and lim𝑘→+∞ 𝜖𝑘 = 0. The sample size chosen on
line 6 would be 1 for the canonical RMLSG estimator; for parallel computations,
one may want to choose it according to computational resources.

ALGORITHM 3: SA-RMLSG version of algorithm 1
1 INPUT: 𝑧0, 𝛾, 𝜂, 𝜖
2 WHILE ‖𝑧𝑘+1 − 𝑧𝑘‖ ⩾ 𝜂‖𝑧𝑘‖ DO
3 Set highest level 𝐿 ≔ min{𝑙 ∈ N ∶ 𝐸bias(𝑙) ⩽ 𝜖𝑘}
4 Choose probability masses 𝑝𝑙 = 𝑝(𝑙), ∀𝑙 ∈ {0 … 𝐿}, s.t. ∑𝐿

𝑙=0 𝑝𝑙 = 1
5 Draw level 𝑙 ∼ 𝑝
6 Pick sample size 𝑚 ∈ N and draw 𝝎 ∈ Ω𝑚

7 FOR 𝑖 ∈ {1 … 𝑚} DO
8 Find 𝑢𝑙(𝜔𝑖) s.t. 𝐹𝑙(𝑢𝑙(𝜔𝑖), 𝑧𝑘, 𝜔𝑖) = 0
9 Find 𝑢𝑙−1(𝜔𝑖) s.t. 𝐹𝑙−1(𝑢𝑙−1(𝜔𝑖), 𝑧𝑘, 𝜔𝑖) = 0

10 Compute ∇ ℛ𝒎(𝑄(𝑢))(𝜔𝑖), ∀𝑖 ∈ {1 … 𝑚}
11 FOR 𝑖 ∈ {1 … 𝑚} DO
12 Find 𝜆𝑙(𝜔𝑖) s.t. D1 𝐹 ∗

𝑙 (𝑢𝑙(𝜔𝑖), 𝑧𝑘, 𝜔𝑖)(𝜆𝑙(𝜔𝑖)) = 𝑞 ∇ ℛ𝒎(𝑄(𝑢))(𝜔𝑖)
13 Find 𝜆𝑙−1(𝜔𝑖) s.t.

D1 𝐹 ∗
𝑙−1(𝑢𝑙−1(𝜔𝑖), 𝑧𝑘, 𝜔𝑖)(𝜆𝑙−1(𝜔𝑖)) = 𝑞 ∇ ℛ𝒎(𝑄(𝑢))(𝜔𝑖)

14 Compute descent direction
∇ 𝐽𝑚,𝑝(𝑧𝑘) ≔ ∇ 𝑃(𝑧𝑘) − 𝜇𝑚,𝑝(D2 𝐹 ∗(𝑢, 𝑧𝑘, ⋅)(𝜆))

15 Set new design 𝑧𝑘+1 ≔ ∏𝒜(𝑧𝑘 − 𝛾𝑘 ∇ 𝐽𝑚,𝑝(𝑧𝑘))
16 RESULT: 𝑧𝑘+1
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3 Approaches to CVaR optimisation
Section 2 discussed general OUU for a smooth risk measure. In this section, we will
introduce a non-smooth risk measure and discuss approaches to optimise it, as well
as their practical implementation. The choice of this risk measure is motivated
by its suitable mathematical properties as well as its usefulness and popularity in
risk-averse engineering design. We refer the reader to Rockafellar and Royset 2015
for a detailed review of risk measures pertinent to engineering risk-averse decisions.

3.1 Definition and properties of the CVaR
To introduce the CVaR, we first define the value at risk (VaR).

Definition 3 (Value at risk). Let 𝛽 ∈ ]0, 1[. The value at risk (VaR) of significance4

𝛽 of any 𝑋 ∈ L1(Ω,R) is defined as

VaR𝛽(𝑋) ≔ inf{𝑡 ∈ R ∶ P(𝑋 ⩽ 𝑡) ⩾ 𝛽}

Although the VaR provides useful information on the tails of the distribution,
it is not a coherent risk measure: it is not sub-additive5; a fortiori not convex.
Nevertheless, it is closely related to the CVaR, and useful to define it.

Definition 4 (Conditional value at risk). Let 𝛽 ∈ ]0, 1[ and 𝑋 ∈ L1(Ω,R). We
define the CVaR of significance 𝛽 of 𝑋 as the following expectation, conditional on
the VaR:

CVaR𝛽(𝑋) ≔ E(𝑋 | 𝑋 ⩾ VaR𝛽(𝑋)).

The CVaR is well-defined over L1(Ω,R), and has been proven to be a coherent
risk measure by Pflug 2000. The CVaR has been presented with several different
definitions in the literature (cf. Rockafellar and Uryasev 2000), generally equivalent
for random variables whose CDF is sufficiently regular. For simplicity, we will
assume that the random variables whose CVaR are considered have an absolutely
continuous CDF, as we did in section 2. Henceforth we will consider ℛ ≔ CVaR𝛽,
and discuss two alternative approaches to solve the OUU problem 1 for this definition
of the risk measure.

3.2 Pure gradient-descent
Here we propose an adaptation of the gradient-descent method introduced in § 2.2
for the OUU problem 1, with the CVaR as the risk measure.

4Sometimes called ‘value at risk 1 − 𝛽’.
5∃(𝑋, 𝑌 ) ∈ L1(Ω,R)2 ∶ VaR𝛽(𝑋 + 𝑌 ) > VaR𝛽(𝑋) + VaR𝛽(𝑌 ).
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3.2.1 Idealised setting

The computation of a CVaR is generally not trivial, and definition 4 is not the most
convenient for our practical use. Assuming that 𝑋 ∈ L1(Ω,R) has an absolutely
continuous CDF, Rockafellar and Uryasev 2000 proved that

CVaR𝛽(𝑋) = inf {

𝑅(𝑋,𝑡)

⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑡 + 1

1 − 𝛽
E((𝑋 − 𝑡)+) ∶ 𝑡 ∈ R} (3.1)

with (⋅)+ ≔ max(0, ⋅). This infimum is reached on a closed, bounded interval whose
minimum is VaR𝛽(𝑋).

Since definition (3.1) of the CVaR features an infimum, the OUU problem 1
appears as a nested minimisation problem: inf𝒜 infR(⋅). It is convenient to consider
therefore problem 3, i.e. an equivalent minimisation problem over 𝒜 × R. Particu-
larly, the objective function does not feature VaR𝛽 any more, which instead is now
part of the solution, as 𝑡⋆.

Problem 3 (CVaR optimisation). Find the solution (𝑧⋆, 𝑡⋆) ∈ 𝒜 × R of

{
min{𝐽(𝑧, 𝑡) ≔ 𝑅(𝑄(𝑢(𝑧)), 𝑡) + 𝑃(𝑧) ∶ 𝑧 ∈ 𝒜; 𝑡 ∈ R}

s.t. 𝐹(𝑢(𝑧)(𝜔), 𝑧, 𝜔) = 0, for P-a.e. 𝜔 ∈ Ω

Algorithm 1 can easily be adapted to this new formulation as a gradient-descent
over 𝒜 × R. For the derivatives of 𝑅 to be well-defined and continuous, we assume
that the CDF 𝑡 ↦ P(𝑄(𝑢(𝑧)) ⩽ 𝑡) is absolutely continuous and depends smoothly
on 𝑧 ∈ 𝒜. In addition to (2.4)–(2.6), a solution (𝑧, 𝑡) ∈ 𝒜 × R of problem 3 has to
fulfil the following optimality condition:

D2 𝑅(𝑄(𝑢(𝑧)), 𝑡) = 1 − 1
1 − 𝛽

E(𝟙(𝑄(𝑢(𝑧)) ⩾ 𝑡)) = 0. (3.2)

With the new definition of the objective function, the gradient of the risk measure,
as featured in line 4 of algorithm 1, is now

∇1 𝑅(𝑋, 𝑡) = 𝟙(𝑋 ⩾ 𝑡)
1 − 𝛽

. (3.3)

We can then particularise algorithm 1 for ℛ ≔ CVaR𝛽 as algorithm 4 below. The
gradient descent over 𝒜 × R is done consecutively over R in line 4, then over 𝒜
in line 7. The linearity assumption on 𝑄 and formula (2.7) have also been used
on line 5. Although a normal gradient-descent algorithm would use 𝑡𝑘 at line 5,
we chose to use the more accurate 𝑡𝑘+1 since it incurs no extra cost in this case.
The step size 𝛾′

