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Abstract This document presents the activities carried out to date (04/2019) in
the project ‘Development of new Lagrangian computational methods for ice-ship
interaction problems’ (NICE-SHIP). The NICE-SHIP project aims at developing a
new generation of computational methods, based on the integration of innovative
Lagrangian particle-based and finite element procedures for the analysis of the oper-
ation of a vessel in an iced sea, taking into account the different possible conditions
of the ice. It is expected that the computational analysis techniques to be developed
in NICE-SHIP will allow ice-class vessel designers to accurately evaluate the loads
acting on the structure of a ship navigating in iced-seas and, in particular, to determine
the ice resistance of the ship in different ice conditions.
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8.1 Introduction

8.1.1 Navigation in the Arctic Area

The Arctic region is taking up more and more room within the international agenda.
Themain reason is the vast reservoirs of oil, gas, minerals, fresh water, fishing, etc. In
parallel, the increase of the average temperature in arctic regions is boosting the ice
setback, which allows keeping the arctic navigation routes open for longer periods,
open new ones, and expand the commercial fishing. In fact, shipping lines are more
andmore enthusiastic about the potential that these new routes offer, given the save of
time and energy cost that might offer compared to longer traditional routes. Just like
the New York Times reported in 2017 in its chronicle “As Arctic Ice Vanishes, New
Shipping Routes Open”, the exploitation of the arctic routes is becoming more and
more real every day. No one doubts that the commercial activity in the Arctic is going
to grow substantially in the following years. Northern routes can save up to 30% in
time and fuel consumption, as well as the corresponding emission of contaminants.
As an example, the well-known Northern Sea Route (NSR) that connects Europe
with Eastern Asia is 7000km shorter than the traditional route through the Suez
Channel (see Fig. 8.1).

Based on several studies (Nadukandi et al. [22]) the present fleet of ships suitable
to navigate in arctic areas is old and insufficient. Then the future growth of the Arctic

Fig. 8.1 Northern Sea Route versus Southern Sea Route. Source: Wikimedia Commons
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traffic will stimulate undoubtedly the demand of icebreakers and ships reinforced
for ice navigation and in the long term will create a scenario of big opportunities for
the European ship building industry. In fact, the growing interest in the opportunities
offered by the Arctic routes has motivated a number of projects to design a new
generation of large merchant vessels capable of breaking ice and open their way
through it, as well as offshore platforms for oil and gas extraction (Nadukandi
et al. [22]; Shipyards’ andMaritimeEquipmentAssociation (SeaEurope) [25]). Large
shipping companies, like Maersk, are positioning themselves to exploit the NSR. In
fact, in 2018 the Venta Maerks will become the first large container ship to navigate
through the NSR in order to acquire data and analyse the viability to commercially
exploit this route in a near future.

The potential grow of themaritime traffic in the Arctic routes has generated a deep
concern among environmentalists, and the response of the international community
has been the adoption of the international code for ships operating in polar waters
(“Polar Code”) by the International Maritime Organization (IMO). The Polar Code
became effective on January 1st 2017 with the corresponding amendments within
the international agreement “Safety Life at Sea” (SOLAS) and the “International
Convention for the Prevention of Pollutions from Ships” (MARPOL), so that the
“Polar Code” becomes mandatory. This code includes regulations regarding safety
and pollution for ships operating in arctic routes.

8.1.2 The Design of Ships for Navigation in Ice

The propulsion systems and hulls of ice class vessels have been, up to date, designed
and built based on the experience accumulated by navigating the Northern Sea. The
first icebreakers designs tested inmodel basin appeared in the 60s (Corlett and Snaith
[7]). These designs were launched also in the 60s, and they were required to integrate
at the bow a bulb with cutting shapes of small penetration angles, so that it will cut
through the ice shells easily. The power required by the propulsive system was more
than double the required for navigation in open waters.

Current icebreakers clear the way by pushing the ice shells. Since the bending
strength of the ice shells is so low, these break with no much change in the ship
velocity and pitch. In case of thick ice, the icebreaker bow can get onto the ice, using
the ship weight to break it under the ship along its pass. The channel opened by the
icebreaker is used by a convoy that navigate among the broken ice blocks (brash ice).
These ships must be designed for this kind of navigation in brash ice (see Fig. 8.2).

The full interaction between the ice and the hull of the ship makes quite diffi-
cult the design of these ice class ships. An important objective in the design of an
icebreaker is to minimize the energy required to break down and submerge the ice
blocks. The added resistance due to the ice is currently estimated using analytic
methods based on regression using experimental data obtained from full and model
scale. Unfortunately, due to the complexity of the problem, this precision of these
estimations is quite poor. Therefore, model testing in ice tanks is necessary in order
to obtain a more precise estimation under different scenarios. Independently of the
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Fig. 8.2 Icebreaker clearing the way for a container ship. Source: Wikimedia Commons

method used, the performance of the new icebreakers is finally verified in sea trials
with the actual ship. The accumulation of ice blocks can significantly increase the
ship drag. Hence, ice class ships have a hull designed to steer the ice blocks around
or under the hull, leading to a risk of collision with different elements such as the
propeller, shafts, rudders… This capability to steer the ice blocks away from these
elements is critical.

In the last decades, a number of studies have been carried out in different model
basins to evaluate new hull designs in terms of efficiency and safety (Kashteljan
et al. [18]; Lewis and Edwards J [20]). With the appearance of vast natural resources
in the Arctic regions, these studies are being extended to analyse ships capable of
extracting those resources and operating in the polar regions, as well as breaking the
ice to clear the way.

