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Electric vehicles (EVs) have been widely used in urban cold chain logistic distribution and transportation of fresh products. In this
paper, an electric vehicle routing problem (EVRP) model under time-varying traffic conditions is designed for planning the itinerary
for fresh products in the urban cold chain. The object of the EVRP model is to minimize the total cost of logistic distribution that
includes economic cost and fresh value loss cost. To reflect the real situation, the EVRP model considers several influencing factors,
including time-varying road network traffic, road type, client’s time-window requirement, freshness of fresh products, and en route
queuing for charging. Furthermore, to address the EVRP, an improved adaptive ant colony algorithm is designed. Simulation test
results show that the proposed method can allow EVs to effectively avoid traffic congestion during the distribution process, reduce
the total distribution cost, and improve the performance of the cold chain logistic distribution process for fresh products.

1. Introduction

With the increase of greenhouse effect, clean energy is the
energy of the future for traffic development. With government
support, electric vehicles (EVs) are becoming an industry trend
as people seek ways to reduce emissions to protect the envi-
ronment. EVs, an ideal means of transportation to replace
conventional fuel vehicles, are energy-efficient, green, and
environmentally friendly. Therefore, EVs have received ex-
tensive attention to combat the deteriorating air pollution and
global climate change. Many countries have set policies and
developed several projects to improve the penetration of EVs in
their daily lives. By 2017, EVs (including pure electric vehicles
and plug-in hybrid vehicles) exceeded 3 million around the
world, an increase of 57% compared with 2016. Data show that
the number of pure electric vehicles in China rose to 3.1 million
in 2019, which is the highest number of EVs compared with the
EV numbers for a few years ago, accounting for about 40% of
the global EV ownership. It is foreseen that the number of EV's
will break through 200 million in 2030 [1]. For instance, Beijing

released the “Beijing New Energy Logistics and Distribution
Vehicle Priority Implementation Plan” in 2019: by the end of
2020, light electric logistic vehicles under 4.5 tons will account
for 90 percent of the total freight vehicles. While they have
advantages (e.g., low energy consumption and zero pollution),
EVs also have disadvantages, namely, long charging time,
limited battery capacity, and relatively low mileage on a single
charge [2, 3]. With the increasing popularization of EVs, how
to scientifically dispatch EV's and optimize logistic distribution
routes under the constraints of EV technology to achieve
economic and environmental protection goals has continually
been a focus of researchers.

The EVRP is an extension of vehicles routing problem
(VRP), but there are obvious differences between them. (1)
Different transport means result in different energy con-
sumption functions. Compared with traditional vehicles,
EVs generally have a range constraint of about 100-200 km.
Due to the characteristics of urban time-varying networks,
road congestion, and customer point service requirements,
the EV range may be reduced. To meet distribution needs,
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EVsmay need to be recharged in transit. (2) The EVRP needs
to consider the charging strategy of EVs in the routing
planning process [4]. (3) If EVs need en route fast charging
in the EVRP, the selection of social charging stations,
queuing, charging time, and charging efficiency have an
important impact on path planning. Therefore, the EVRP is
more complex compared with traditional VRP.

Currently, the EVRP is a focal area of research. Beltran
et al. [5] proposed using EVs in urban transportation and
established an optimization model with the minimization of
the transportation distance as an objective. Erdoan and Miller-
Hooks [6] were the first to put forward the EVRP. In view of
the problems of EVs (i.e., low mileage on a single charge and a
lack of charging facilities), they studied an EVRP with time
windows that accounted for charging strategies. In addition,
they established a mixed integer model with the minimization
of the travel distance as an objective and solved it using an
improved saving algorithm and a clustering algorithm.
Schneider et al. [7] studied the last-kilometer logistics of EV's
and took into account the effects of client’s time window,
vehicle load and single-charge mileage constraints, and en
route charging. They solved the problem using a variable
neighborhood search and tabu search-combined heuristic al-
gorithm. Goeke and Schneider [8] studied an EV power
consumption model based on relevant factors, such as vehicle
speed, vehicle load, and road gradient, and established an
EVRP model for driving and energy consumption costs by
considering charging strategies. Yang et al. [9] considered the
time-of-use (ToU) electricity price when optimizing and
solving the EVRP and designed an EV route planning and
charging strategy selection model under the ToU electricity
price. They also designed a genetic algorithm for solving this
model. Desaulniers et al. [10] took into consideration four
charging strategies when optimizing an EVRP with time
windows. They obtained an optimum charging method by
optimizing the four charging strategies under a client time-
window constraint. Jie et al. [11] and Hiermann et al. [12]
examined a combination of multiple vehicle types and the
logistic distribution route problem of EVs. Jie et al. [11] dis-
tinguished various vehicle types based on factors such as
battery capacity, power consumption rate per unit, and vehicle
load and designed a branch-and-price algorithm for finding an
optimal solution to the problem. Hiermann et al. [12] rationally
configured the fleet structure for distribution based on the
differences between EV types in terms of energy consumption
and load. To better conform to reality, Li et al. [13] planned
mixed fleets of conventional vehicles and EVs for enterprises
and thereby provided decision-making support to the gov-
ernment for choosing locations of charging facilities and to
enterprises for logistic operation management.