𝑘, as for 𝛾𝑘, may be chosen either a priori or adaptively. This is left
unspecified in algorithm 4.
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ALGORITHM 4: Ideal gradient-descent for the CVaR
1 INPUT: (𝑧0, 𝑡0), 𝜂,
2 WHILE ‖𝑧𝑘+1 − 𝑧𝑘‖ ⩾ 𝜂‖𝑧𝑘‖ DO
3 Find 𝑢 s.t. 𝐹(𝑢(𝜔), 𝑧𝑘, 𝜔) = 0 for P-a.e. 𝜔 ∈ Ω
4 Update quantile estimation 𝑡𝑘+1 ≔ 𝑡𝑘 − 𝛾′

𝑘(1 − 1
1−𝛽 E(𝟙(𝑄(𝑢) ⩾ 𝑡𝑘)))

5 Find 𝜆 s.t., for P-a.e. 𝜔 ∈ Ω,
D1 𝐹 ∗(𝑢(𝜔), 𝑧𝑘, 𝜔)(𝜆(𝜔)) = 𝑞

1−𝛽𝟙(𝑄(𝑢) ⩾ 𝑡𝑘+1)(𝜔)
6 Compute descent direction ∇ 𝐽(𝑧𝑘) ≔ ∇ 𝑃(𝑧𝑘) − E(D2 𝐹 ∗(𝑢, 𝑧𝑘, ⋅)(𝜆))
7 Update design 𝑧𝑘+1 ≔ ∏𝒜(𝑧𝑘 − 𝛾𝑘 ∇ 𝐽(𝑧𝑘))
8 RESULT: (𝑧𝑘+1, 𝑡𝑘+1)

3.2.2 Stochastic approximation using subgradients

As for the smooth case in § 2, the practical implementation of algorithm 4 will
require a discretisation of the probability space as well as the underlying PDE.
The major difference here lies in the weaker regularity of the objective function.
For example, the objective function of problem 3 features a term of the form
E((𝑋 − 𝑡)+), which is continuously differentiable as a function of either 𝑡 ∈ R or
𝑋 ∈ L1(Ω,R) (with absolutely continuous CDF). However, if we approximate P as
in § 2.3, with a discrete measure from a set of events 𝝎 ∈ Ω𝑚 (𝑚 ∈ N), this term
is approximated as

E((𝑋 − 𝑡)+) ≈ 𝜇𝑚((𝑋 − 𝑡)+) = 1
𝑚

𝑚
∑
𝑖=1

(𝑋(𝜔𝑖) − 𝑡)+,

which is not continuously differentiable any more, with respect to neither 𝑋 nor
𝑡. Obviously, the same consideration applies to MLMC estimators. Consequently,
the discretised risk measure – and thus the objective function – is not continuously
differentiable. Nevertheless, for convex functions one can define subderivatives.

Definition 5 (Subderivative). Let 𝐵 be a Banach space, 𝐶 ⊂ 𝐵 a convex set and
𝑓 ∶ 𝐶 → R a convex function. For any 𝑐 ∈ 𝐶, we define

𝜕𝑓(𝑐) ≔ {𝑣∗ ∈ 𝐵∗ ∶ ∀𝑣 ∈ 𝐶, 𝑓(𝑣) − 𝑓(𝑐) ⩾ 𝑣∗(𝑣 − 𝑐)},

the ‘subdifferential’ of 𝑓 at 𝑐, i.e. the set of subgradients of 𝑓 at 𝑐. This set is
not empty, even if 𝑓 is not differentiable at 𝑐; iff. it is, 𝜕𝑓(𝑐) = {∇ 𝑓(𝑐)}. For a
multivariate function 𝑓, we will denote by 𝜕𝑘𝑓 the subdifferential of the 𝑘-th partial
application of 𝑓.
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It is therefore possible to extend the definition of the gradient of a non-smooth
convex risk measure such as the discretised CVaR by choosing a subgradient at
points where the gradient is not defined. For any (𝑋, 𝑡) ∈ L𝑟(Ω,R) × R,

𝜕1𝑅(𝑋, 𝑡) = {𝟙(𝑋 > 𝑡) + 𝛼𝟙(𝑋 = 𝑡) ∶ 𝛼 ∈ [0, 1]} ⊂ L𝑟′(Ω,R), (3.4)
𝜕2𝑅(𝑋, 𝑡) = {1 − E(𝟙(𝑋 > 𝑡) + 𝛼𝟙(𝑋 = 𝑡)) ∶ 𝛼 ∈ [0, 1]} ⊂ R. (3.5)

It is clear from the expressions (3.4)–(3.5) that 𝑅 is differentiable at (𝑋, 𝑡) iff.
P(𝑋 = 𝑡) = 0. If the CDF of 𝑋 is discontinuous at 𝑡, 𝑅 has only subderivatives at
(𝑋, 𝑡) – no derivative. If 𝑋 has an absolutely continuous CDF, 𝑅 is differentiable;
however its approximation for a discrete probability measure 𝜇𝑚 is not if 𝜇𝑚(𝑋 =
𝑡) > 0, hence the need for subgradients. The calculations leading to (3.4)–(3.5)
can be found in appendix A.

We propose to adapt algorithm 4 to an empirical measure by following a SA
approach, due to its greater flexibility regarding sample sizes. The convergence
analysis of a SG method usually rely on the assumption that the gradient of the
objective function is at least Lipschitz-continuous, which is not the case here. How-
ever, Shamir and Zhang 2012, theorem 2 proved convergence of E( ̃𝐽(𝑧𝑘) − min ̃𝐽)
for a non-smooth convex objective function ̃𝐽, albeit at a suboptimal6 rate of
𝒪(𝑘−1/2 log(𝑘)) (for 𝑘 ∈ N iterations).

Algorithm 5 proposes an adaptation of idealised algorithm 4 to the MLSGmethod
introduced in § 2.3.3. A sequence of decreasing tolerances (𝜖𝑘)𝑘∈N ⊂ ]0, +∞[
converging to zero is set a priori. Then, on line 3, the MLMC estimator is tuned
so that the current tolerance 𝜖𝑘 is satisfied by the MSE estimated based on data
from the previous iteration. In practice, this adaptivity criterion is actually split
between a condition on the bias error and another one on the statistical error, to
choose respectively the highest level 𝐿 and sample sizes 𝒎. Martin, Nobile et al.
2019, theorem 3.7 proposed an analysis of rates at which 𝐿 and 𝒎 should increase
to achieve optimal asymptotic complexity, albeit for an optimal-control problem
with a different risk measure.

For simplicity and brevity, algorithm 5 uses the same MLMC estimator 𝜇𝒎
on lines 9 and 14, and that estimator is adapted for the latter, i.e. the descent
direction in the design space. However, the MLSG strategy introduced in § 2.3.3
would not adapt these estimator based on error estimations but instead use a crude,
cost-efficient estimation with a small number of samples, e.g. chosen according to
available computing resources. Alternatively, one may choose to estimate accurately
the descent direction by tuning its estimation separately. This can be achieved by
defining another sequence of tolerances (𝜖′

𝑘)𝑘∈N converging to zero, then using a
different estimator 𝜇𝒎′ on line 9 with 𝒎′ ∈ N𝐿′+1 and 𝐿′ ∈ N chosen such that

6Compared to the SG convergence rate of 𝒪(𝑘−1), for a smooth convex objective function.
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MSE(𝜇𝒎′(𝟙(𝑄(𝑢) ⩾ 𝑡𝑘))) ⩽ 𝜖′
𝑘. The total cost of these estimations can be reduced

by sharing samples of 𝑢 between 𝜇𝒎′ and 𝜇𝒎. With respect to the samples of
𝜆: the higher 𝛽 is, the more likely the right-hand side of the adjoint equations on
lines 12–13 is to be zero, which reduces the number of resolutions of the adjoint
problem to compute.

