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Abstract. Reversible and irreversible heavy loaded thrust bearings of a hydrogenerator are 
investigated. The problem of oil wedge microgeometry profiling for load capacity optimization 
is considered. The analysis is based on optimization methods using variational calculus. The 
results of oil wedge microgeometry optimization for reversible and irreversible thrust bearings 
are presented. 
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1. Introduction
In conditions of dynamic development of the world hydropower and construction of a large 
number of hydropower plants in developing economics: Brazil, China, India, etc. it is important 
to ensure reliable trouble-free operation of the key structural elements of the plant. One of the 
most important structural elements is a hydrogenerator thrust bearing which perceives a major 
part of a load. Generally, the load on the thrust bearing is produced by a rotor, an impeller, and 
turbine shaft weight and water pressure on the impeller [1, 2]. The important operational 
parameter that characterizes the efficiency of the bearing is the load capacity of an oil wedge 
that is a nonlinear function of the gap magnitude. The main role performs the minimal oil film 
thickness; the thinner the oil layer, the higher the bearing load capacity. However, reduction of 
oil film thickness leads to decreasing the bearing stability under dynamic loads. 

There are various classifications of the bearings: by geometrical characteristics, by 
perceived load, by number and type of supports and by kind of mounting. By the surface type 
realization bearings are divided into one-piece and segmented. One-piece bearing carrier 
surface is a surface coated with a relief profile. Such bearings are called profiled. Segmented 
or self-aligning acting bearings are the bearings which fixed part consists of separate segments, 
mounted on special supports that allow each segment to turn in the flow of liquid lubricant, 
forming an angle with the rotating disk surface. In order to provide greater load capacity, the 
support is moved relative to the segment axis by a certain value in the direction of rotation, 
creating eccentricity. Typically, the value of the eccentricity is 5-8 % of the segment length. 
Such bearings are called irreversible because they demonstrate the load capacity for only one 
rotation direction. In hydropower they are used for a wide range of devices on the majority of 
the existing plants. 

However, in some cases, for example for devices with variable rotation direction of the 
turbine generators, it is necessary to set zero segments eccentricity to ensure the durability of 
the device. Such bearings are called reversible. Currently, the thrust bearing of this type is 
installed on Zagorskaya GAES , unique and the Russian only pumped storage power station. 
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In this work we consider the lubricant layer microgeometry profiling with the aim of 
optimal design of the hydrodynamic bearing for ensuring the maximum load capacity. 

2. Optimization problem statement
Note that historically the first formulation of the considered problem in one-dimensional case 
goes back to the work by J.W. Rayleigh published in 1918 [5]. The Rayleigh results were much 
ahead of his time, were repeated later by S.Y. Maday only in 1967 [6]. In 1975 one of the 
authors together with V.A. Troitsky considered the spatial variational problem put by Rayleigh 
to gain the optimal shape profile for the rectangular gap region [3]. For the sector bearings 
considered here, one of the authors, jointly with Yu.V. Borisov obtained the first results in Ref. 
[7]. Here we enlarge the results of the previous works [3, 7] in relation to the hydrogenerator 
sector thrust bearings based on advanced computing technologies. It is worth noting that over 
the last years unique technologies of desired shape surface microgeometry manufacturing were 
developed, the optimization results can being implemented. 

We consider the optimization problem of the thrust sector bearing microgeometry [3]. An 
example of such bearing is shown in Figure 1. One bearing segment with installation angles 
indication is presented in Figure 2. All the sectors are assumed to be identical and the sector 
angle Δφ = 2π / N, where N is the number of sectors. We assume that region Ω with boundary 
∂Ω (Fig. 3), corresponding to one thrust bearing sector, is located in (r,φ) plane of cylindrical 
coordinates (r,φ). Plane (r,φ) moves in the φ direction with constant angular velocity ω. 

Fig. 1. Michell thrust bearing [4]. 

Fig. 2. Thrust bearing segment. 

Fig. 3. Region Ω. 

We will describe the profile shape of the lubricating layer by piecewise-smooth function 
h(r,φ) and assume that hmin is its minimum value. We suppose that pressure field p(r,φ) in the 
lubricant layer is described by the linear Reynolds equation written in the following 
dimensionless form: 
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3( ) 0Vdiv h p h∇ − =  in Ω (1) 
Here the dimensionless pressure p and the coordinates r and φ are normalized 

correspondingly by ambient pressure pa and dimensional values Lr and Lφ that characterize 
segment dimensions. Note that the critical parameter γ=Lr/Lφ characterizing the elongation of 
region Ω in equation (1), here and throughout is put equal to 1 for simplification of calculations. 
The profile function h is normalized by hmin. The velocity vector Vφ=(1,0) is normalized by the 
magnitude of |Vφ|. The boundary conditions for equation (1) correspond to zero pressure on the 
boundary ∂Ω of region Ω 

0p
∂Ω
= (2) 
Note that equation (1) is an equation for the excess pressure p(r,φ) in the lubricant layer 

in region Ω. According to shown above normalization character, the lubricant layer profile 
function h(r,φ) should satisfy the restriction 

1h ≥  (3) 
In line with the last inequality, hmin is selected. Its value, corresponding to equilibrium 

stationary mode of thrust bearing operation, is specified usually from technological 
considerations. 

The aim is construction of the lubricant layer profile h(r,φ) that provides maximum sector 
load capacity. Thereby the negative value of the lifting force of the lubricant layer, normalized 
by LrLφpa, can by used as a variational problem functional. The negative sign is chosen 
according to traditional rules of the variational calculus for searching a functional minimum 
W pd

Ω

= − Ω∫ (4) 

Thus we can formulate the optimization problem in such a way: find among continuous 
in Ω functions p that satisfy the boundary value problem for Reynolds equation (1, 2) and among 
piecewise continuous functions h satisfying the condition (3) those that provide minimum to 
functional (4). Further, we follow the approaches developed in Refs. [3, 8]. 