8.1.3 History and State of the Art in Simulation and Analysis
of Ship Navigation in Ice

Since the 60s several authors have tried in developing formulations capable of esti-
mating the ship resistance in icy waters. For instance, (Kashteljan et al. [18]) presents
the first empirical formula to estimate the resistance that accounts for ice at the water
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surface in both states, compact and broken. In 1970, (Lewis and Edwards Jr [20])
deducted an equation to determine the resistance of icebreakers, compared the results
with real data, and afterwards calibrated their formula for a better match. In recent
works (Cho and Lee [4]; Cho et al. [6]) different formulations have been presented
to analysed different resistance components, using multiple regression methods to
adjust the results to those obtained experimentally using ship models. Nevertheless,
the prediction capability of all these formulations is very limited due to the large
dependence on the specific ice properties. In terms of numerical simulation, a num-
ber of works have been published in the last years modelling the ship as a rigid
body with just three degrees of freedom (Hu and Zhou [12]; Su et al. [26]; Zhou
et al. [27]). These numerical models take into account the immersion, breaking, and
accumulation of ice by means of simplifies empirical formulas. In addition, we can
find works using commercial simulation tools to simulate the ship interacting with
ice blocks (Kim et al. [19]; Cho et al. [5]). A lot of effort has been put into the
above mentioned works in validating the predicted results against experimental data
obtained in model basins. However, there is still a long way to develop a model able
to accurately predict the actual interaction among the ship, the ice, and the water
dynamics due to the simplifications used in the above mentioned formulations.

Looking at navigating surrounded by ice blocks (brash ice), it is obvious that we
are in front of a very complex problem. It consists of a multiphase flow (ice and
water), where the solid phase (ice) is randomly distributed in blocks all over the
domain under study. Nowadays, most available models to solve multiphase flows
are not suitable since they are based on an interface capturing scheme and solving
one fluid with properties suddenly changing across the interface (Garcia-Espinosa
et al. [11]). In general, these methods introduced numerical erosion in the interface
capturing scheme leading to a change of shapes of the solid phases (Idelsohn et al.
[16]). An alternative to these methods is the interface tracking methods, which use a
Lagrangian approach to evolve the interface and provide higher precision (Idelsohn
et al. [14];Onate et al. [23]).However,most of thesemethods are conceived to analyse
a limited number of phases and cannot consider the complex interaction among the
ice blocks, the ship and its appendages. The limitations found in the aforementioned
methods is one of the main motivations of the NICE-SHIP project, which main
objective is the theoretical development and implementation of a new generation of
Lagrangian computational methods for the analysis of the operation of a vessel in
an iced sea, taking into account the different possible conditions of the ice. In the
following sections, the activities carried out to date (04/2019) in the development of
the above-mentioned Lagrangian computational methods are presented.

8.2 NICE-SHIP Project Scenarios

In order to organize effectively the tasks of the project and focussing on a practical
approach, the work of the development team in the NICE-SHIP project has been
focused on the study of two specific scenarios. The first scenario is the icebreaking
of ships inflat surfaces of floating ice of different thicknesses. The goal of this analysis
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scenario is to validate the constitutive models developed for flat ice analysis, as well
as the contact and friction forces models between ship and ice. For this purpose, a
constitutive material model in the context of the Discrete Element Method (DEM)
has been developed. The model developed to analyse the first scenario will be useful
to analyse the icebreaking performance and added resistance of ships in level ice. The
second scenario to be studied is the navigation of ships in brash ice (and broken ice).
Brash ice is made of accumulations of floating ice made up of fragments not more
than 2m across. A FEM semi-Lagrangian fluid-dynamics solver (SL-PFEM) fluid
dynamics model has been selected to analyse this scenario. This model will be able
to simulate the evolution of the ice around or under the vessel. SL-PFEM solver will
be based on the correction of the momentum equation of the fluid-dynamics solver
by adding the drag force generated by the ice debris packets. Possible breaking of
the larger ice fragments will be ignored in this scenario. This model will be useful
to analyse the ice navigation performance of ships and ice-appendages interaction
phenomena.

8.2.1 Scenario 1: Analysis of the Icebreaking Performance of
Ships in Level Ice

8.2.1.1 Introduction to the Discrete Element Method (DEM)

The Discrete Element Method (henceforth DEM) was born in 1971 when Cundall
introduced it for the first time the International Society of Rock Mechanics (Cundall
[8]). Afterwards, Cundall and Strack applied it to fracture mechanics and solids (Lu
et al. [21]). TheDEM is a numerical tool thought to simulate themechanical behavior
of a system formed by a set of separate elements (particles) arbitrarily configured.
Each particle is defined as a discrete element that forms part of the whole system and
has an independent movement. The interaction with other particles is due to contacts
and the overall behavior of the system is described by the cohesive (frictional) contact
laws.

From the beginning of the DEM, it has been extensively used as a numerical
technique for reproducing the behavior of granular materials (non-continuummedia)
with very good results. However, in recent years the DEM has also been extended
to the continuum media. Intense research has been carried out on multi-fracture and
failure of solids involving geomaterials (soils, rocks and concrete) (Onate et al. [24]).
Even more recently, the DEM has been used on modelling the mechanical behavior
of ice, considered a frictional material (Lu et al. [21]; Di et al. [9]; Ji et al. [17]).
The material in the DEM is typically represented as a collection of rigid particles
(spheres in 3D and discs in two 2D) interacting among themselves at the contact
interfaces in the normal and tangential directions. Material deformation is assumed
to be concentrated at the contact points. Appropriate contact laws are defined in order
to obtain the desired macroscopic material properties.
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The continuummodelling using the DEM is relatively new. The fracture behavior
of solids (concrete, rocks, ice, ceramics) and other brittle materials, when loaded
under severe ratios, has become an area of intense research. The DEM is appropriate
for reproducing the transition of some materials from continuum to non-continuum
scenarios. At the first stage, the whole analyzed system is considered as a continuum
configured by a package of discrete elements. Afterwards, when it is loaded under
certain conditions, the main system is divided into smaller groups of single or several
particles. When modelling the continuum media with the DEM, any continuum
contact between two neighbouring particles must be understood as a spring linking
their centers that is in equilibrium when the two particles are tangentially in contact.
Thereby, as they get closer the spring will be shortened and so repulsive forces
will appear. On the other hand, if they get farther the attraction forces of the spring
will keep them together. Furthermore, the damping force will always be acting as
long as the contact has not failed. The transition from the continuum to the non-
continuum scenarios is produced when a contact fails. Once the bonds are broken,
the affected particles begin to act in the same way as in the non-continuum case.
The contact between two neighbouring particles is then modelled by the linear-
spring-dashpot model, which originate forces when there is overlap between two
neighboring particles. Thus, the interaction phase in the non-continuum media only
occurs when at least two particles are in contact. The ability of the bonded DEM
(with some breakage criteria) to reproduce multi-cracking phenomena in strongly
cohesive materials is one of the main reasons why the DEM has been chosen to
analyse this scenario.