ALGORITHM 5: SA-MLSG version of algorithm 4
1 INPUT: (𝑧0, 𝑡0), (𝛾, 𝛾′), 𝜖, 𝜂
2 WHILE ‖𝑧𝑘+1 − 𝑧𝑘‖ ⩾ 𝜂‖𝑧𝑘‖ DO
3 Choose 𝐿 ∈ N and 𝒎 ∈ N𝐿+1 s.t. MSE(𝜇𝒎(D2 𝐹 ∗(𝑢, 𝑧𝑘−1, ⋅))) ⩽ 𝜖𝑘
4 Draw 𝝎 ∈ Ω𝒎

5 FOR 𝑙 ∈ {0 … 𝐿} DO
6 FOR 𝑖 ∈ {1 … 𝑚𝑙} DO
7 Find 𝑢𝑙(𝜔𝑙,𝑖) s.t. 𝐹𝑙(𝑢𝑙(𝜔𝑙,𝑖), 𝑧𝑘, 𝜔𝑙,𝑖) = 0
8 Find 𝑢𝑙−1(𝜔𝑙,𝑖) s.t. 𝐹𝑙−1(𝑢𝑙−1(𝜔𝑙,𝑖), 𝑧𝑘, 𝜔𝑙,𝑖) = 0

9 Update quantile estimation 𝑡𝑘+1 ≔ 𝑡𝑘 − 𝛾′
𝑘(1 − 1

1−𝛽𝜇𝒎(𝟙(𝑄(𝑢) ⩾ 𝑡𝑘)))

10 FOR 𝑙 ∈ {0 … 𝐿} DO
11 FOR 𝑖 ∈ {1 … 𝑚𝑙} DO
12 Find 𝜆𝑙(𝜔𝑙,𝑖) s.t.

D1 𝐹 ∗
𝑙 (𝑢𝑙(𝜔𝑙,𝑖), 𝑧𝑘, 𝜔𝑙,𝑖)(𝜆𝑙(𝜔𝑙,𝑖)) = 𝑞

1−𝛽𝟙(𝑄(𝑢𝑙(𝜔𝑙,𝑖)) ⩾ 𝑡𝑘+1)
13 Find 𝜆𝑙−1(𝜔𝑙,𝑖) s.t. D1 𝐹 ∗

𝑙−1(𝑢𝑙−1(𝜔𝑙,𝑖), 𝑧𝑘, 𝜔𝑙,𝑖)(𝜆𝑙−1(𝜔𝑙,𝑖)) =
𝑞

1−𝛽𝟙(𝑄(𝑢𝑙−1(𝜔𝑙,𝑖)) ⩾ 𝑡𝑘+1)

14 Compute descent direction
∇ 𝐽𝒎(𝑧𝑘) ≔ ∇ 𝑃(𝑧𝑘) − 𝜇𝒎(D2 𝐹 ∗(𝑢, 𝑧𝑘, ⋅)(𝜆))

15 Set new design 𝑧𝑘+1 ≔ ∏𝒜(𝑧𝑘 − 𝛾𝑘 ∇ 𝐽𝒎(𝑧𝑘))
16 RESULT: 𝑧𝑘+1

Besides the generic MSE defined in § 2.3.1, noteworthy alternative error estima-
tors have been proposed specifically for gradient-descent algorithms, such as the
‘norm test’ by Byrd et al. 2012 or the ‘inner product test’ by Bollapragada et al.
2018. Both have been studied recently by Urbainczyk 2020, leading to adaptive
MC sampling strategies for constrained shape optimisation under uncertainties.

3.3 Gradient-descent with accurate VaR estimation
In this section we propose an approach alternative to that of § 3.2, motivated
by the method proposed by Krumscheid and Nobile 2018 for the estimation of
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parametric expectations.

3.3.1 Idealised setting

Section 3.2 proposed to solve problem 3 by a gradient-descent algorithm over
𝒜 × R. A different tactic would be to minimise alternatively over 𝒜 and R, using
a gradient-descent for the former and a direct minimisation for the latter. At
every iteration 𝑘 ∈ N, we first find 𝑢(𝑧𝑘) ∈ L𝑝(Ω, 𝑈) verifying 𝐹(𝑢(𝑧𝑘)(⋅), 𝑧𝑘, ⋅)
a.e. in Ω. Then we compute VaR𝛽(𝑄(𝑢𝑧𝑘

)); this also yields CVaR𝛽(𝑄(𝑢(𝑧𝑘))) =
𝑅(𝑄(𝑢(𝑧𝑘)),VaR𝛽(𝑄(𝑢𝑧𝑘

))). Finally, we proceed to update the design as in § 3.2:
by solving the adjoint problem to compute the descent direction, using the exact
VaR. This leads to algorithm 6, to be compared with algorithm 4.

ALGORITHM 6: Ideal gradient-descent with exact VaR
1 INPUT: 𝑧0, 𝛾, 𝜂
2 WHILE ‖𝑧𝑘+1 − 𝑧𝑘‖ ⩾ 𝜂‖𝑧𝑘‖ DO
3 Find 𝑢 s.t. 𝐹(𝑢(𝜔), 𝑧𝑘, 𝜔) = 0 for P-a.e. 𝜔 ∈ Ω
4 Find VaR 𝑡𝑘+1 ≔ argmin{𝑅(𝑄(𝑢), 𝑟) ∶ 𝑟 ∈ R}
5 Find 𝜆 s.t., for P-a.e. 𝜔 ∈ Ω,

D1 𝐹 ∗(𝑢(𝜔), 𝑧𝑘, 𝜔)(𝜆(𝜔)) = 𝑞
1−𝛽𝟙(𝑄(𝑢) ⩾ 𝑡𝑘+1)(𝜔)

6 Compute descent direction ∇ 𝐽(𝑧𝑘) ≔ ∇ 𝑃(𝑧𝑘) − E(D2 𝐹 ∗(𝑢, 𝑧𝑘, ⋅)(𝜆))
7 Update design 𝑧𝑘+1 ≔ ∏𝒜(𝑧𝑘 − 𝛾𝑘 ∇ 𝐽(𝑧𝑘))
8 RESULT: 𝑧𝑘+1

3.3.2 Multi-level stochastic gradient algorithm

As in section 3.2, we propose to adapt the idealised algorithm to an empirical
measure in a MLSG method. In particular, we extend the definition of gradients of
ℛ using subgradients, in exactly the same way as described in § 3.2.2.

The major difference is the estimation of VaR𝛽, for which we use the method
proposed by Krumscheid and Nobile 2018. Let 𝑋 ∈ L1(Ω,R); 𝑅(𝑋, 𝑡) is an
expectation parameterised by 𝑡 ∈ R:

𝑅(𝑋, 𝑡) = E(𝜙(𝑡, 𝑋)) with 𝜙(𝑡, 𝑋) ≔ 𝑡 + (𝑋 − 𝑡)+

1 − 𝛽
.

Let 𝐼 be a suitable interpolator (e.g. spline), (𝐿, 𝑛) ∈ N2 and (𝒎, 𝒓) ∈ N𝐿+1 × R𝑛.
The parametric expectation is estimated as

∀𝑡 ∈ R, 𝑅(𝑋, 𝑡) ≈ 𝐼({𝜇𝒎(𝜙(𝑟𝑖, 𝑋)) ∶ 𝑖 ∈ {1 … 𝑛}})(𝑡) ≕ Φ𝒎,𝒓(𝑋)(𝑡), (3.6)
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from which one can estimate

VaR𝛽(𝑋) ≈ argmin Φ𝒎,𝒓(𝑋) and CVaR𝛽(𝑋) ≈ min Φ𝒎,𝒓(𝑋).

For any 𝜖 ∈ ]0, +∞[, a posteriori error estimators enable to choose 𝑛, 𝐿 and 𝒎
such that

MSE(argmin Φ𝒎,𝒓(𝑋)) ≔ E(∣VaR𝛽(𝑋) − argmin Φ𝒎,𝒓(𝑋)∣2) ⩽ 𝜖. (3.7)

In the same way that (2.9) was split two-way, in practice this MSE-adaptivity
criterion is split into criteria on the interpolation, bias and statistical errors to
choose respectively 𝑛, 𝐿 and 𝒎. We refer the reader to Krumscheid and Nobile
2018 for further details.