Cold chain logistics for fresh food products is also a focus
of research in China and elsewhere. Tiwari and Chang [14]
optimized the route of vehicles in cold chain logistics for
fresh products with the minimization of the travel distance
and carbon emissions as objectives. Kumar et al. [15]
established a multiobjective (total cost and total emissions)
cold chain transportation route problem. Rabbani et al. [16],
Amorim and Almada-Lobo [17], and Wu et al. [18] intro-
duced the freshness of fresh products into cold chain
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distribution route optimization for fresh products. Zhang
and Liang [19] established a cold chain vehicle route opti-
mization model with the minimization of the total cost of
cold chain logistic network construction and transportation
as an objective. Devapriya et al. [20] established a coordi-
nated production and distribution optimization model for
perishable products with the minimization of the total
distribution cost as an objective. They also designed a mixed
heuristic algorithm to solve the model. Li et al. [21] in-
vestigated a new integrated planning problem for intelligent
food logistic systems. They formulated a biobjective mixed
integer linear programming model that considers the two
objectives: minimizing total production, inventory, and
transportation cost and maximizing average food quality.

The VRP is a typical NP- (nondeterministic polynomial-)
hard problem. As the number of nodes increases rapidly, an
exact algorithm is rather difficult to employ to solve large-
scale VRP. Currently, there are many VRP optimization al-
gorithms, such as genetic algorithm [22], local search algo-
rithm [23], tabu search algorithm (TSA) [24], simulated
annealing search algorithm [25], and ant colony algorithm
(ACA). According to the characteristics of the EVRP model in
this paper, the ant colony algorithm is designed to solve the
problem. Ant colony algorithm is a bionic random search
algorithm originated from nature. Many scholars at home and
abroad have applied it to various fields of life. It has made
more outstanding achievements in combinatorial optimiza-
tion, such as traveling salesman problem [26], scheduling
problem [27], robot control system problem [28], and per-
sonalized trip planning problem [29]. ACA has the charac-
teristics of distributed computing, no central control, and
indirect communication between individuals, so it is easy to
combine with other algorithms. For example, ACA combines
with BP neural networks [30], genetic algorithm [31], etc.
VRP is a complex discrete-time system, and many literature
studies show that ACA has a broad development prospect in
the field of VRP. Chen et al. [32] studied the optimization of
the transportation routing problem for fresh food by an
improved ant colony algorithm based on tabu search. Tang
et al. [33] studied the low-carbon vehicle routing problem
model; they designed an improved ant colony algorithm for
solving this model, and chaotic disturbance mechanism was
introduced to update the ant pheromones on the path. Fang
and Ai [34] studied the hybrid ant colony algorithm to solve
the cold chain logistic distribution optimization model.

A review of the literature published by researchers in
China and elsewhere finds that in-depth research can still be
conducted in the following several areas. (1) The available
studies have mostly independently investigated the EVRP
and the cold chain distribution route optimization problem
but less frequently considered the optimization of urban
cold chain distribution with EVs. (2) Studies on the effects of
the external environment on the distribution with EVs mostly
have considered that the vehicle speed is constant and there is
only one road network type, overlooking the impact of dy-
namic traffic in a road network on the actual distribution
process with EVs. (3) The available studies have mostly con-
sidered the biggest continue voyage course, but in the process
of electric vehicle distribution, when and where to quickly
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charge is also a key issue. (4) When examining en route EV
charging, most studies have only considered the charging time
but overlooked the queuing time at the charging station. All of
the above are the primary motivations of this research.