Introduce an auxiliary function ν(r,φ) and switch from the constraints of inequality (3) to 
constraints of equality  

21 0hψ ν= − − =  (5) 
Write down equation (1) in the form of following system of equations 

30,Q   Q = Vdiv h p h= ∇ −  in Ω, (6) 
where Q is the dimensionless volumetric flow vector, normalized by hmin|Vф|. We satisfy the 
first of equations (6) by introducing continuous function M(r,φ) in the following way: 

( )rot M=Q k  , (7) 
where k is a unit vector of Z axis. We form auxiliary functional 

, , , , ,J f(p p M h )dν
Ω

= ∇ Ω∫ Q (8) 

with augmented function f which includes the system of problem restrictions1 (5-7) 
( )( ) ( )3, ,0 1 2f p rot M h p h λψ= − + − + − ∇ + +λ λQ k Q V , (9) 

Here 0 1,λ λ  and 2λ  are the functional Lagrange multipliers, the first two being vectors. 
In the articles mentioned above [3, 8] it is shown that in the case of a rectangular region 

Ω, the optimal function h has one line of discontinuity that starts at the extreme front points of 
the region and separates the front part of the region with h > 1 and back part with h = 1. In this 
case in the front part of the region (h > 1), pressure increases everywhere but at h = 1 it falls 
everywhere to an ambient value. 

1 Note, that the symbol (a,b) we define the scalar product of vectors. 
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Let us briefly discuss the numerical procedure for constructing profile h used in Refs. [3, 
8]. First of all, note that at each step of the iterative procedure, in addition to the boundary value 
problem for Reynolds equation (1, 2), the boundary value problem for determining Lagrange 
multiplier λ, which is related to Lagrange multiplier λ0 by λ0 = grad λ, is also solved. Besides 
at each step the point value of the profile function is determined; at the points where h> 1 we 
have Euler-Lagrange equation: 

23 ( ) / ( , )λ,V λh p= ∇ ∇ ∇ (10) 
The discontinuity line position of function h is determined on the basis of Erdmann-

Weierstrass conditions [2] from which, in particular, we find the equation for the line of 
discontinuity: 

3 0M ph
n n n

λ λ
τ

+

−

∂ ∂ ∂ ∂ − + = ∂ ∂ ∂ ∂ 
, (11) 

where, [ ]+−  is value of difference to the right and left of the discontinuity line, n and τ normal
and tangent vectors to function h. The equation (11) can be simplified – according to equation 
(6) one obtains 3M n Q h p hVτ ττ−∂ ∂ = = ∂ ∂ −  and final discontinuity line equation can be 
written in the following form: 

3( , ) 0h p h Vτ
λλ
τ

+

−

∂ ∇ ∇ − = ∂ 
  (12) 

Let us briefly consider the analysis of the system of necessary conditions. First of all, we 
point out that a correct analysis of this system presupposes knowledge of the solutions 
properties of partial differential equations of elliptic type [9], which include equations for 
Lagrange multiplier λ and Reynolds equation. Restricting ourselves to the final results, note 
that an analysis of the solutions properties of boundary value problems for pressure p and 
Lagrange multiplier λ allows do conclusions about the behavior of gradients p∇  and λ∇  on 
the domain boundary, under the additional assumption of the smoothness of the optimal 
solution everywhere except for the corner points of domain Ω . Taking into account the 
constancy of vector V, we can conclude about the sign of scalar product ( , )Vλ∇ . Together 
with Erdmann-Weierstrass conditions, it is possible to make an important conclusion about the 
existence of single discontinuity line γ  for the profile function h in the region Ω  that separates 
region h = 1 from region h > 1.  

3. Optimization results for rectangular region statement
In this work the special case for rectangular region Ω with profile consisted of two parts: straight 
line and parabola (Fig. 4) was considered. Here, a and b are the geometrical parameters which 
define parabola curvature. The parameters are used as optimization variables during 
optimization procedure. Using special code IOSO, the optimization problem was solved. There 
are only one objective function and two variable parameters. As an objective function, the 
maximum of pressure integral over the lubricant layer surface was used. Parameters a and b are 
varied in the following range a ∈[0.03; 0.35], b ∈[0.5; 0.9]. Global size of the rectangle is 1x1.  

To solve the optimization problem, the CFD mesh for investigated domain was generated 
and the hydrodynamics problem, using Navier–Stokes equations, was solved on the basis of 
numerical approach and commercial CFD code ANSYS/CFX. The numerical simulation of the 
problem was carried out using St. Petersburg Polytechnic Supercomputer Center. Totally about 
70 iterations were done before the maximum of pressure integral was achieved. As a result, the 
optimal parameters a and b were found; they are 20.2 and 77.5 correspondingly. In Figure 5 the 
pressure distribution for the optimum profile is shown; in Figure 6 the dependence of the 
maximum pressure on a coordinate for section y=0 is demonstrated.  
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Fig. 4. Profile parameters for optimization procedure. 

Fig. 5. Pressure distribution for the 
optimum profile. 

Fig. 6. Dependence of maximum pressure on a 
coordinate. 

4. Conclusions
In this work the variational problem for hydrogenerator thrust bearing is considered. From 
problem statement above the important conclusion about the existence of a single discontinuity 
line of the profile function h in the region was made. This line separates the region h = 1 from 
the region h > 1. The optimization problem using commercial codes is solved for a rectangular 
region. Current results could be used in future investigations for a wide range of thrust bearing 
with different profile forms. 
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