Algorithm 7 uses this method in a MLSG version of algorithm 6. Unlike
algorithm 5, here we tune the MLMC estimator used for the VaR distinctly from
the estimator used for the descent direction in the design space. Consequently, we
have two sequences of tolerances 𝜖, 𝜖′ ⊂ ]0, +∞[ set a priori. A typical stochastic-
gradient strategy would dispense with 𝜖′ and use a small sample size 𝒎′ without
regard for the accuracy (e.g. kept constant or chosen according to computing
resources) provided 𝜇𝒎′ is unbiased – at least asymptotically, as the algorithm
iterates. However, this requires a quantile estimation with controlled and increasing
accuracy, hence the need for 𝜇𝒎′ to be tuned with respect to a diminishing sequence
of tolerances 𝜖 in any case. Let us note that the error estimations in lines 3 and 10
are made a posteriori, based on data from the previous iteration. To reduce the
total cost of these estimations, samples of 𝑢 are shared between the two estimators.
Obviously, the comment made on algorithm 5 about the right-hand side of the
adjoint equations applies here as well. Appendix B presents a variation of this
algorithm on a more specific OUU problem.
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ALGORITHM 7: SA-MLSG version of algorithm 6
1 INPUT: 𝑧0, 𝛾, (𝜖, 𝜖′), 𝜂
2 WHILE ‖𝑧𝑘+1 − 𝑧𝑘‖ ⩾ 𝜂‖𝑧𝑘‖ DO
3 Choose (𝐿′, 𝑛) ∈ N2 and (𝒎′, 𝒓) ∈ N𝐿′+1 × R𝑛 s.t.

MSE(argmin Φ𝒎′,𝒓(𝑄(𝑢))) ⩽ 𝜖′
𝑘

4 Draw 𝝎 ∈ Ω𝒎′

5 FOR 𝑙 ∈ {0 … 𝐿′} DO
6 FOR 𝑖 ∈ {1 … 𝑚′

𝑙} DO
7 Find 𝑢𝑙(𝜔𝑙,𝑖) s.t. 𝐹𝑙(𝑢𝑙(𝜔𝑙,𝑖), 𝑧𝑘, 𝜔𝑙,𝑖) = 0
8 Find 𝑢𝑙−1(𝜔𝑙,𝑖) s.t. 𝐹𝑙−1(𝑢𝑙−1(𝜔𝑙,𝑖), 𝑧𝑘, 𝜔𝑙,𝑖) = 0

9 Estimate VaR as 𝑡𝑘+1 ≔ argmin Φ𝒎′,𝒓(𝑄(𝑢))
10 Choose 𝐿 ∈ N and 𝒎 ∈ N𝐿+1 s.t. MSE(𝜇𝒎(D2 𝐹 ∗(𝑢, 𝑧𝑘−1, ⋅))) ⩽ 𝜖𝑘
11 FOR 𝑙 ∈ {0 … 𝐿} DO
12 FOR 𝑖 ∈ {1 … 𝑚𝑙} DO
13 IF 𝑖 > 𝑚′

𝑙 THEN
14 Draw 𝜔𝑙,𝑖 ∈ Ω
15 Compute 𝑢𝑙(𝜔𝑙,𝑖) and 𝑢𝑙−1(𝜔𝑙,𝑖) as in lines 7–8.
16 Find 𝜆𝑙(𝜔𝑙,𝑖) s.t.

D1 𝐹 ∗
𝑙 (𝑢𝑙(𝜔𝑙,𝑖), 𝑧𝑘, 𝜔𝑙,𝑖)(𝜆𝑙(𝜔𝑙,𝑖)) = 𝑞

1−𝛽𝟙(𝑄(𝑢𝑙(𝜔𝑙,𝑖)) ⩾ 𝑡𝑘+1)
17 Find 𝜆𝑙−1(𝜔𝑙,𝑖) s.t. D1 𝐹 ∗

𝑙−1(𝑢𝑙−1(𝜔𝑙,𝑖), 𝑧𝑘, 𝜔𝑙,𝑖)(𝜆𝑙−1(𝜔𝑙,𝑖)) =
𝑞

1−𝛽𝟙(𝑄(𝑢𝑙−1(𝜔𝑙,𝑖)) ⩾ 𝑡𝑘+1)

18 Compute descent direction
∇ 𝐽𝒎(𝑧𝑘) ≔ ∇ 𝑃(𝑧𝑘) − 𝜇𝒎(D2 𝐹 ∗(𝑢, 𝑧𝑘, ⋅)(𝜆))

19 Set new design 𝑧𝑘+1 ≔ ∏𝒜(𝑧𝑘 − 𝛾𝑘 ∇ 𝐽𝒎(𝑧𝑘))
20 RESULT: 𝑧𝑘+1
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4 Regularisation for CVaR optimisation
The CVaR is not differentiable because of the positive part (⋅)+ featured in (3.1),
as was mentioned in § 3.2.2 where we considered subgradients. Alternative to the
use of subgradients, we discuss here possibilities to regularise problem 3.

4.1 Smooth optimisation
We consider first ‘smoothing’ the risk measure, i.e. approximate it with a more
regular function. An immediate benefit would be to place ourselves in the smooth
case described in § 2. Additionally, a higher regularity of the objective function
would allow for Newton-like optimisation methods (e.g. Broyden–Fletcher–Goldfarb–
Shanno method), which could significantly accelerate the optimisation process.
Another benefit is to enable SAA and deterministic quadrature methods (e.g. quasi
Monte Carlo, sparse grids), to accelerate quadrature by exploiting the regularity of
the random variable. This section is based on the works of Kouri and Surowiec
2016; Chen and Mangasarian 1995.

4.1.1 Smooth approximation of the CVaR

We propose to define a family of functions {(⋅)+
𝜍 ∶ 𝜍 ∈ ]0, +∞[} to approximate the

non-differentiable positive part in 𝑅. For any 𝑥 ∈ R, we let

(𝑥)+
𝜍 ≔ ∫

𝑥

−∞
∫

𝑦

−∞

1
𝜍
𝑔(𝑧

𝜍
) d𝑧 d𝑦

where 𝑔 is a function satisfying the following assumptions.

1. ∃𝑎 ∈ ]0, +∞[ ∶ 𝑔 ∈ C0(R, [0, 𝑎]).

2. ∫
R

𝑔 = 1.

3. ∫
R

𝑔(𝑥)|𝑥| d𝑥 ∈ R.

4. Either 𝑔1 ≔ ∫
R

𝑔(𝑥)𝑥 d𝑥 ⩽ 0 or 𝑔2 ≔ ∫0
−∞

𝑔(𝑥)|𝑥| d𝑥 = 0.

5. supp 𝑔 is connected.

From this definition, (⋅)+
𝜍 ∈ C2(R), is increasing and convex. Besides,

∃𝑏 ∈ ]0, max{𝑔1, 𝑔2}], ∀𝑥 ∈ R, |(𝑥)+
𝜍 − (𝑥)+| ⩽ 𝑏𝜍. (4.1)
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From this, Kouri and Surowiec 2016, lemma 4.3 proved

∀𝑋 ∈ L1(Ω), |CVaR𝛽,𝜍(𝑋) − CVaR𝛽(𝑋)| ⩽ 𝑏𝜍
1 − 𝛽

, (4.2)

with the ‘smoothed CVaR’ defined as

CVaR𝛽,𝜍(𝑋) ≔ inf { 𝑡 + 1
1 − 𝛽

E((𝑋 − 𝑡)+
𝜍 )

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑅(𝑋,𝑡,𝜍)

∶ 𝑡 ∈ R}. (4.3)

Like the CVaR, this smoothed CVaR is a coherent risk measure.
Below are examples of suitable choices7 of (⋅)+

𝜍 for any 𝑥 ∈ R:

(𝑥)+
𝜍,1 ≔ 𝑥 + 𝜍 ln(1 + exp(−𝑥

𝜍
)), 𝑏 = ln 2;

(𝑥)+
𝜍,2 ≔

⎧{{
⎨{{⎩

0 if 𝑥 ⩽ 0,
𝑥3

𝜍2 − 𝑥4

2𝜍3 if 𝑥 ∈ ]0, 𝜍[,

𝑥 − 0.5𝜍 if 𝑥 ⩾ 𝜍,

𝑏 = 1
2

;

(𝑥)+
𝜍,3 ≔ (𝑥 + 𝜍

2
)

+

𝜍,2
, 𝑏 = 3

32
.

These examples are illustrated on figure 1. In particular, ∀𝑥 ∈ R, they are ordered
as

(𝑥)+
𝜍,2 ⩽ (𝑥)+ ⩽ (𝑥)+

𝜍,3 ⩽ (𝑥)+
𝜍,1.

