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Internet of Things devices are popular in civilian and military applications, including smart device cities, smart grids, smart
pipelines, and medical Internet of Things. Among them, carsharing supported by the Internet of Things is developing rapidly due
to their advantages in environmental protection and reducing traffic congestion. The optimization of the carsharing system needs
to consider the uncertainty of demand and the coupling relationship of multiple decision variables, which brings difficulties to the
establishment of mathematical models and the design of efficient algorithms. Existing studies about carsharing optimization are
mainly divided into four subproblems: the operation mode selection, vehicle type selection, demand analysis, or decision-making,
rather than comprehensive consideration. This paper summarizes the four subproblems from the perspective of mathematical

models, solving algorithms, and statistical methods and provides references for more comprehensive research in the future.

1. Introduction

In 1999, the Massachusetts Institute of Technology defined
the Internet of Things: connecting all items to the Internet
through information sensing devices such as radio frequency
identification. The Internet of Things was widely used in
smart device cities, smart grids, smart pipelines, and medical
Internet of Things. The Internet of Things used the Internet
as a cornerstone of further expansion and development.
With the help of GPS, infrared sensor, and other sensing
devices, it transmitted and exchanged information between
different mobile digital devices, namely, different entities. It
had three characteristics: (1) intelligent sensing, (2) two-way
transmission, and (3) intelligent control. There had been
several proposals for unique object identifiers that uniquely
identified objects and locations in the real world. Infor-
mation could be associated with objects and places, and
decoding could be used to retrieve relevant information.
Karakostas [1] proposed a Domain Name Service (DNS)

infrastructure of the Internet of Things that could translate
the unique identifier of a physical object into a specific
network address and then extract information such as status
and location. Due to the advantages of large capacity and
high reliability of the Internet of Things, it provided an
opportunity for the development of a new transportation
mode named carsharing. Users could download the APP and
register online to become a customer. Although the Internet
of Things provided technical support for carsharing, there
were still various problems in terms of its application and
promotion. Figure 1 shows the operation process of the
carsharing system. The user placed an order to reserve a car
that has been charged or refueled. After the order was
completed, the operator needed to relocate the car to meet
the balance of supply and demand. The Internet of Things
realized data feedback and instruction issuance.
Carsharing emerged informally as a consequence of
gasoline prices rising in the 1940s [2] and had become
popular in Europe and the United States since the 1980s and
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FIGURE 1: Structure of carsharing system.

then was introduced to many other countries. The growing
number of private cars in developed cities brought about
problems such as traffic congestion, environmental pollu-
tion, and insufficient social resources. For example, the
average daily number of trips increased to more than 28
million, and the number of private vehicles covered more
than 31% in Beijing which was affected by these problems
deeply [3]. Studies showed that the introduction of car-
sharing had alleviated the seriousness of the congestion and
air pollution problems to a certain extent and made the
social resources more fully utilized [4-6]. It also increased
the mobility of the city and provided a new transportation
option.

The research on optimal design and operation of car-
sharing was divided into four subproblems, as shown in
Figure 2. The characteristics of each part of the main de-
cision-making contents are listed in the rectangle in Figure 2.
Operation modes’ selection should consider operating costs
and demand. Vehicle type selection should consider the
feasibility and environmental pollution. The total customer
demand needed to be predicted by function fitting or neural
network, and changes in uncertain demand over time and
space should be considered. Decision-making was the most
difficult research content because there were many decision
variables and the variable coupling relationship was
complicated.

2. Operation Modes

The operation modes of the carsharing were mainly divided
into three types according to the terminal location: round
trip, one-way trip, and free floating. Round trip and one-way
trip were based on stations that differed from free floating
[3]. The round trip required customers to return a car to the
station where they picked up. Free floating was the most
convenient for customers that they could return cars any-
where just within the operation areas [7]. While the one-way
trip was a compromise between the two modes, in which
customers should return cars at any station. The driving
routes of the three operation modes are shown in Figure 3.
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Apparently, the round trip cannot satisty a lot of demands
due to the rigorous stop condition [8], but the cost of re-
location was decreased simultaneously. For the one-way trip
and free-floating trip, the relocation aiming to rebalance the
demand and supply was a critical factor that contributed to
the cost [9, 10].