Depending on the application of interest, many thousands or even millions of
particles may be required to describe the overall analyzed system. Furthermore,
the simulations may consist of up to millions of time steps. This clearly shows
the limitations of the DEM, which are mainly related with computational demand
aspects.

8.2.1.2 Contact Interface

Assuming that an individual particle is connected to the adjacent ones by appropriate
relationships at the contact interfaces, these relationships define either a perfectly
bond or a frictional sliding situation at the interface. Particles are assumed to be
spherical and can have very different sizes. Each particle i is characterized by the
sphere of radius ri . We will assume that particles i and j are in contact at a point
c located at a distance (1 + β)ri or (1 + β)r j from the centres of particles i and
j , respectively, where β is a positive number, typically 0 ≤ β ≤ 0.2 (see Fig. 8.3).
The interaction domain between the two particles that share the contact point c is a
cylinder of radius equal to the radius of the smaller of the two particles in contact. The
circular section at point c of radius rc is the contact interface between particles i and
j . This definition of the contact interface and the interaction domain is motivated
by the fact that the two interacting particles can have very different radius for an
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Fig. 8.3 Definition of the DEM contact interface

arbitrary distribution of the particle sizes. The contact interface is thus limited by the
size of the smaller of the two particles in contact.

The overall mechanical behavior of a material can be reproduced by associating a
simple constitutive law to each contact interface. The interaction between spherical
(in 3D) or circular (in 2D) particles i and j with radius ri and r j , respectively,
is defined within an interaction range. This range allows for a certain gap or an
overlapping between the particles. Then two particles will interact if:

1 − β ≤ di j
(ri + r j )

≤ 1 + β (8.1)

where di j is the distance between the centroids of particles i and j and β is the
interaction range parameter.

Decomposition of the Contact Forces

Once contact between a pair of elements has been detected, the forces occurring at
the contact point are calculated. The contact between the two interacting spheres can
be represented by the contact forces Fi j and F ji . Fi j can be decomposed into the
normal and tangential components, as shown in Fig. 8.4.

Figure8.5 shows how the tangential force can be written in terms of the shear
direction components.
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Fig. 8.4 Decomposition of the contact force into its normal and tangential components

Fig. 8.5 Forces and stresses
acting on a contact interface
section. Definition of normal
and shear directions

8.2.1.3 Equations of Motion

The translational and rotational motion of rigid spherical or cylindrical particles is
described by means of the standard equations of rigid body dynamics. For the i th
particle we have:
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mi üi = Fi

Ii ω̇i = Ti

(8.2)

where ui is the element centroid displacement in a fixed (inertial) coordinate frame,

ω̇i the angular velocity,mi the elementmass, Ii themoment of inertia,Fi the resultant
force and Ti the resultant moment about the central axes. Vectors Fi and Ti are sums
of:

• All forces and moments applied to the i th particle due to external loads.
• Contact interactions with neighbouring spheres.
• Forces and moments resulting from external damping.

Equations (8.2) are integrated in time using a simple central difference scheme.

8.2.1.4 The DEM Elastic Constitutive Parameters

This implemented DEM numerical model assumes a proportionality between the
normal force at each contact interface and the relative displacement and velocity
of the contact point. Like for the shear force, this is assumed to be proportional
to the relative sliding motion at the contact point. The proportionality coefficients
are estimated starting from the one-dimensional stress-strain relationship for the
cylindrical contact domain. For solid materials (such as ice), the existence of a matrix
between grains (modelled via a gap distance) prevents inmost cases the direct contact
between particles. This justifies the selected contact law for the model.

Normal Contact Force Parameters

The normal force Fi j
n at the contact interface between particles i and j is obtained

as:

Fi j
n = σn Ā

i j (8.3)

where σn is the normal stress at the contact interface and Āi j is the effective area at
the interface. The normal stress is related to the normal strain between the spheres
εn by a visco-elastic law as:

σ = Eεn + cε̇n (8.4)

where the normal strain and the normal strain rate are defined as:

εn = un
di j

, ε̇n = u̇n
di j

(8.5)
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Shear Force Parameters
Asimilar approach is followed for obtaining the relationship between the shear forces
and the relative tangential displacements at each contact interface. The shear forces
in the s1 and s2 directions are given by:

Fs1 = τ1 Ā
i j , Fs2 = τ2 Ā

i j (8.6)

where τ1 and τ2 are the shear stresses at the contact interface. These stresses are
linearly related to the shear strains and at the interface by:

τ1 = Gγ1, τ2 = Gγ2 (8.7)

where G is the shear modulus, and a simple definition for the shear strains is given
by:

γ1 = us1
di j

, γ2 = us2
di j

(8.8)

where us1 and us2 are the components in the s1 and s2 directions of the relative
tangential displacement vector at the contact point.