4.1.2 Adaptation of previous algorithms

Let 𝜍 ∈ ]0, +∞[ and let us note 𝑠𝜍 the derivative of (⋅)+
𝜍 : 𝑠𝜍 ∈ C1(R). By replacing

𝑅(⋅, ⋅) with 𝑅(⋅, ⋅, 𝜍), optimality condition (3.2) becomes

D2 𝑅(𝑋, 𝑡, 𝜍) = 1 − 1
1 − 𝛽

E(𝑠𝜍(𝑋 − 𝑡)) = 0, (4.4)

and (3.3) is now

∇1 𝑅(𝑋, 𝑡, 𝜍) =
𝑠𝜍(𝑋 − 𝑡)

1 − 𝛽
. (4.5)

Therefore, algorithms 4 and 6 can be adapted to this smoothed CVaR by us-
ing (4.4)–(4.5) instead of (3.2)–(3.3); i.e. replacing expressions of the form 𝟙(𝑄(𝑢) ⩾
𝑡) with 𝑠𝜍(𝑄(𝑢) − 𝑡) in lines 4 and 5 of algorithm 4, and line 5 of algorithm 6.

7Proposed by Kouri and Surowiec 2016
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Figure 1: Example of smooth approximations of the positive part

Moreover, there is no more need to extend the gradient definition with subgradients,
as was proposed in § 3.2, and it is possible to recover the optimal convergence rate
of the SG method.

A priori error estimators (4.1)–(4.2) enable us to choose the smoothing parameter
𝜍 so as to control the ‘smoothing error’ introduced by our approximation of (⋅)+.
As for the bias and statistical errors in the previous MLSG algorithms, we wish this
smoothing error to converge to zero along the optimisation process.

In particular, algorithm 7 can be adapted to this smoothing approximation by
first defining Φ𝒎,𝒓,𝜍 as in (3.6):

∀𝑡 ∈ R, Φ𝒎,𝒓,𝜍(𝑋)(𝑡) ≔ 𝐼({𝜇𝒎(𝜙(𝑟𝑖, 𝑋, 𝜍)) ∶ 𝑖 ∈ {1 … 𝑛}})(𝑡) ≈ 𝑅(𝑋, 𝑡, 𝜍),
with

𝜙(𝑡, 𝑋, 𝜍) ≔ 𝑡 +
(𝑋 − 𝑡)+

𝜍
1 − 𝛽

.

Recalling the MSE-adaptivity criterion (3.7) and the a priori error estimation (4.1),
for any 𝑋 ∈ L1(Ω,R) and 𝜖 ∈ ]0, +∞[ we can choose 𝜍 ∈ ]0, +∞[, (𝑛, 𝐿) ∈ N2 and
𝒎 ∈ N𝐿+1 such that

E((VaR𝛽(𝑋) − argmin Φ𝒎,𝒓,𝜍(𝑋))2) ⩽ 𝜖. (4.6)

As for (3.7), the MSE in (4.6) can be split four-way into smoothing, interpolation,
bias and statistical errors to choose respectively 𝜍, 𝑛, 𝐿 and 𝒎.

An example of such regularisation is provided in appendix B, for a MLSG
algorithm on a more specific OUU problem.
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4.2 Dual approach to CVaR optimisation
We consider here a different characterisation of the CVaR, leading to a reformulation
of OUU problem 3 and different computations of sensitivities of the risk measure.
A practical gradient-descent algorithm is then proposed for this approach. This
section is based on material from Shapiro et al. 2009, ch. 6; Kouri and Surowiec
2016; a similar approach was also taken by Curi et al. 2019. This is a briefer study
than the previous sections, to introduce this dual approach to regularisation. It
warrants further research towards better understanding and efficiency.

4.2.1 Dual characterisation of the CVaR and its derivative

First, let us define the following set of probability densities bounded by (1 − 𝛽)−1:

𝒰 ≔ {𝜃 ∈ L∞(Ω,R) ∶ 𝜃(𝜔) ∈ [0, 1
1 − 𝛽

] for a.e. 𝜔 ∈ Ω; E(𝜃) = 1}.

Then,

∀𝑋 ∈ L1(Ω,R), CVaR𝛽(𝑋) = sup{E(𝜃𝑋) ∶ 𝜃 ∈ 𝒰},

and

𝜕CVaR𝛽(𝑋) = argmax{E(𝜃𝑋) ∶ 𝜃 ∈ 𝒰}

=
⎧{
⎨{⎩

𝜃 ∈ 𝒰 ∶
𝜃(𝜔) = 0 if 𝑋(𝜔) < VaR𝛽(𝑋),

𝜃(𝜔) ∈ [0, (1 − 𝛽)−1] if 𝑋(𝜔) = VaR𝛽(𝑋),
𝜃(𝜔) = (1 − 𝛽)−1 if 𝑋(𝜔) > VaR𝛽(𝑋).

⎫}
⎬}⎭

(4.7)

Since CVaR𝛽(𝑋) is formulated as a supremum over a subset of the dual space
L∞(Ω,R) of L1(Ω,R) ∋ 𝑋, this is generally called a ‘dual characterisation’ of
the CVaR; hence the section title. If this supremum is reached at 𝜃⋆ ∈ 𝒰, 𝜃⋆P is
sometimes called the ‘risk-adjusted’ measure, since CVaR𝛽 is the expectation with
respect to this measure.

We define the risk measure by adding a strongly-concave regularisation term
parameterised by 𝜍 ∈ ]0, +∞[:

ℛ𝜍(𝑋) ≔ sup{E(𝜃𝑋) − 1
2

𝜍E(𝜃2) ∶ 𝜃 ∈ 𝒰.} (4.8)

Consequently we consider problem 4, equivalent to problem 3.

Problem 4 (Dual version of problem 3). Let 𝜍 ∈ ]0, +∞[; the risk measure ℛ𝜍 is
defined as per (4.8). Find the solution 𝑧⋆ ∈ 𝒜 of

{
min{𝐽𝜍(𝑧) ≔ ℛ𝜍(𝑄(𝑢(𝑧))) + 𝑃(𝑧) ∶ 𝑧 ∈ 𝒜}
s.t. 𝐹(𝑢(𝑧)(𝜔), 𝑧, 𝜔) = 0, for P-a.e. 𝜔 ∈ Ω
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Assuming that 𝑃 is differentiable and 𝑄̂(⋅; 𝜔) ↦ 𝑧 ↦ 𝑄(𝑢(𝑧)(𝜔)) is differentiable
for a.e. 𝜔 ∈ Ω, Kouri and Surowiec 2016, theorem 5.1, p. 382 implies8 that the
objective function 𝐽𝜍 is Gâteaux-differentiable with

∀(𝑧, 𝛿𝑧) ∈ 𝑍2, D 𝐽𝜍(𝑧)(𝛿𝑧) ≔ E( ̂𝜃 D1 𝑄̂(𝑧; 𝜔)(𝛿𝑧)) + D 𝑃(𝑧)(𝛿𝑧).

The probability measure ̂𝜃 above is uniquely defined as

̂𝜃 ≔ argmax{E(𝜃𝑄) − 1
2

𝜍E(𝜃2) ∶ 𝜃 ∈ 𝒰}

= (𝑄̂(𝑧; ⋅) − 𝜈)+

𝜍
− (𝑄̂(𝑧; ⋅) − 𝜈

𝜍
− 1

1 − 𝛽
)

+

, (4.9)

where 𝜈 satisfies

E((𝑄̂(𝑧; ⋅) − 𝜈)+

𝜍
− (𝑄̂(𝑧; ⋅) − 𝜈

𝜍
− 1

1 − 𝛽
)

+

) = 1.

Let us remark that expression (4.9) means:

∀𝜔 ∈ Ω, ̂𝜃(𝜔) =

⎧{{{
⎨{{{⎩

0 if 𝑄̂(𝑧; 𝜔) < 𝜈,
𝑄̂(𝑧; 𝜔) − 𝜈

𝜍
if 𝑄̂(𝑧; 𝜔) ∈ [𝜈, 𝜈 + 𝜍

1 − 𝛽
],

1
1 − 𝛽

if 𝑄̂(𝑧; 𝜔) > 𝜈 + 𝜍
1 − 𝛽

.