Brendel et al. [11] summarized 22 influential pieces of
literature on carsharing. The results showed that most of the
pieces of literature (about 82% of the total literature) studied
station-based trip, while free floating is less studied due to
the difficulty of rescheduling. Although a station-based one-
way trip was suitable for more travel demands compared to a
round trip, the round-trip demand would not be signifi-
cantly reduced under the introduction of a one-way trip
because that round trip was appropriate for purposes such as
shopping, entertainment, and sightseeing [12, 13]. In ad-
dition, there were other factors affecting the choice of op-
eration modes, such as age, gender, income, car ownership,
and weather [14]. Some companies such as Zipcar have two
modes named round trip for short trips and a one-way trip
for long-distance travel. Customers who chose round trip
had priority to reserve. This kind of service had already been
studied. On one hand, some scholars started to add new
services to the present modes to maximize the profit. Jorge
et al. [15] developed an integer programming model to
determine the station location that should be open to a one-
way trip when integrating both one-way trip mode and the
original round-trip mode. It was proved that there was a
potential market for this model and it would greatly satisfy
demands with the case study of Boston. But the disadvantage
of this model was that it could only show its efficiency in
some specified cases. On the other hand, some other scholars
also started to add new services to the present modes to
improve the service. Molnar and Correia [16] proposed a
kind of long-term reservation service for a one-way and free-
floating trip to improve user’s satisfaction. And he developed
the relocation-based reservation enforcement method (RB-
R) to provide customers the ideal car. What is more, a quality
of service model was developed and used to estimate and
guarantee the satisfaction of customers. Finally, this model
was tested in both small town and large major city and a case
of Lisbon Municipality was studied to prove the utility of this
model.

3. Vehicle Types

There were two main types of vehicles according to the
power system: green energy vehicles (GEVs) and gasoline
vehicles (GVs). GEVs could better reflect the main char-
acteristic of carsharing, which was environmental protec-
tion. The most studied and introduced type of GEVs among
the studies was the group of electric vehicles (EVs). Further
discussion about the GEVs would mainly focus on EVs. The
charging time of EVs was long, the travel distance was
limited, and the investment could be enormous (the cost of
charging station and charging facility). Normally, GEVs
were more suitable for a round trip and a one-way trip. GVs
were just the opposite, so they were more suitable for free-
floating mode. It was the main research direction for
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Fi1Gure 2: Classification of the research on optimal design and operation of carsharing.

FIGURE 3: The driving routes of operation modes.

operators to choose which type of vehicles was more eco-
nomical or whether operators that had adopted GVs in the
early stage should introduce GEVs.

The social costs of electric vehicles and conventional
vehicles could be a standard to determine which way was
more profitable, and we should also consider the air pol-
lution costs and the noise costs of conventional vehicles [17].
Based on a large number of GPS data, Kihm and Troomer
[18] analyzed the prospects for the use of EVs considering
different consumption attitudes. The results showed that it
was more effective to reduce the cost of electric cars, im-
proving public charging facilities and increasing govern-
ment subsidies rather than increasing battery capacity in
increasing the potential of electric cars. In addition, a
powertrain selection model could be developed considering
economic, technical, and social condition constraints on
vehicle registration and inventory to analyze the market
development and estimate the demand for vehicles [19]. For
the problem of introducing electric vehicles to the original
gasoline vehicles market, Yoon et al. [20] built a simulation
model considering that the car might not be fully recharged
before reentering the market which was always simplified in
other papers and studied whether the electric car could
compete with the gasoline fuel car under different market

conditions. Actually, the battery capacity of electric vehicles
also needed to be selected economically. According to the
battery capacity, it can be divided into level 2 charging and
level 3 charging. The level 3 charging was more expensive but
drives a longer distance than level 2 charging. Comparing
the type of vehicles and the charging level of electric vehicles,
the most economical scheme could be more forceful [21].

4. Analysis of Demand

The demand in a certain area was partly affected by many
territorial factors, such as population density, education
levels, age, and private car park rate [22]. Also, the operation
mode (round trip, one-way trip, and free floating) was
another aspect that greatly accounted for a large proportion
since there were different demands for different travel
modes. Particularly, the free-floating mode could lead to
many uncertainties. The determination of demand could be
predicted by mathematical models based on the historical
travel data of the region. To ensure the quality of the model,
the data collection and analysis tools must be comprehensive
and precisely suitable. In addition, there had been many
pieces of literature accounting for the asymmetry and
elasticity of the demand.

4.1. Demand Prediction. This subsection was to state how to
predict the demand for a new region to provide advice for
operators. When we make the demand prediction, various
scenarios needed to be considered, including the travel
distance, the number of travelers, the ratio of public
transportation users, and the ratio of households without
cars [21]. Because there were many factors affecting the
demand, the differences in different regions lead to large
errors in the prediction model [23], so the prediction model
might only be used in specific regions. In order to predict the
demand of a new region based on historical data of another
region, it was necessary to clarify the differences between the



two regions and which differences were the main factors
affecting the demand; then we used regression models to
solve the functional relationship between the demand and
these factors.