Novel Computation of the Elastic Forces Between Particles

A new way for computing the contact forces between discrete particles is proposed
in (Celigueta et al. [2]). The newly proposed forces model takes into account the
surroundings of the contact, not just the contact itself. This brings in the missing
terms that provide an accurate approximation to an elastic continuum, and avoids
calibration of the DEM parameters for the purely linear elastic range. This novel
computational model proposes a way to enrich the spring dash-pot model in such a
way that the elastic properties of a continuum can be accurately captured with the
DEM. Capturing an accurate elastic response of the continuum is a pre-requisite to
capture the formation of cracks. Based on the stress tensor σi at the i th contact point,
which is typically computed for post-processing the DEM results, the new accurate
modelling allows to re-compute the elastic forces between particles. For the normal
contact forces:

Fi j
n = K i j

n u
i j
n + Ai jν(σ

i j
s1 + σ

i j
s2) (8.9)

and for the shear contact forces:

Fi j
s1 = K i j

s u
i j
s1 + GAi j

(
∂un
∂s1

)i j

Fi j
s2 = K i j

s u
i j
s2 + GAi j

(
∂un
∂s2

)i j
(8.10)
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Note that as stated, the stress tensor is used, which for the i th particle, considered
as an sphere, is defined as:

σi = 1

Vi

nc∑
i=1

li � Fi (8.11)

where nc is the number of contacts of the particle, li is the vector connecting the
center of the particle to the i th contact point, Fi is the force vector at the i th contact
point (including normal and tangential components) and Vi is the volume used to
average the stresses.

Elasto-Damage Model for Tension and Shear

The DEM model presented in the previous sections have been implemented by
CIMNE researchers in the DEMpack software1 over the last 7 years. However, in
order to reproduce the behavior of frictional cohesive materials like ice, several im-
portant features have been recently development in the DEMpack model, including
unidimensional non-linear elasticity, plasticity and damage laws as well as a specific
uncoupled fracture criteria.

In the normal and shear failure model, cohesive bonds at a contact interface are
assumed to start breaking when the interface strength is exceeded in the normal
direction by the tensile contact force, or in the tangential direction by the shear
forces (theory of classical stress mechanics). The uncoupled failure (de-cohesion)
criterion for the normal and tangential directions at the contact interface between
particles i and j is written as:

Fnt ≥ Φnt

Fs ≥ Φs

(8.12)

where Φnt and Φs are the interface strengths for pure tension and shear-compression
conditions, respectively. Fnt is the normal tensile force and Fs is the modulus of the
shear force vector. The interface strengths are defined as:

Φnt = σ
f
t Ā

i j

Φs = τ f Āi j + μ1

∣∣Fnc

∣∣ (8.13)

whereσ
f
t and τ f are the tensile and shear failure stresses, respectively (also called ten-

sile and shear strengths), Fnc is the compressive normal force at the contact interface
and μ1 is a (static) friction parameter. These values are assumed to be an intrin-
sic property of the material and are determined experimentally. Following tension
failure, the constitutive behavior in the shear direction is governed by the standard
Coulomb law as:

1see http://www.cimne.com/dempack/.

http://www.cimne.com/dempack/
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Fig. 8.6 Failure line in terms of normal and shear forces. Uncoupled failure model (left) and
coupled failure model (right)

Fig. 8.7 Undamaged and damaged elastic moduli under tension (left) and shear (right) forces

Fs = μ2

∣∣Fnc

∣∣ us
|us | (8.14)

where μ2 is a dynamic Coulomb friction coefficient. Figure8.6 shows the graphical
representation of the failure criterion described above.

On the one hand, this criterion assumes that the tension and shear forces contribute
to the failure of the contact interface in a decoupled manner. On the other hand, shear
failure under normal compressive forces follows a failure line that is a function of the
shear failure stress, the compression force and the internal friction angle. Indeed, a
coupled failure model in the tension-shear zone can also be used, as shown in Fig. 8.6
right.

The model is completed with a damage evolution law. Figure8.7 shows the evo-
lution of the normal tension force (Fnt ) and the shear force Fs at a contact interface
until failure, in terms of the relative normal and tangential displacements. The effect
of damage in the two constitutive laws is also shown in the figure.

Elastic damage can be accounted for by assuming a softening behavior defined
by the softening moduli introduced into the force-displacement relationships in the
normal (tensile) and tangential directions, respectively. Damage effects are assumed
to start when the failure strength conditions are satisfied. The evolution of the damage
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parameters from the value zero to one can be defined in a number of ways using
fracture mechanics arguments.

8.2.1.5 DEM Application Example

At the time of writing this document, the validation task of the NICE-SHIP project
is not yet completed. Therefore, this section just presents a preliminary application
example of the developed methodology. The example is focused on the interaction
between an icebreaker ship and an ice floe with different dimensions and thickness.
In general lines, we would like to study if with the DEM it is possible to analyse
such scenarios and then characterize the results and study the effects on ice loads of
the floe size and thickness. Moreover, special interest will be devoted to see if the
expected failure pattern of each case is well reproduced.

8.2.1.6 Ship Bow-Ice Interaction

The simulated system consists of a model of a theoretical ship bow advancing with
a constant speed towards the modelled ice floe. This analysis includes two elements:
the ship bow and the ice floe. The ship bow is considered an structure with imposed
motion and discretised with finite elements, whereas the ice floe is composed by
an arrangement of bonded particles modeled with the DEM. The characteristics of
the ice floe are changed for every simulation. The studied ice floes are grouped
according to their dimensions and the characteristic length of the problem (l). For
the ship bow, a generic model has been created reproducing the main characteristics
of a real icebreaker. It has been considered a stem buttock angle equals to 30º and a
draft of 7m. Figure8.8 shows different views of it.

In Table8.1 the computational parameters for the ice material are listed. There
are not boundary conditions set to the ice sheets because the aim is to simulate a
separate ice floe without or little contacts with its neighbouring ones.