The main contributions of this paper can be summarized as
follows: (1) According to the characteristics of fast charging of
EVs in social charging stations, the queuing and charging
process model of EVs is employed. (2) An improved adaptive
ant colony algorithm is designed to solve the distribution
optimization model with time windows for EVs in cold chain
logistics for fresh products. (3) The charging station placement
strategy based on the minimum power consumption principle
is designed to solve the key problem of when and where to fast
charge in the distribution process. (4) Based on the perspective
of considering the economic cost of distribution and the cost of
fresh value loss, the EVRP for urban fresh distribution under
the time-varying road network is studied.

The remainder of this paper is organized as follows. In
Section 2, we describe the mathematical model and the cost
analysis of EV’s in cold chain logistics. In Section 3, the improved
ant colony algorithm is proposed with the entire design process
of the algorithm. In Section 4, experiments with the Solomon
benchmark are performed to analyze the impact of different
types of cases and optimization objectives on the performance of
the algorithm and compared with other excellent algorithms.
Finally, Section 5 gives an overall conclusion.

2. Description and Modeling of the Problem

2.1. Description of the Problem and Basic Assumptions.
The problem of distribution route optimization for EVs in cold
chain logistics for fresh products under time-varying urban
traffic conditions can be described as follows. A certain dis-
tribution center distributes fresh agricultural products to end
clients via EVs. The EVs leave the distribution center, complete
all the distribution tasks, and then return to the distribution
center. The location, time window, and demand at each client
point are known. The time-varying urban road network traffic
information can be obtained from traffic control authorities.
During the distribution process, the EVs can be charged at
public charging stations as needed. Under these conditions, a
distribution plan is formulated with the minimization of the
total distribution cost as an objective. To clarify the scope of
application of the study, the following assumptions are made:
(1) There is only one distribution center in the distribution
network. This center has an ample supply of EVs of the same
type. (2) Each EV leaves the distribution center on a full charge
and immediately returns after completing the tasks. (3) The
demand at each client point is less than the capacity of each EV.
There is also a service time-window requirement. An EV can
reach a client point to provide service at an earlier or later time
but then will pay a certain penalty. (4) Vehicle speeds in all the
sections of the road network are updated every 10min.
Considering the time-varying nature of network traffic, road
sections are classified based on the areas where two arbitrary
nodes are located. The road sections differ in time-varying
characteristics. (5) When its remaining battery capacity cannot
meet the distribution need, an EV will go to a charging station
for a fast charge. (6) Each EV has a fixed maximum load

capacity. In addition, one and only one EV serves each client
point. (7) The locations of the public charging stations are
known. The public charging stations have the same relevant
charging parameters. The queuing time for charging is un-
certain and depends on the time of day and the area.

2.2. Symbolic Parameters. N is the set of customer points; 0
represents the distribution center; F is the set of charging
stations; V represents the set of all nodes in a logistics
network, V=NUFU{0}. T is the set of the time period
throughout the day, T={T,T,,...,Tp}; P is the total
number of time periods. R is the set of the road section in the
road network, R = {R|, R, ..., Ry}; His the number of road
section types. A is the set of area, A = {A, A,,..., Ag}; Gis
the number of the area types. Other descriptions about
symbols are explained in Table 1.

2.3. Elements and Variable Analysis of Distribution with EVS

2.3.1. Analysis of Charging Needs and Power Consumption
Performance. Currently, there are three modes of charging an
EV, namely, battery replacement, slow charging, and fast
charging. Considering the high timeliness requirements of
urban cold chain distribution of fresh products, fast charging in
the delivery process is considered in this study. Time re-
quirements are not considered during the slow-charging
process. To overcome its low single-charge mileage problem
during the distribution process and improve its distribution
efficiency, an EV needs to undergo a fast charge at a public
charging station. In addition, the relatively long queuing and
charging process is an important component of distribution
with EVs. See elsewhere [35] for a discussion of the queuing
process. The queuing and charging process of an EV at a public
charging station conforms to the M/G/s standard multiserver
queuing system model (M means that the time interval for an
EV to reach a charging station follows the exponential dis-
tribution; G means that the charging time of an EV follows the
normal distribution; there are a total of s servers). Let p; be the
utilization ratio of charging equipment in the charging station i
(p; = (Ai/s;u;)). According to the classical little equation, the
average queuing time for the k" EV at charging station i is

s; szl yn S -1
o__ (sp)p < (sip)", _(sip1) > .