(4.10)

Comparing (4.10) to (4.7) gives some insights into the interpretation of the reg-
ularisation parameterised by 𝜍; in particular, lim𝜍→0 𝜈 = VaR𝛽(𝑄̂(𝑧; ⋅)). Figure 2
gives an example of an optimal measure 𝜃⋆ as defined by (4.7) compared with a
possible regularisation ̂𝜃 as defined by (4.10).

4.2.2 Gradient-descent for regularised optimisation problem

Algorithm 8 proposes a straightforward adaptation of algorithm 1 to problem 4
with a stochastic approximation. A sequence of regularisation parameters 𝜍 ≔
(𝜍𝑘)𝑘∈N ⊂ ]0, +∞[ converging to zero is set a priori.

Unlike the rest of the report, we only use (single-level) MC estimators here – a
consistent MLMC estimation of ̂𝜃 as defined by (4.9) has yet to be established. In
particular, line 7 uses the method introduced in § 3.3.2 to build an approximation

8These assumptions can be weakened; see ibid.
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𝜈 VaR𝛽(𝑄̂(𝑧; ⋅)) 𝜈 + 𝜍
1−𝛽

0
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1−𝛽

𝑄̂(𝑧; 𝜔)

𝜃⋆

̂𝜃

Figure 2: Example of optimal measure 𝜃⋆ ∈ 𝜕CVaR𝛽(𝑄̂(𝑧; ⋅)) and regularisation ̂𝜃

of the parametric expectation and estimate the value of the parameter 𝜈. For
simplicity, the same number of samples is used on lines 7 and 9. However, it would
be more accurate to tune each of these estimators separately, as illustrated in
previous algorithms. With regard to cost-efficiency, one may note that the values
of ̂𝜃 computed on line 8 are likely to be zero – the larger 𝛽 is, the more likely it
is. For any 𝜔 ∈ Ω s.t. ̂𝜃(𝜔) = 0, one can dispense with computing ∇1 𝑄̂(𝑧𝑘; 𝜔) on
line 9. This echoes a comment made on algorithms 5 and 7.

More generally, this method shows resemblance to the primal approach with
accurate estimation of the VaR that was presented in 3.3, with a smoothed CVaR.
The comparative merits of each remain to be investigated.
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ALGORITHM 8: Gradient-descent with SA-MC for regularised CVaR
1 INPUT: 𝑧0, 𝛾, 𝜍, 𝜂
2 WHILE ‖𝑧𝑘+1 − 𝑧𝑘‖ ⩾ 𝜂‖𝑧𝑘‖ DO
3 Choose 𝑚 ∈ N and draw 𝝎 ∈ Ω𝑚

4 FOR 𝑖 ∈ {1 … 𝑚} DO
5 Find 𝑢𝑖 s.t. 𝐹(𝑢𝑖, 𝑧𝑘, 𝜔𝑖) = 0
6 Compute ̃𝑞𝑖 = 𝑄(𝑢(𝑧𝑘)(𝜔𝑖))

7 Find 𝜈 ∈ R s.t. 𝜇𝑚( ( ̃𝑞−𝜈)+

𝜍𝑘
− ( ̃𝑞−𝜈

𝜍𝑘
− 1

1−𝛽)
+

) = 1

8 Compute ̂𝜃𝑖 = ( ̃𝑞𝑖−𝜈)+

𝜍𝑘
− ( ̃𝑞𝑖−𝜈

𝜍𝑘
− 1

1−𝛽)
+

, ∀𝑖 ∈ {1 … 𝑚}
9 Compute descent direction ∇ 𝐽(𝑧𝑘) ≔ 𝜇𝑚( ̂𝜃 ∇1 𝑄̂(𝑧𝑘; ⋅)) + ∇ 𝑃(𝑧𝑘)

10 Update design 𝑧𝑘+1 ≔ ∏𝒜(𝑧𝑘 − 𝛾𝑘 ∇ 𝐽(𝑧𝑘))
11 RESULT: 𝑧𝑘+1
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5 Conclusions and future leads

5.1 Summary of key points
This report first presented a general introduction to gradient-based optimisation
under uncertainties for a generic coherent, smooth risk measure. An idealised
gradient-descent algorithm was proposed, based on optimality conditions from de-
liverable 6.2. We then described two ways to discretise the probability space in order
to make this algorithm practically tractable: sample-average approximation (SAA)
and stochastic approximation (SA). Each of these was combined with multi-level
Monte Carlo (MLMC) estimators; for SA, we distinguished two possibles combina-
tions: multi-level stochastic gradient (MLSG) and randomised multi-level stochastic
gradient (RMLSG). These methods were illustrated with practical, implementable
versions of the idealised algorithm. Since the fine tuning of these algorithms is
an extensive topic, we merely outlined these aspects and referred to the pertinent
literature.

Secondly, we considered a coherent, non-smooth risk measure: the conditional
value at risk (CVaR). Since neither the value nor the derivatives of the CVaR are
easily accessible, and their estimators are typically biased, the gradient-descent
algorithm from the previous section had to be adapted; we proposed two different
approaches to this end. The first one is a joint gradient descent over both the
design space and a parameter space related to the CVaR; the CVaR itself is never
precisely evaluated. The second, on the other hand, uses a MLMC method to
estimate accurately the CVaR9 at every step of the gradient-descent algorithm,
which explores only the design space. Stochastic approximation of each approach
are detailed, with subgradients due to the lack of regularity of the risk measure.

Finally, we discussed possibilities to regularise the optimisation problem when
the CVaR is the risk measure. The first, most detailed possibility is to approximate
the CVaR with a smooth function, so as to have a smooth optimisation problem
as described in the first part of the report. Suitable smooth approximations were
proposed, with a priori error estimators of the smoothing error. The adaptation of
previous algorithms to this ‘smoothed CVaR’ were detailed, including control of
the smoothing error. The second possibility is to use a dual characterisation of the
CVaR in order to compute its sensitivities. This approach was merely outlined and
will be further detailed in a future document; particularly its possible combination
with MLMC methods.

9As well as the associated value at risk (VaR).
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5.2 Future plans and challenges
The methods described in this report can readily be used for ‘simple’ OUU problems,
with a coherent risk measure that is either smooth or the CVaR. Since several
alternative methods were discussed on various aspects of the optimisation process,
one would have to be chosen. A comparison on a suitable, small problem may
provide the necessary insights. Although the optimisation algorithms themselves
have yet to be implemented, the MLMC methods used throughout the report
are available in the XMC library (Ayoul-Guilmard et al. 2019). This include in
particular the adaptive estimation of parametric expectations. Beyond these
immediate considerations, several other challenges are expected for the ExaQUte
project.

The first of these challenges is to consider time-dependent partial differential
equations (PDE). Although the optimal design itself is to be independent of time,
this may change the way we tune the algorithm and MLMC estimators. This point
will be discussed in the next report (deliverable 6.4). A noteworthy corollary is
that solutions of the adjoint problem may not be available. Although this is not
an optimisation challenge, it means we may need to find other means to compute
the sensitivities of the solution of the PDE with respect to the design parameters.
Finally, the quantity of interest (QoI) itself may depend on the design parameters
directly (not simply through the solution of the PDE) and non-linearly; e.g. consider
the optimisation of a shape, with a QoI featuring an integral over that shape. The
gradient of the objective function will therefore feature additional sensitivities,
which will have to be estimated.

Beyond these known challenges, planned to be addressed in future reports, there
are leads both promising and pertinent to the ExaQUte project that ought to be
mentioned here. The first one is the dual approach outlined in § 4.2, as a mean to
compute the CVaR and its sensitivity. Headway has already been made on that
approach, yet more research is needed to combine it with MLMC estimators, and
compare it with the alternative approaches. A second one, also mentioned in this
report, is to exploit higher-order derivatives for optimisation, e.g. with Newton-like
methods. These methods could significantly accelerate the optimisation. It is one
of the motivations for smoothing the CVaR. Finally, a project of high-performance
computing such as ExaQUte can benefit greatly from asynchronous algorithms
to make the most of parallel computing. The theory exists – see Kushner 2003,
chapter 12 – and has been applied to stochastic programming before (e.g. by
Woodruff et al. 2018). However, we are not aware of any such work for a problem
of optimisation under uncertainties such as the one considered in this report, and
deem this to be worth investigating.
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A Calculation of subdifferentials
Let (𝑋, 𝑡) ∈ L𝑟(Ω,R) × R. Let us express the subdifferentials of 𝑅(𝑋, 𝑡) ≔
𝑡 + 1

1−𝛽 E((𝑋 − 𝑡)+) with respect to either variable, as per definition 5.