Fig. 8.8 CAD views of the digital ship bow model
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Table 8.1 Computational parameters for the ice material

Definitions Symbols Values Units

Type of ice – Separate ice
floes

–

Ice velocity νi 0 m/s

Density of sea ice ρi 920 kg/m

Young modulus of sea ice E 3e+9 Pa

Poisson ratio of sea ice ν 0.33 –

Friction angle of sea ice φi 30 ◦

Ice-ice (static) friction coefficient μi i 0.05 –

Ice-structure (static) friction coefficient μis 0.25 –

Normal tensile strength σ
f
t 1.5 MPa

Shear strength τ f 1.0 MPa

Table 8.2 Computational parameters for the ship bow structure

Definitions Symbols Values Units

Type of structure – Ship bow –

Structure velocity νs 2.06 (4) m/s (kn)

Young modulus Es 200e+9 Pa

Poisson ratio νs 0.265 –

In Table8.2 the computational parameters for the ship bow are listed.
Different simulations have been run, for different ratios of the characteristic length

of the case (l) and the main dimensions of the ice sheet (L and B). Those cases are
classified as:

• Direct floe rotation, L < l
• Radial cracking of a finite size wide floe, l ≤ L ≤ 2l
• Radial and transversal cracking of a finite size square floe, l ≤ L ≤ 2l
• Transversal cracking of a finite size long floe, l ≤ B ≤ 2l
• Radial and circumferential cracking of a semi-infinite ice floe L > 2l

The characteristic length of the different cases is calculated as:

l = 4

√
Eh3

12(1 − ν2)ρwg
(8.15)

A total of twenty simulations have been carried out, which correspond five to each
ice thickness h. The considered ones are 0.5, 1.0, 1.5 and 2.0m because the first-year
sea ice thickness ranges from 0.3 to 2.0m.

Figure8.9 shows the evolution at different time steps of the simulation with in-
teraction between the ship bow and an ice floe of 0.5m thickness and 12 × 12m2.
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Fig. 8.9 Interaction between ship bow and finite size square ice floe simulated with the DEM. The
magnitude of the Y-displacement is presented in different colours

The simulation results highlight how the square ice floe is firstly submerged a bit.
This produces that the downward part of the ice floe to be under tension while the
upward in compression. Consequently the initiation of a radial crack is produced,
from the contact zone and propagated to the end boundary. Since the ice floe is
sufficiently long in this case, a transversal crack is also generated more or less in the
middle of the floe. Approximately at the simulation time of 1.5s, the square ice floe
is completely separated in four squared parts. They are then are free but subjected
to buoyancy effects. Thus, little by little they try to recover the equilibrium state but
the ship bow maintains its advancing motion and thus more contacts are produced
between the separate parts an the ship hull. Figure8.10 shows the evolution of the X
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Fig. 8.10 Force evolution in X for the 0.5m thick ice floe and 12 × 12m2

Fig. 8.11 Side view at the simulation case of a semi-infinite square ice sheet (time 1.5 s)

component of the ice load. Since the obtained peaks values are not representative, the
data has been smoothed by taking the median over a window of 100 data points. The
smoothed values fluctuate between 180.3kN (maximum) to −16.1kN (minimum).

Figure8.11 presents a top view of the Z -displacement for the case of a semi-
infinite square ice sheet. It can be seen how the ice sheet fractures both radial and
circumferentially. The dimensions are big enough to first create this circumferential
crack without affecting the sides of the ice floe.
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Fig. 8.12 Interaction between ship bow and semi-infinite ice floe simulated with the DEM. The
magnitude of the Z-displacement is presented in different colors

Figure8.12 shows the evolution at different time steps of the simulation with
interaction between the ship bow and a semi-infinite ice floe of 0.5m thickness and
an area of 17 × 17m2.

The simulation results show how the semi-infinite square ice floe firstly fractures
creating a set of circumferential cracks. At the same time, a radial crack is initiated
and then propagated to the end contour.When the ship bow contacts againwith the ice
floe, a second set of circumferential cracks appears, but nowmore difficult to identify
because the sides are affected. Looking to the steps at the end of the simulation, any
behavior pattern cannot be identified. The already broken pieces of ice are displaced
to the side by the ship’s hull when it advances.
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Fig. 8.13 Map compilation of ice loads in the X direction

Finally, Fig. 8.13 shows a summary of the ice loads in the X direction calculated
in the different analysed cases. For each ice-sheet thickness, the maximum force
calculated is plotted. As expected, the trend shows that when ice thickness increases,
the ice load does as well.

8.2.2 Scenario 2: Analysis of the Performance of Ships in
Brash Ice

8.2.2.1 Introduction to the Semi-Lagrangian Particle Finite Element
Method

The Semi-Lagrangian Particle Finite Element Method (SL-PFEM) was presented
for the first time in (Nadukandi et al. [22]) and is based on using a Lagrangian
method for the convective transport of momentum, along with the Finite Element
Method (FEM) to integrate the elliptic part of the momentum equation and the
continuity equation. The SL-PFEM can be considered the latest development within
the framework called Particle Finite Element Method (PFEM) (Idelsohn et al. [13]).
The SL-PFEM contributes to this framework with the semi-Lagrangian formulation
based on an explicit integration of the velocity and acceleration along streamlines
(X-IVAS (Idelsohn et al. [15])) and with a semi-implicit fractional step scheme
(see Fig. 8.14). The semi-Lagrangian (SL) name identifies those schemes that are
derived from a Lagrangian formulation of the discrete equations, but solved partially
in an Eulerian manner. In our case, particles transporting momentum (velocity) are
advanced forward in time following the pathlines described by the velocity field.
Then, implicit corrections due to viscosity and flow incompressibility are solved
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Fig. 8.14 Conceptual description of the SL-PFEM

in a background mesh using the FEM. Finally, the particles’ velocity is updated
interpolating the implicit corrections at the new particles’ positions. Unlike other
particle methods, the SL-PFEM does not use material points, but marker points that
contains the value of extrinsic variables at a specific time and at the position of the
particle. Then particles can be added or removed without affecting extrinsic variables
such as mass. One of the main advantages demonstrated by the SL-PFEM is that it
is a faster code compared to more traditional computational fluid dynamics methods
(Nadukandi et al. [22]). This is due to the possibility of using large time steps without
compromising the neither the stability nor the accuracy of themethod, achieving up to
10 to 15 times the Courant number. Celledoni et al. [3] showed that the second order
SL schemeswith Eulerian storage are indeed second order approaches to the standard
second order exponential integrators. This connection explains why SL schemes can
handle large time steps without damaging the accuracy of the solution.