s (1 - pi)zwA,- 2 ont si(1-p)
(1)

During the fast-charging process, the charging time for
the k™ EV at charging station i is as follows:

L
tC _ Emax B Eik
ik =

. Vik: (2)

c

The energy consumption of electric vehicles is not only
related to the nature of the vehicle but also related to the load
and speed. In addition, part of the output power of the
electric refrigerated vehicle is converted into mechanical
power under certain transmission efficiency, and the pa-
rameters are shown in Table 2. When an EV whose load is Q,
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TaBLE 1: Symbols and descriptions.
Symbols Descriptions
K The set of distribution vehicles, K=1{0, 1, 2, ..., k}
Q The vehicle maximum capacity (kg)
E ax The maximum battery capacity of the EV (kWh)
Eiow The minimum battery power level for the vehicle to drive normally (kWh)
q; The demand of customer point i, g; < Q (kg)
t The unloading service time of customer point i (min)
[e; L] The time window of customer point i (min)
d; The driving distance of the vehicle from node i to node j (km), i,j € V
tijk The travel time of the k™ vehicle on the road (i, j) (min), k e K,i,j €V
t;}‘( The time at which the k™ EV arrives at point i (min),k € K,i € V
tﬁ The time at which the K EV leaves point i (min), k e K,i e V
E4 The remaining battery power level at the time of arriving at point i (kWh), k e K,i € V
EL The remaining battery power level at the time of leaving point i (kWh), k e K,i € V
Eij The power consumption for which the vehicle travels on the road (i, j) (kWh), k € K,i,j €V, (i,j) € R
;}‘( The load of the k”* EV at the time of arriving at point i (kWh), k e K,ie V
ﬁc The load of the K EV at the time of leaving point i (kWh), k € K,i € V
P, The fixed cost of per EV (yuan)
P, The labor and rent cost of EV per unit time (yuan/min)
P, The unit electricity consumption (yuan/kWh)
P, The unit electricity price of fast charging (yuan/kWh)
P, The refrigeration costs which generate during transportation process of unit time (yuan/h)
P The refrigeration costs which generate during unloading process of unit time (yuan/h)
P, The price of the unit commodity (yuan/kg)
Py The cost of waiting for the unit time if refrigerated EV arrives at customer node in advance (yuan/min)
P, The cost of punishing for the unit time if refrigerated EV is late to the customer node (yuan/min)
A The number of EVs that reach the charging station i (vehicles/h)
7 The number of EVs that have completed charging per unit time in the charging station i (vehicles/h)
si The number of charging piles in the charging station i
0, The freshness decay coefficient during the transportation process
aé The freshness decay coefficient during the unloading process
ti The average queuing time for EV k' at charging station i (min)
Wy, The area factor for charging demand which is introduced to differentiate the charging demand between different areas, A; € A
t5 The charging time for k™ EV at charging station i (min)
re The charging speed (kWh/min) of the public charging station
CNiax The maximum number of charging cycles
CE The cost of a battery (yuan)
Xijk The binary variable that is 1 when the k" EV is driving on road (i, j) and 0 otherwise
Vik The binary variable that is 1 when the k" EV is servicing customer point i and 0 otherwise
Zik The binary variable that is 1 when the k" EV is charging at point i and 0 otherwise

runs on a flat road at a speed of v, the running power
P(Qy,v) is expressed as follows [36]:

(m+Q) g f+v+(Ca Wy 12015))
36007 '

P(Q,v) =
(3)

2.3.2. Correlation Analysis of the Time-Varying Nature of a
Road Network. In atime-varying network, vehicle speeds vary
with the time period. Within the same time period, vehicle
speeds may also vary with the road section. Therefore, travel
time is difficult to be calculated and needs to be rationally dealt
with. Based on the previously proposed cross-time period
travel time calculation methods [37, 38], the real-time speed of

a vehicle within a sufficiently short time is used as its fixed
speed within the time period. To reflect the variation in road
sections where vehicles travel, it is also necessary to take into
consideration the types of road sections. On this basis, the
vehicle speed in the current road section is determined at the
current moment. The following shows a step function for the
speed at various times on an arbitrary road section:

1

vijp teTy,
2
vi, teT,, ..
Vi]' (t) = Y z > (l> ]) € R) (4)
VZ, t €Ty,

where the velocity value does not change in the same period
of time in the road (i, j). A number of factors, including road
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TABLE 2: Parameters and descriptions about the EV consumption
function.