In the early years, scholars studied key indicators of
whether or not the carsharing system could be successfully
introduced [24]. Later, scholars explored agent-based sim-
ulation software to estimate the demand in different sce-
narios [25]. The GPS data of mobile phones can also be used
to count the travel state of users during each period, and then
the potential demand for EVs was analyzed [26-29]. After
the carsharing was put into operation, the relationship
between urban structure and high demand areas as well as
the spatial and temporal distribution of supply and demand
imbalance could be analyzed based on the historical data [7].
To predict the demand of vehicles, papers should consider
multiple objective functions (such as minimum customer
wait time and the minimum number of scheduling) and
characterize the system performances according to the
proposed evaluation indicators, such as the average wait
time of the users, the total wait time, the number of waiting
users, and the ratio of the number of available vehicles to the
total demand of the trip [30]. The spatial decision support
system was widely used to identify areas with high demand
and exclude areas with low demand and Point of Interests
(POIs) (such as shopping malls and schools) which could
interpret the spatiotemporal dynamics and helped managers
understand customer’s behavior better [31]. In addition,
some scholars summarized the factors affecting the use of
carsharing in small- and medium-sized cities and deter-
mined the possibility of introduction [32, 33].

4.2. Uncertain Demand. This subsection was to state how to
consider the uncertain demand in space and time.

The uncertain demand was a hot spot. Scholars before
generally studied the linear elastic demand function [34]. In
addition, the elastic demand could be considered as a
random variable, and the Scenario Tree Approach could be
used to solve the stochastic programming model, the first
step of which was obtained by SAS macrocode. Others were
assumed to follow a discrete distribution (such as low,
medium, and high) and were predicted in turn according to
the stochastic programming approach [35]. Xu et al. [36]
firstly described the elastic demand more accurately as a
nonlinear model. When the price was less than a threshold
value, the demand satisfied the logistic regression function
related to the price; otherwise, the demand became zero
because the price was too high. Particularly, the mixed-
integer nonlinear and nonconvex programming models
were forged to be mixed-integer convex programming
models. It could be solved by an efficient outer-approxi-
mation method. In addition, some scholars obtained specific
functional relationships to describe the elastic demand
through the logistic regression model considering the utility
of carsharing and its competitors [37]. Developing an effi-
cient algorithm could greatly reduce the time of solving and
find the optimal or near-optimal solution. An et al. [38]
adopt adaptive a heuristic algorithm of large-scale

Mathematical Problems in Engineering

neighborhood search to solve the complicated model.
Considering the stochasticity of demand to establish a
mixed-integer programming model with a nonconvex fea-
sible region, a partial redistribution plan would be generated
if the demand exceeded the supply [39]. Li et al. [40] pro-
posed a continuum approximation model to determine the
optimal station location and the corresponding fleet size of
EVs considering stochastic and dynamic travel demand. By
dividing the study area into multiple small neighborhoods,
each small neighborhood approximates as an Infinite Ho-
mogeneous Plane and is finally solved by the bisection al-
gorithm. Zhang et al. [41] considered the uncertain demand
and established a multiscenario integer linear programming
model to optimize the rebalancing procedures.

Due to so many factors affecting the demand, the model
might not be realistic considering the limited factors.
Therefore, some scholars used the neural network and
support vector machine based on historical data to predict
demand. The support vector machine could accurately
predict the demand by selecting the appropriate kernel
function. Cheu et al. [42] chose the radial basis kernel
function and the average error was 0.42-0.83 vehicles per
three hours. The calculation result was accurate but slightly
worse than the multilayer perceptron. A mixed approach of
genetic algorithm and backpropagation was proved to be
efficient to train the neural network. The genetic algorithm
was used to avoid that the neural network falls into local
optimum and the backpropagation was used to accelerate
convergence. Each chromosome represented a neural net-
work model and had different weighs from each other (the
number of nodes in the neural network model) but the same
structure (the number of layers in the neural network model)
and thus limited the diversity of the offspring [43]. Xu and
Lim [44] improved the model by keeping the structure and
weighs different between chromosomes, and for each gen-
eration, backpropagation only works on one chromosome,
which accelerates the calculation. It should be noted that the
neural network required a large amount of data for training.

5. Decision-Making

The business strategy could be classified into the following
three decision level: strategic decision, tactical decision, and
operational decision. The strategic decision determined the
station location and capacity (the number of parking
spaces). The tactical decision determined the vehicle supply
and the number of operators, while operational decision
determined the relocation scheme and how to price by time
slots or distance. Actually, the established model should
consider the three levels simultaneously for the strong in-
teraction among them, but the model would be too large and
cannot be used in cities with large demand. To address this
problem, Boyaci et al. [45] introduced the aggregation model
using the concept of a virtual hub which made a branch-and-
bound approach available. For the optimization of one-way
electric carsharing systems, Huang et al. [46] tracked the
stage of charge over time and optimized the fleet size, station
capacity, demand satisfaction, and vehicle relocation. A
hierarchical strategy was adopted to solve the two
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subproblems of strategy and operation. However, other
existing pieces of literature often studied the three aspects
separately or considered two aspects to avoid the surplus size
of the model.