Figure8.14 represents the fundamental of the SL-PFEM. The bottom line is to
solve the convective transport of momentum moving the particles along the path-
lines to the following time step (which requires an accurate prediction of the path-
lines). Then the particles’ momentum is mapped onto a background mesh, where the
momentum is corrected. This correction accounts for the acceleration induced by
pressure and viscosity effects. Finally, this correction is interpolated at the particles’
position and added to the particles’ momentum. The strong point of this method lies
on using a Lagrangian scheme for the convective transport, and using the FEM to
solve the elliptic part of the Navier Stokes equations. All these results naturally in a
stable and accurate numerical scheme.

Below, a brief description of the theoretical basis of the method applied to incom-
pressible flows is presented. Table8.3 shows the notation used in this section.

Onone hand, in theLagrangian kinematics of the SL-PFEM, themain independent
variables are (λ, t), while the main dependent variable is the particles’ trajectory,
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Table 8.3 Notation used in the introduction to SL-PFEM

x Spatial coordinates vector

t Time variable

λ Particles’ label that identifies a fluid particle

u(x, t) Fluid velocity at position x and time t

uh(x, t) Fluid velocity at position x and time t projected onto the background mesh

a(x, t) Fluid acceleration at position x and time t

ah(x, t) Fluid acceleration at position x and time t projected onto the background mesh

p(x, t) Pressure at position x and time t

ph(x, t) Pressure at position x and time t projected ono the background mesh

X(λ, t) Position of particle λ at time t

Xh(λ, t) Position of particle λ at time t obtained integrating uh , ah

U(λ, t) Velocity of particle λ at time t

Uh(λ, t) Discrete velocity of particle λ at time t

û(x, t) Fluid velocity at position x and time t obtained by projected the velocity of the
particles onto the background mesh

f External acceleration field

ν Kinematic viscosity

ρ Fluid density

℘h Projector operator that project the particles’ variables onto the background mesh
nodes

given by X(λ, t). On the other hand, in the Eulerian kinematics, the independent
variables (x, t), while the main dependent variable is the velocity field u(x, t).

An Eulerian description of the incompressible Navier–Stokes equation is:

∇ · u = 0 (8.16)

∂tu + (u · ∇)u − νΔu + ∇(p/ρ) = f

The fluid acceleration field at (x, t) is obtained from the momentum as:

a = ∂tu + (u · ∇)u = νΔu − ∇
(
p

ρ

)
+ f (8.17)

Additionally, the fundamental kinematics equations connect the Eulerian and
Lagrangian descriptions as follows:

U(λ, t) :dX(λ, t)

dt
= u(X(λ, t), t)

dU(λ, t)

dt
: d

2X(λ, t)

dt2
= a(X(λ, t), t)

(8.18)
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The basic idea of the X-IVAS scheme is to update the particles’ position within a
time step tn < t < tn+1 integrating:

dXh(λ, t)

dt
= uh(Xh(λ, t), t) = AXh(λ, t) + b

dUh(λ, t)

dt
= ah(Xh(λ, t), t) = CXh(λ, t) + d

(8.19)

where uh and ah are piecewise linear approximations defined on a finite elements
mesh.MatricesA andC, and vectors b and d, are time dependent and constant within
each finite element. Then the particles’ trajectories and velocities calculated with the
previous equations are Xh(λ, t) and Uh(λ, t) respectively. Integration of Eq. (8.16)
with the SL-PFEM is based on the following steps (see Fig. 8.14).

1. The Lagrangian transport is carried out integrating Eqs. (8.6) and (8.7), obtaining
Xh(λ, tn+1) and Uh(λ, tn+1) (see Figure (8.15) left).

Xh(λ, tn+1) = Xh(λ, tn) + ∫ tn+1

tn uh
(
Xh(λ, τ ), tn

)
dτ

Ûh(λ, tn+1) =Uh(λ, tn) − γ
∫ tn+1

tn ∇
(
p

(
Xh(λ, τ ), tn

)
ρ

)
dτ

+θ
∫ tn+1

tn
(
νΔuh

(
Xh(λ, τ ), tn

) + fh
(
Xh(λ, τ ), tn

))
dτ

(8.20)

where θ and γ are real values between 0 and 1 depending on the integration
scheme used.

2. The transported values of the extrinsic variables are projected onto the FEMmesh
(see Fig. 8.15 right):

ûh(x, tn+1) = ℘h(Ûh(λ, tn+1)) (8.21)

3. The pressure at tn+1 on the mesh is obtained solving (8.13)–(8.15):

(�ph(x, tn+1)) = ρ
∇ · û(x, tn+1)

Δt
+ ρ∇·(νΔuh(x, tn+1)) + fh(x, tn+1))

−γ�ph(x, tn) − θρ∇ · (νΔuh(x, tn) + fh(x, tn))
(8.22)

4. Once the pressure at the end of the time step is obtained the projected. If for
instance an explicit Euler scheme is used in time, this correction will be:
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Fig. 8.15 Left. Particle trajectory approximated by streamline using uh(x, t). Right. Projection of
particles’ velocity onto node “i”

uh(x, tn+1) − û(x, tn+1)

�t
= −∇ ph(x, tn+1)

ρ
+ (νΔuh(x, tn+1) + fh(x, tn+1))

−γ∇
(
ph(x, tn)

ρ

)
− θ

(
νΔuh(x, tn) + fh(x, tn)

)
(8.23)

5. Finally, the particles’ velocity is updated increasing the amount uh,n+1 − ûh,n+1,
interpolated at the particles’ position:

Uh(λ, tn+1) = Ûh(λ, tn) + uh(Xh(λ, tn+1), tn+1) − ûh(Xh(λ, tn+1), tn+1) (8.24)

The SL-PFEM seems like an accurate and efficient alternative to solve complex
multiphase flows when compared to others alternatives available nowadays. The
method offers a number of advantages, among which we would like to highlight:

• The Lagrangian approach to the convective transport (u · ∇)u of the Navier Stokes
equations (8.16) make unnecessary to introduce the typical stabilization terms nec-
essary in convection dominated flows when using other numerical methods.