Parameters Descriptions

Q, The current load of EV (kg)

v The current speed of EV (km/h)

M The bare vehicle weight (kg)

g The acceleration of gravity (m/s*)

n The mechanical efficiency of the transmission system
F The rolling resistance coeflicient

The air resistance coefficient
W, The windward area of the vehicle (m?)

O

type, travel time period, and time-varying vehicle speed, are
analyzed. The whole-day distribution time is evenly divided
into multiple time periods. In a time-varying network, ve-
hicle travel speeds are updated once every time period. Here,
the traveling of a vehicle on a specific road section is used as
an example. The travel time calculation process for the
vehicle in the time-varying network is analyzed as follows:

(1) Determining the road type r based on the areas
where the points i and j are located, and, on this
basis, the vehicle speed during the corresponding
time period is determined. Go to (2).

(2) The distance traveled by the EV when it travels at the
corresponding speed in the remaining time that is in
the current period, plus the distance that the EV has
already traveled, is calculated, and whether the total
distance obtained exceeds the distance of road (j, ) is
determined.

(3) If the total distance exceeds the distance of road (j, ),
the travel time is the sum of the travel time expe-
rienced by the EV before entering the current time
period and in the current time period. Where the
driving time of the EV in the current period is
obtained as follows: the distance of road (i, j) minus
the distance previously experienced divided by the
driving speed corresponding to the current period.

(4) If the total distance does not exceed the distance of
road (4, j), the EV will continue to drive in the next
period. Go to (2) and repeat.

The pseudocode for calculating the traveling time ¢; in
the time-varying traffic network is detailed in Algorithm 1,
and the corresponding parameters and descriptions are
shown in Table 3.

2.3.3. Cost Analysis of EVS in Cold Chain Logistics.
Based on the actual overall profit of fresh-food cold chain
distribution enterprises, the minimization of the total dis-
tribution cost (including economic cost of distribution and
fresh value loss cost, where the economic cost of distribution
consists of the fixed cost, time cost, energy consumption
cost, charging cost, refrigeration cost, and penalty cost) is set
as the optimization objective. On this basis, a route opti-
mization model for EVs in cold chain logistic distribution of
fresh products is established.

(1) Compute_time (d,-j,tiLk):

(2) Set tl = tf,d = dyj ty = the + (dIV]).
(3) While (t;; >tg,;)

4) d=d- vﬁ (tge — th);

(5)  tly =ty

(6) B=B+1;

(7) t; = Compute_time (d, tl;)

(8) End while

(9) Return £;;,

ALGORITHM 1: Calculation of the traveling time ¢, in the time-
varying traffic network.

(1). Fixed Cost of EVS. The fixed cost of EVs (C,) is primarily
their front-end cost. This cost is only related to the number
of refrigerated EVs that are used:

Cr=Py ) ) %oy (5)

keK jev

(2). Travel Cost of EVS. This cost (C;) is primarily the
product of the cost per unit time and the total running time.
The running time mainly includes the road travel time and
the client-point service time as well as the queuing time and
charging time at public charging stations. Thus, the time cost
of EVs can be calculated using the following equation:

C, =P, <Zzzxijktijk+ Zzyiktis

keKieV jev keKieN

P ETalied)

keK icF

(6)

(3). Energy Consumption Cost. Energy consumption cost
refers to the energy consumption cost of the vehicle in the
whole process of driving. Based on the calculation of power
consumption above, the total energy consumption cost (C3) is

C,=P;- Z Z Z XiitiinEijk- (7)

keK i€V jev

(4). Charging Cost. The charging cost (C,) is the total cost of
fast charging at public charging stations during the distri-
bution process. Thus, the fast charging cost of EVs is

Com PSS (Eme e g

ieF keK

(5). Refrigeration Cost. The refrigeration cost of a refrigerated
vehicle (Cs) is generally the cost of refrigerating agents and
energy consumption to maintain the temperature within the
vehicle. According to Fang et al. [34], the refrigeration cost
consists of the refrigeration cost during the transportation
process and the refrigeration cost during the loading and
unloading of goods:
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TaBLE 3: Parameters and descriptions about correlation analysis of time-varying nature.