5.1. The Strategic Decision. The places with more parking
spaces, longer business hours, and higher population
density had more booking demands and higher turnover
rates, and they provided a basis for station selection [47].
The choice of station location should consider not only
the demand but also the least relocation operations which
minimize the imbalance between supply and demand.
Actually, relocation during the day could lead to a tre-
mendous cost, so that the model could consider the
maintenance costs and the relocation costs only at the end
of the day which provided a new strategy for companies
[2]. Heuristic algorithms were popular these years, but
they could only handle medium-sized instances [45].
Huang et al. [37] established an MINLP model to solve
the station positioning and capacity considering the re-
location operations and relocation costs except the al-
location of staff and solved it with a customized gradient
algorithm.

5.2. The Tactical Decision. The carsharing system could be
expressed as a hybrid queuing network model which took
the road congestion into account in the optimization
model to solve parking capacities and fleet size [48]. There
was a function between the size of the city and demand
density which was always used to explore the balance
between fleet size and vehicle relocation [49]. Scholars
mostly optimized the fleet size as well as the operational
decision or the strategic decision rather than the fleet size
individually. Cepolina and Farina [50] used the position,
quantity, and capacity of the station as the input of the
model and used the simulated annealing algorithm to
solve the fleet size and vehicle distribution. For the op-
timization problem of the University of Tennessee (UT)
motor pool, Yoon and Cherry [51] proposed a queuing
model with the constraints of the limited distance and the
limited charging time of electric vehicles to solve the fleet
size of different types of the vehicle when the customer
waiting time was close to zero.

5.3. The Operational Decision. Relocation of vehicles which
belonged to the operational stage could be operated in two
ways, including operator-based location and user-based
location [52]. The operator-based relocation was that the
company hires employees for vehicle scheduling [53]. The
user-based relocation was to provide customers with a re-
ward and punishment mechanism to encourage customers
to return the cars to places with larger demand or pick up a
car from the lesser one [34].

For the operator-based location problems, scholars might
adopt two-stage optimization or three-stage optimization to
reduce the size of the model which could reduce the scheduling
cost and shorten the time of solving simultaneously [54].

Establishing both the optimization model and the simulation
model was adopted in some papers which could find an optimal
scheme and study different real-time relocation strategies
[55, 56]. The model of relocation was generally large and dif-
ficult to solve due to the large driving demand, so developing an
efficient algorithm was a hotspot. Bruglieri et al. [3] developed
an Adaptive Large Neighborhood Search metaheuristic solution
for a relocation model and compared it with the Tabu Search. A
previous Ruin and Recreate metaheuristic and the optimal
results are obtained via Mixed-Integer Linear Programming to
verify the superiority of the proposed algorithm on time of
solving and optimization results. In addition to algorithm re-
search, there are scholars who simplified models through
mathematical reasoning to accelerate the solution and improve
the quality of the solution. Zhao et al. [57] proposed a La-
grangian relaxation-based solution approach to divide an
MINLP model into two MILP models and finally solved it with
a three-phase implementing algorithm.

In addition, the regions were divided into blocks according
to the demand or peak and nonpeak periods according to time,
and different pricing strategies were adopted for different blocks
to minimize the relocation operation [34, 58]. The most
profitable pricing mechanism could be formulated by increasing
the travel costs that would cause an unfavorable imbalance and
reduce the travel costs that would help to slow down the im-
balance [34]. Combining the two rescheduling mechanisms
(operator-based relocation and user-based relocation) was
sometimes more profitable. It rewarded the customer dy-
namically and periodically planned the routing for the dis-
patcher [59].

6. Conclusions

In the past fifteen years, research on carsharing has become
more and more plentiful. Scholars have optimized and simu-
lated the carsharing system through mathematical models and
advanced algorithms, which provide a theoretical basis for
future research. Future research can be based on the following
aspects:

(1) In the modeling solution, literature introduces the
assumptions for the simplified model, and the so-
lution results deviate from the actual situation. For
example, (1) there are few documents that consider
the situation of delaying or canceling travel after the
customer has made a reservation and the flexible
choice of destination choice for customers; (2)
charging time and level are ignored mostly.

(2) The model size of relocation in the carsharing system
increases greatly with the increase of the number of
stations and the demand for carsharing services.
Therefore, it is urgent to develop an efficient algo-
rithm or learn from mature fields such as refined oil
scheduling and shared bikes scheduling.

(3) The model should be closer to the real-world in-
stance and integrate the three decisions under un-
certain demands, which is rarely considered in the
existing research.



(4) Most researches lead providers to choose large cities
with high demand. However, from a social per-
spective, the underdeveloped areas with lower de-
mand should also enjoy the same convenience of
sharing cars. Future research can focus on the op-
eration of low-demand areas under the support of
the government.
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