• The X-IVAS scheme used in the Lagrangian transport step is explicit and uncon-
ditionally stable. The first property makes it ideal for an efficient implementation
in HPC platforms. And the second is that the size of the time step is not limited by
numerical stability but by the precision required. In dominant convection flows it
is possible to achieve Courant numbers in the range of 10–15 with good accuracy.

• In dominant convection flows, the pathlines are well approximated by the stream-
lines. In these cases, the SL-PFEM offer a higher precision.

• Boundary conditions are defined on themesh boundaries just like in tradition FEM.
This confers the method a great flexibility to define complex contours.
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Fig. 8.16 Left: Interface intersection with a FEM mesh and splitting into sub-elements. Right:
Enriched nodes generation within an interface element

Further details of the SL-PFEM can be found in (ITTC [1]; Garcia-Espinosa
et al. [10, 11]; Idelsohn et al. [13, 14]; Kashteljan et al. [18]; Nadukandi et al. [22]).

8.2.2.2 Modelling Ice Floes as Solid Particles

Solving the ice floes-water interaction requires: to be able to capture the interface
corresponding to the solid contours of the ice blocks surrounded by water; solving
contacts among rigid bodies (ice blocks and ship); and solving the free surface. The
method considered to cope with these interfaces consists of enriching the pressure
field in those finite elements cut off by interface (see Fig. 8.16). It is important to
highlight that the SL-PFEM allows for naturally enriching the velocity field by just
adding new particles within the enriched elements.

For the sake of clarity, the implemented enrichment procedure will be here pre-
sented for triangular elements. However, it can be straightforwardly extended to 3D
tetrahedral. Figure8.16 right shows a close up view on two interface elements. It
can be observed that for each triangle two enriched nodes are introduced. Then, each
intersected element edgewill have two enriched nodes, one of each belonging to each
triangle sharing that edge. This way each elemental enrichment is local and it will not
affect to neighbors’ elements, which will allow to solve locally the enriched system
avoiding the increase of the number of degrees of freedom in the global system. This
will be explained in more detail below.

Once the enriched nodes are introduced, each interface element is divided into
three sub-elements. Then each interface element will go from three degrees of free-
dom to five, and the elemental matrix will be the result of assembling the three

sub-elemental matrices. Finally, the global Laplacian matrix K, corresponding to
Eq. (8.22) can be expressed as:
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K =

⎛
⎜⎜⎝

K f 0 KE f

0 Ks KEs

K
T
E f K

T
Es E

⎞
⎟⎟⎠

⎛
⎝P f

PS

PE

⎞
⎠ =

⎛
⎝b f

bS

bE

⎞
⎠ (8.25)

where K f is the Laplacian matrix for the internal fluid nodes, Ks is the Laplacian

matrix for the internal solid nodes, ¯̄E is the Laplacian matrix for the enriched nodes,

andKEf andKEs are the matrices containing the coupling of the enriched nodes with
the fluid and solid nodes respectively.

The advantage of keeping the enrichment local within each interface element is

that the matrix ¯̄E becomes:

E =

⎛
⎜⎜⎜⎜⎝

E 0 · · · 0
0 E · · · 0
...

...
. . .

...

0 0 · · · E

⎞
⎟⎟⎟⎟⎠ (8.26)

Being Ei the Laplacian matrix for the enriched nodes within interface element i .

Each Ei is a 2 × 2 in 2D problems, and either 3 × 3 or 4 × 4 in 3D problems. Since

Ei are easily invertible, we can calculate:

E
−1 =

⎛
⎜⎜⎜⎜⎜⎝

E
−1

1 0 · · · 0

0 E
−1

2 · · · 0
...

...
. . .

...

0 0 · · · E−1

n

⎞
⎟⎟⎟⎟⎟⎠

(8.27)

Using Eq. (8.27) in Eq. (8.25):

PE = E
−1

(
bE − K

T

E f P f − K
T

EsPs

)
(8.28)

And inserting Eq. (8.28) into Eq. (8.25):

⎛
⎝K f − KE fE

−1
K

T

E f −KE fE
−1
K
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Es

−KEsE
−1
K
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E f Ks − KEsE
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P f

Ps
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=

⎛
⎝b f − KE fE

−1
bE

bs − KEsE
−1
bE

⎞
⎠

(8.29)
Equation (8.29) is the new global system of equations for the pressure taking into

account the FE enrichment. This system has no extra degrees of freedom thanks to
Eq. (8.28), which allows to explicitly write PE in terms of P f and Ps . This property is
a key point from a computational point of view since it avoids to increase the actual
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number of degrees of freedom in the global system. Let’s remind that increasing the
number of degrees of freedom would imply changing the matrix structure with all
the computational effort that it carries on.

The iterative process to solve the pressure field is carried out as follows:

Pi+1
E = E

−1
(
bi+1
E − K

T

EfPi
f − K

T

EsP
i
s

)
(8.30)

⎛
⎝K f 0

0 Ks

⎞
⎠

(
Pi+1

f

Pi+1
s

)
=

(
bi+1

f − KE f Pi
E

bi+1
s − KEsPi+1

E

)
(8.31)

where the superscript i represent the iteration number. The global pressure matrix
remains the samewith all the computational advantages that it implies. Let usmention
that: on the one hand, collapse of the enriched nodes leads to a loss of continuity in
pressure between neighbours interface elements; but on the other hand, this collapse
offers a very efficientmethod, computationally speaking, to copewith discontinuities
in the pressure gradient across interfaces.