Parameters Descriptions

Tg The time period B, B=1{1,2,..., P}

tg The start time of time period B, Ty = [t5,tp,]

vf} The speed that the k" EV travels on the road (i, j) at time period B (km/h), (4, j) € R

D The intermediate variable of the distance

tﬁ( The time at which the ¥ EV leaves point i (min), k e K,i e V

tl The intermediate variable of travel time

Cs = Z ZZPS‘tiﬂcx:‘jk*Zzps'ff'yik-

Lo : (9)
keK jeVieV keK ieN

(6). Penalty Cost. This cost (Ce) is incurred by the vehicle as a

result of violating the client’s time window during the

distribution process. Client i accepts service outside the time

window, but there is a penalty cost for failing to provide

service within the appointed time, which is equal to

Co = Ps Z Z max{ei - tf}c,O} + Po Z Z max{tﬁc -1, 0}.

ieN keK ieN keK
(10)

(7). Battery Loss Cost. Fast charging will significantly reduce
the service life of batteries. When the number of times a
battery has fast charged exceeds the maximum number of
times that it can withstand fast charging, the battery will be
discarded. Thus, in this study, the battery loss cost (C;) is
represented by a function positively correlated with the
number of fast charges an EV has undergone:

CE
Cr = N max 2 2 5

i€F keK

(11)

(8). Fresh Value Loss Cost. There are two primary causes of
damaged goods, namely, the passage of time during the
distribution and transportation process and changes in the
surrounding environment during the loading/unloading
and service processes. According to Fang et al. [34] and Li
and Fan [39], a fresh-product freshness decay function is
introduced to calculate the cost of damaged goods (Cs):

C1 = Z Z)’ik‘P7“L’<1—‘3_a1 (t’{?‘_ték)>> (12)
keK ieN
_ .48
Csr = Zzyik'PfQiLk(l—e azt")) (13)
keK ieN
Cyg = Cg + Cgy. (14)

Equation (12) shows the fresh value loss cost during the
transportation process. Equation (13) shows the fresh value
loss cost when loading goods onto the vehicle and unloading
goods from the vehicle.

2.3.4. Modeling. Based on the above description, a distri-
bution route optimization model for EVs in cold chain
logistics for fresh products in a time-varying road network is

established, as shown below, by considering the difference in
en route charging time and queuing time for charging and
with the minimization of the total cost of logistic distri-
bution that includes economic cost (consisting of the fixed
EV cost, time cost, energy consumption cost, refrigeration
cost, charging cost, time penalty cost, and battery loss cost)
and fresh value loss cost as the objective function Z:

mnZ=C,+C,+C;+C,+C;+C, +C, +Cg, (15)
s.t.

D Xk = D, D Xpu =1 VKkEKpeN, (16)
keKieN keK jeN

Y xp= ) xg=1 VkeK, (17)
jeNUM ieNUM
Y 4yx<Q VkeK, (18)
i€V
Ej = Emax, VkeK, (19)
Ef(1-zy) +z3Emax = Ej, VieV,kekK, (20)
Emax>Ej >Elow, VieV,keKk, (21)

Ef <El—Ej+ My(1-x3), VijeVikeK (22)

th+(1-zy) # 8] +z4(tg +15) =ty VieV,keK,

(23)
i =t + Mo(1-x;) 2t Vi, jeV,keK,  (24)
xijk €{0,1}, Vi, je V,k €K, (25)
v €{0,1}, VieN,keK, (26)
zix €{0,1}, VieFkekK (27)

Constraint (16) indicates that each customer point can
only be serviced by one EV and all customer points are
serviced; constraint (17) indicates that each vehicle’s starting
point and returning point are the distribution center;
constraint (18) indicates that the delivery vehicle’s cargo
weight cannot exceed the vehicle weight; constraint (19)
indicates that the vehicle is fully charged when departing
from the distribution center; constraint (20) indicates that the
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vehicle is fully charged when departing from the public charging
station; constraint (21) indicates the vehicle’s power level limits
when arriving at any node, which cannot be lower than the
minimal power level for normal driving or higher than the
battery capacity constraint; constraint (22) indicates the power
levels when the vehicle leaves node i and arrives at node j, and
MO is a very large positive constant number; constraints (23) to
(24) indicate the time constraints: constraint (23) indicates the
time constraints on a vehicle arriving at and departing from
node i, constraint (24) indicates the time relationship between
the electric vehicle leaving node i and arriving node j, and MO is a
very large positive constant number; constraints (25) to (27)
indicate variable value constraints.