First subdifferential
Let 𝑌 ∈ L𝑟′(Ω,R), with 𝑟′ ≔ (1 − 𝑟−1)−1.

lim
𝜖→0

E((𝑋 + 𝜖𝑌 − 𝑡)+ − (𝑋 − 𝑡)+

𝜖
)

= lim
𝜖→0

E(𝑌 𝟙(𝑋 ⩾ 𝑡, 𝑋 + 𝜖𝑌 ⩾ 𝑡)) + E(𝑋 + 𝜖𝑌 − 𝑡
𝜖

𝟙(𝑋 < 𝑡, 𝑋 + 𝜖𝑌 ⩾ 𝑡))

− E(𝑋 − 𝑡
𝜖

𝟙(𝑋 ⩾ 𝑡, 𝑋 + 𝜖𝑌 > 𝑡)).

We see that the last two terms vanish by dominated convergence. Let us pass the
limit inside the remaining expectation.

For the left side:

lim
𝜖→0−

E((𝑋 + 𝜖𝑌 − 𝑡)+ − (𝑋 − 𝑡)+

𝜖
) = E( lim

𝜖→0−
𝑌 𝟙(𝑋 ⩾ 𝑡, 𝑋 + 𝜖𝑌 ⩾ 𝑡))

= E(𝑌 𝟙(𝑋 > 𝑡)𝟙(𝑌 ⩾ 0)) + E(𝑌 𝟙(𝑋 ⩾ 𝑡)𝟙(𝑌 < 0))

= E(𝑌 𝟙(𝑋 > 𝑡)) + E(𝑌 𝟙(𝑋 = 𝑡)𝟙(𝑌 < 0))

= E(𝑌 𝟙(𝑋 ⩾ 𝑡)) − E(𝑌 𝟙(𝑋 = 𝑡)𝟙(𝑌 ⩾ 0)).
(A.1)

For the right side:

lim
𝜖→0+

E((𝑋 + 𝜖𝑌 − 𝑡)+ − (𝑋 − 𝑡)+

𝜖
) = E( lim

𝜖→0+
𝑌 𝟙(𝑋 ⩾ 𝑡, 𝑋 + 𝜖𝑌 ⩾ 𝑡))

= E(𝑌 𝟙(𝑋 ⩾ 𝑡)𝟙(𝑌 ⩾ 0)) + E(𝑌 𝟙(𝑋 > 𝑡)𝟙(𝑌 < 0))

= E(𝑌 𝟙(𝑋 > 𝑡)) + E(𝑌 𝟙(𝑋 = 𝑡)𝟙(𝑌 ⩾ 0))

= E(𝑌 𝟙(𝑋 ⩾ 𝑡)) − E(𝑌 𝟙(𝑋 = 𝑡)𝟙(𝑌 < 0))
(A.2)
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From (A.1) and (A.2) we conclude that, for any 𝛼 ∈ [0, 1], the quantity
1

1 − 𝛽
E(𝑌 (𝟙(𝑋 > 𝑡) + 𝛼𝟙(𝑋 = 𝑡))) = ⟨𝑌 , 1

1 − 𝛽
𝟙(𝑋 > 𝑡) + 𝛼𝟙(𝑋 = 𝑡)⟩

L𝑟′,L𝑟

(A.3)

is a subderivative of 𝑅 at (𝑋, 𝑡) with respect to the first variable in the direction
𝑌. Reciprocally, every such subderivative can be expressed in the form (A.3).
Therefore, the first subdifferential is

𝜕1𝑅(𝑋, 𝑡) = { 1
1 − 𝛽

𝟙(𝑋 > 𝑡) + 𝛼𝟙(𝑋 = 𝑡) ∶ 𝛼 ∈ [0, 1]}.

Second subdifferential
Let us consider the right-side derivative first:

lim
𝜖→0+

E((𝑋 − 𝑡 − 𝜖)+ − (𝑋 − 𝑡)+

𝜖
)

= lim
𝜖→0+

− E(𝟙(𝑋 ⩽ 𝑡 + 𝜖))⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇1

− E(𝑋 − 𝑡
𝜖

𝟙(𝑡 ⩽ 𝑋 < 𝑡 + 𝜖))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑇2

.

Regarding 𝑇1, the sequence 𝟙(𝑋 ⩾ 𝑡 + 𝜖) is dominated by 1. By passing to the
limit we have

lim
𝜖→0+

−E(𝟙(𝑋 ⩾ 𝑡 + 𝜖)) = −E( lim
𝜖→0+

𝟙(𝑋 ⩾ 𝑡 + 𝜖)) = −E(𝟙(𝑋 > 𝑡)). (A.4)

Concerning 𝑇2, the sequence (𝑋 − 𝑡)𝟙(𝑡 ⩽ 𝑋 < 𝑡 + 𝜖)/𝜖 is dominated by 1 as well.
Let 𝜔 ∈ Ω: either

(i) 𝑋(𝜔) ≠ 𝑡, and therefore 𝟙(𝑡 ⩽ 𝑋 < 𝑡 + 𝜖) = 0 for 𝜖 small enough; or
(ii) 𝑋(𝜔) = 𝑡 and so (𝑋(𝜔) − 𝑡) = 0.

Therefore

lim
𝜖→0+

E(−𝑋 − 𝑡
𝜖

𝟙(𝑡 ⩽ 𝑋 < 𝑡 + 𝜖)) = E( lim
𝜖→0+

−𝑋 − 𝑡
𝜖

𝟙(𝑡 ⩽ 𝑋 < 𝑡 + 𝜖)) = 0.(A.5)

Putting (A.4) and (A.5) together, we conclude

lim
𝜖→0+

E((𝑋 − 𝑡 − 𝜖)+ − (𝑋 − 𝑡)+

𝜖
) = −E(𝟙(𝑋 > 𝑡)) (A.6)

Let us now consider the left-side derivative.

lim
𝜖→0−

E(−𝑋 − 𝑡
𝜖

𝟙(𝑡 ⩽ 𝑋 < 𝑡 + 𝜖))

= lim
𝜖→0−

−E(𝟙(𝑋 ⩾ 𝑡)) + E(𝑋 − 𝑡 − 𝜖
𝜖

𝟙(𝑡 − 𝜖 ⩽ 𝑋 < 𝑡))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑇3
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Regarding 𝑇3, the sequence 𝑓𝜖 = 𝑋−𝑡−𝜖
𝜖 𝟙(𝑡 − 𝜖 ⩽ 𝑋 < 𝑡) is dominated by 1 and

pointwise, ∀𝜔 ∈ Ω, lim𝜖→0− 𝑓𝜖(𝜔) = 0. Therefore

lim
𝜖→0−

E(−𝑋 − 𝑡
𝜖

𝟙(𝑡 ⩽ 𝑋 < 𝑡 + 𝜖)) = −E(𝟙(𝑋 ⩾ 𝑡)). (A.7)

From (A.6) and (A.7), we conclude that the second subdifferential is

𝜕2𝑅(𝑋, 𝑡) = {1 − E(𝟙(𝑋 > 𝑡)) − 𝛼E(𝟙(𝑋 = 𝑡)) ∶ 𝛼 ∈ [0, 1]}.
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B Example of a MLSG algorithm for a smoothed
CVaR

Let us illustrate a few of the methods described in this report, on a specific
problem of OUU. We apply a SA-MLSG algorithm with accurate VaR estimation (i.e.
algorithm 7) for a smoothed CVaR, on problem 5.

Problem 5 (Applied example). Let 𝐷 ⊂ R3, 𝑎 ∈ L2(Ω, H1(𝐷,R3)), ̄𝑧 ∈ H1(𝐷,R),
𝑏, 𝑞 ∈ L2(𝐷,R) and 𝛽 ∈ ]0, 1[. Find the optimal design

𝑧⋆ ≔ argmin{CVaR𝛽(∫
𝐷

𝑞𝑢) + 1
2

∫
𝐷

(𝑧 − ̄𝑧)2 ∶ 𝑧 ∈ H1(𝐷,R); 𝑢 ∈ H1
0(𝐷,R) s.t. (B.1)}.

constrained by the PDE

∇ ⋅(𝑎(𝜔)𝑢 − e𝑧 ∇ 𝑢) = 𝑏, for P-a.e. 𝜔 ∈ Ω. (B.1)

We remark that problem 5 is a particular case of problem 1 with 𝑍 ≔ H1(𝐷,R),
𝑈 ≔ H1

0(𝐷,R),

ℛ ≔ CVaR𝛽, 𝑃 (𝑧) ≔ 1
2

∫
𝐷

(𝑧 − ̄𝑧)2, and 𝐹(𝑢, 𝑧, 𝜔) ≔ ∇ ⋅(𝑎(𝜔)𝑢 − e𝑧 ∇ 𝑢) − 𝑏.