A similar enrichment scheme is used to solve the free surface interface. The above
presented equations are still valid, just considering fluid and gas instead of fluid and
solid.

8.2.2.3 SL-PFEM Application Examples

At the time of writing this document, the validation task of the NICE-SHIP project
is not yet completed. Therefore, this section just presents a preliminary set of non-
validated application examples of the developed methodology.

Patrol Ship Navigating in Ice

In this section, a 2D problem simulating the interaction of a ship with ice blocks
is first presented. The main objective is to analyze de interaction of the ice blocks
with the ship, and to show the capability of the present approach to simulate a large
number of solid bodies immersed in the fluid flow. Three case studies have been
simulated, and the particulars for each of them are given in Table8.4.

Figure8.17 shows the layout for the three cases under study. Each case contains
an array of ice blocks with different sizes, and the mesh refinement is set according
to the ice blocks dimensions.

Figure8.18 shows a snapshot of the ship crossing the swarm of ice floes in the
three analysed cases, where the colormaps represent the velocity field.

Figure8.19 shows the added resistance due to the interaction of the ship with
the ice blocks. The units of the resistance are KN per unit of ice thickness. Energy
dissipation should be introduce in the collision in order to mimic the behaviour of
ice block collisions. However, to do so, ice blocks interactions should be modelled
and calibrated based on experimental data.
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Fig. 8.17 Visualization of Patrol ship, ice blocks, mesh elements and particles. Case 1 (top), Case
2 (middle) and Case 3 (down)
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Fig. 8.18 2D Patrol ship crossing a swarm of ice blocks. Case 1 (top), Case 2 (middle) and Case
3 (down)
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Fig. 8.19 Instantaneous added resistance due to ice block collisions per meter of ice thickness.
Case 1 (top), Case 2 (middle) and Case 3 (down)
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Table 8.4 Case study particulars

Particulars Case 1 Case 2 Case 3

Patrol ship Lwl : Length in waterline 80m

Bwl : Beam in waterline 13.64m

V : Velocity 5m/s

Fr : Froude number 0.18

Re: Reynolds number 4 · 105
Ice Lice: Characteristic length of ice 1.25m 2.5m 5m

Nice: Number of ice blocks 2300 550 150

ρi ce/ρw: Ice-water density ratio 0.92

Numerical Δx : Mesh element size 0.175m 0.35m 0.7m

Δt : Time step 0.025s

NΔt : Number of time steps 1000

Nelems : Number of triangle elements 601798 163099 39685

Nnodes : Number of mesh nodes 301389 81794 19979

Table 8.5 3D case study particulars

Particulars Case 1

Patrol ship Lwl : Length in waterline 80m

Bwl : Beam in waterline 13.64m

V : Velocity 5m/s

Fr : Froude number 0.18

Re: Reynolds number 4 · 105
Ice Lice: Characteristic length of ice 5m

tice: Ice thickness 1m

Nice: Number of ice blocks 125

ρi ce/ρw: Ice-water density ratio 0.92

Numerical Δx : Mesh element size 0.2m

Δt : Time step 0.025s

NΔt : Number of time steps 1000

Nelems : Number of triangle elements 1520443

Nnodes : Number of mesh nodes 277848

Finally, a 3D case analysis is presented. The particulars of this case study are
given in Table8.5, and Fig. 8.20 shows the mesh used.

Finally, Fig. 8.21 shows a snapshot of the ship crossing the swarm of ice blocks,
where the colormap represents the velocity field.
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Fig. 8.20 FEM mesh used for the 3D patrol case

Fig. 8.21 3D Patrol ship crossing a swarm of ice blocks
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8.3 Conclusions

This document presents the activities carried out to date in the project ‘Development
of newLagrangian computationalmethods for ice-ship interaction problems’ (NICE-
SHIP). NICE-SHIP is a challenging project aimed at developing a new generation of
computational methods, based on the integration of innovative Lagrangian particle-
based and finite element procedures for the analysis of the operation of a vessel in
an iced sea, taking into account the different possible conditions of the ice.

In order to organize effectively the tasks of the project and focussing on a practical
approach, the work of the development team has been focused on the study of two
specific scenarios.

The first scenario is the icebreaking of ships in flat surfaces of floating ice of
different thicknesses. The goal of this analysis scenario is to validate the constitutive
models developed for flat ice analysis, aswell as the contact and friction forcesmodels
between ship and ice. For this purpose, a constitutive material model in the context
of the Discrete Element Method (DEM) has been developed. The model developed
to analyse the first scenario will be useful to analyse the icebreaking performance
and added resistance of ships in level ice.

The second scenario to be studied is the navigation of ships in brash ice (andbroken
ice). A FEM semi-Lagrangian fluid-dynamics solver (SL-PFEM) fluid dynamics
model has been selected to analyse this scenario. This model will be able to simulate
the evolution of the ice around or under the vessel. SL-PFEM solver will be based
on the correction of the momentum equation of the fluid-dynamics solver by adding
the drag force generated by the ice debris packets. Possible breaking of the larger ice
fragments will be ignored in this scenario. This model will be useful to analyse the
ice navigation performance of ships and ice-appendages interaction phenomena.

At the time of writing this document, the validation task of the NICE-SHIP project
is not yet completed. Therefore, is this document just a set of preliminary application
examples of the developed methodology have been presented. However, the results
of those cases shows the developed computational techniques as a promising tool to
evaluate the loads acting on the structure of a ship navigating in iced-seas and, in
particular, to determine the ice resistance of the ship in different ice conditions.
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