Since the risk measure is a CVaR, this problem can be reformulated as a
minimisation problem over 𝑍 × R in exactly the same way that problem 3 was; we
proceed under the same assumptions. Additionally, we follow the regularisation
approach described in § 4.1, i.e. we substitute to CVaR𝛽 a smoothed approximation
CVaR𝛽,𝜍 defined as in (4.3) for any 𝜍 ∈ ]0, +∞[. The choice of the smoothing
function (⋅)+

𝜍 is left undetermined, provided that the assumptions formulated in
§ 4.1.1 are satisfied. Let us recall that its derivative is denoted 𝑠𝜍. The resulting of
OUU problem can be solved using the gradient-descent method with accurate VaR
estimation proposed in § 3.3.

For the practical implementation, the probability measure is discretised following
a SA strategy to which the gradient-descent algorithm is adapted using the MLSG
approach described in § 3.3.2. We assume that we can define for 𝑈 a sequence
(𝑈𝑙)𝑙∈N of nested, finite-dimensional approximation spaces based on increasingly-fine
discretisations (𝐷𝑙)𝑙∈N of 𝐷, suitable for MLMC estimations (see § 2.3.1); likewise
for 𝐿2(𝐷,R). We also choose a finite dimensional approximation 𝒜 of the design
space 𝑍 based on a discretisation 𝐷−1 ⊂ 𝐷0 of the spatial domain – i.e. the chain
of approximation reads 𝒜 ⊂ H1(𝐷−1) ⊂ H1(𝐷0) ⊂ 𝑍.
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An illustration of this method is proposed in algorithm 9. This is largely a
particularisation of 7 to problem 5, with the modifications detailed in § 4.1 for
the regularisation. On lines 16–17 appears the adjoint equation: for a given event
𝜔 ∈ Ω and design 𝑧 ∈ 𝑍, the adjoint 𝜆 ∈ H1

0(𝐷,R) of a solution 𝑢 ∈ 𝑈 of (B.1)
satisfies the adjoint equation

−𝑎(𝜔) ∇ 𝜆 − ∇ ⋅(e𝑧 ∇ 𝜆) = 𝑞
1 − 𝛽

𝑠𝜍(∫
𝐷

𝑞𝑢 − VaR𝛽(∫
𝐷

𝑞𝑢)).

On line 18 is an estimation of the gradient of the objective functional

∇ 𝐽(𝑧) = (𝑧 − ̄𝑧) + E(e𝑧 ∇ 𝑢 ∇ 𝜆).

As for algorithm 7, the tolerances 𝜂, 𝜖 ≔ (𝜖𝑘)𝑘∈N and 𝜖′ ≔ (𝜖′
𝑘)𝑘∈N are set a priori,

whereas the choice of step sizes 𝛾 ≔ (𝛾𝑘)𝑘∈N is left undetermined. Let us recall
that tuning the estimator 𝜇𝒎′ for accuracy is not necessary, and that a typical
stochastic-gradient strategy would keep the estimator inexpensive albeit inaccurate
(see similar remark for algorithm 7).

Page 41 of 44



Deliverable 6.3

ALGORITHM 9: Applied example of algorithm 7 with smoothed CVaR
1 INPUT: 𝑧0, 𝛾, 𝜖, 𝜖′, 𝜂
2 WHILE ‖𝑧𝑘+1 − 𝑧𝑘‖ ⩾ 𝜂‖𝑧𝑘‖ DO
3 Choose 𝜍 ∈ ]0, +∞[, (𝐿′, 𝑛) ∈ N2 and (𝒎′, 𝒓) ∈ N𝐿′+1 × R𝑛 s.t.

MSE(argmin Φ𝒎′,𝒓,𝜍(𝑄(𝑢))) ⩽ 𝜖′
𝑘

4 Draw 𝝎 ∈ Ω𝒎′

5 FOR 𝑙 ∈ {0 … 𝐿′} DO
6 FOR 𝑖 ∈ {1 … 𝑚′

𝑙} DO
7 Find 𝑢𝑙(𝜔𝑙,𝑖) s.t. ∇ ⋅(𝑎𝑙(𝜔𝑙,𝑖)𝑢𝑙(𝜔𝑙,𝑖) − e𝑧𝑘 ∇ 𝑢𝑙(𝜔𝑙,𝑖)) = 𝑏𝑙
8 Find 𝑢𝑙−1(𝜔𝑙,𝑖) s.t.

∇ ⋅(𝑎𝑙−1(𝜔𝑙,𝑖)𝑢𝑙−1(𝜔𝑙,𝑖) − e𝑧𝑘 ∇ 𝑢𝑙−1(𝜔𝑙,𝑖)) = 𝑏𝑙−1

9 Estimate VaR as 𝑡 ≔ argmin Φ𝒎′,𝒓,𝜍(𝑄(𝑢))
10 Choose 𝐿 ∈ N and 𝒎 ∈ N𝐿+1 s.t. MSE(𝜇𝒎(e𝑧 ∇ 𝑢 ∇ 𝜆)) ⩽ 𝜖𝑘
11 FOR 𝑙 ∈ {0 … 𝐿} DO
12 FOR 𝑖 ∈ {1 … 𝑚𝑙} DO
13 IF 𝑖 > 𝑚′

𝑙 THEN
14 Draw 𝜔𝑙,𝑖 ∈ Ω
15 Compute 𝑢𝑙(𝜔𝑙,𝑖) and 𝑢𝑙−1(𝜔𝑙,𝑖) as in lines 7–8.
16 Find 𝜆𝑙(𝜔𝑙,𝑖) s.t. −𝑎𝑙(𝜔𝑙,𝑖) ∇ 𝜆𝑙(𝜔𝑙,𝑖) − ∇ ⋅(e𝑧𝑘 ∇ 𝜆𝑙(𝜔𝑙,𝑖)) =

𝑞𝑙
1−𝛽𝑠𝜍(∫

𝐷
𝑞𝑙𝑢𝑙(𝜔𝑙,𝑖) − 𝑡)

17 Find 𝜆𝑙−1(𝜔𝑙,𝑖) s.t.
−𝑎𝑙−1(𝜔𝑙,𝑖) ∇ 𝜆𝑙−1(𝜔𝑙,𝑖) − ∇ ⋅(e𝑧𝑘 ∇ 𝜆𝑙−1(𝜔𝑙,𝑖)) =
𝑞𝑙−1
1−𝛽𝑠𝜍(∫

𝐷
𝑞𝑙−1𝑢𝑙(𝜔𝑙,𝑖) − 𝑡)

18 Compute descent direction ∇ 𝐽𝒎(𝑧𝑘) ≔ (𝑧𝑘 − ̄𝑧) + 𝜇𝒎(e𝑧𝑘 ∇ 𝑢 ∇ 𝜆)
19 Set new design 𝑧𝑘+1 ≔ 𝑧𝑘 − 𝛾𝑘 ∇ 𝐽𝒎(𝑧𝑘)
20 RESULT: 𝑧𝑘+1
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Acronyms
BFGS Broyden–Fletcher–Goldfarb–Shanno

CDF cumulative distribution function
CVaR conditional value at risk

HPC high-performance computing

MC Monte Carlo
MLMC multi-level Monte Carlo
MLSG multi-level stochastic gradient
MSE mean squared error

OUU optimisation under uncertainties

PDE partial differential equations
PDF probability density function

QoI quantity of interest

RMLSG randomised multi-level stochastic gradient

SA stochastic approximation
SAA sample-average approximation
SG stochastic gradient

VaR value at risk

Abbreviations
a.e. almost every, almost everywhere
a.s. almost surely
cf. confer
e.g. exempli gratia
et al. et alii
ibid. ibidem
i.e. id est
iff. if and only if
i.i.d. independent and identically distributed
s.t. such that
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