3. Improved Ant Colony Algorithm
(IACA) Design

Because the ant colony algorithm has a positive feedback
mechanism, strong solving ability and robustness, and can
be integrated with other optimization algorithms, in this
study, we modified the basic ant colony algorithm to propose
an improved ant colony algorithm for solving the above
problem. The corresponding parameters and descriptions of
IACA are shown in Table 4.

3.1. State Transition Strategy. The ants determine the sub-
sequent service client point j through the state transition
strategy based on client point i. The following goes over the
procedure in detail.

First, the transition probability P for ant m to travel
from the node i to the node j is calculated:

a B 0
WSl
P:;l = ZseCE( [Tis]a [ﬂis]ﬁ [85]6 + 1) " (28)
0, otherwise,

where «, 8, and 0 are the weights of the pheromone concen-
tration, the visibility, and the time-window span, respectively.
According to the method proposed by Li et al. [40] for obtaining
the adaptive and expected pheromone heuristic factors,

NC )

=1+ 3<4
“ NC max

(29)
NC
pea-2( )
NC max
Then, to prevent the algorithm from falling into a local
optimum and avoid premature stagnation, the state tran-

sition strategy is improved based on the Roulette wheel
method using the following equation:

arg max{PZ.l}, VR, <R,
jeCa
/= randomly selected point j, ( je CL),
based on Roulette wheel method, VR, >R,,.
(30)

An algorithm parameter Ry in the interval of [0, 1] is
introduced. When ant m selects the subsequent client point,
arandom number in the interval [0, 1] will be generated. The
next client point to which the ant transitions is determined
by comparing R, and R;. When R, <R, the point with the
highest transition probability is selected as the next service
client point; otherwise, the ant selects the next client point
according to the procedure of the Roulette wheel method
[34].

3.2. Pheromone Update Strategy. To allow the search process
to be more instructive, the pheromone of the road sections
composed of the routes established by all the ants upon
completion of traversing is updated. The update rules are as
follows:

M

new _ _old m

T =T (1-0)+ Z Arij,
m=1

.. 31
—Nc antmtravelson theroad (i, j), (31)
m
A, ;= m
0, otherwise,
where ‘r?jld is the pheromone of the road section (i, j) before

new
j

the current iteration and 7
after the current iteration.

is the updated pheromone

3.3. Charging Station Placement Strategy Based on the Min-
imum Power Consumption Principle. During the distribu-
tion process, an EV needs to satisfy not only the vehicle load
constraint but also the power constraint. That is, the en route
charging behavior of an EV needs to be taken into con-
sideration. Therefore, when constructing a feasible solution
for a single ant, it is necessary to first construct a feasible
solution that satisfies the vehicle load constraint and then
determine the power constraint for the EV at each client
point. If the solution does not satisty the vehicle load
constraint, a charging station is placed based on the mini-
mum power consumption principle. The following shows
the procedure in detail:

(1) First, an initial feasible solution that satisfies the
vehicle load constraint is generated. Then, the
remaining power Ej is calculated when the ants
reach each client point. If E; > E low at all the client
points, then the EV does not need to be charged en
route. The operation is terminated. Otherwise, the
first client point i is determined where the power
constraint is not satisfied and go to operation (2).

(2) Finding the charging station that requires the lowest
power consumption to reach from the client point
preceding client point i and determining whether the
remaining power after reaching this charging station
satisfies the power constraint. If the constraint is
satisfied, the charging station is put between the
client point preceding client point i and client point 7.
The EV has a remaining power of Emax after
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TaBLE 4: Parameters and descriptions of IACA.

Parameters Descriptions

i The pheromone concentration, 7is the pheromone matrix

1ij The visibility (n;; = (1/d;;))

6j The time-window span function (6j = (1/[lj - ej]))

M The total number of ants

M The current ant number

CE, The maximum iteration number

NC,hax The maximum iteration number

NC The current iteration number

I The volatilization factor

w The total pheromone strength

BC The global optimal value

BR The globally optimal route

Ne The fitness value of ant m in the NC iteration
e The optimal fitness value in NC iteration

RT The temporary set of nodes that stores the ant m route

E2()) Temporary variable that represents the remaining electric quantity when ant m reaches customer point j

Lr Temporary variable that represents the current load of ant m

FA()) Temporary variable that represents the fresh value loss of customer point j when ant m reaches customer point j

€ The minimum threshold for the ratio of the fresh value loss to the fresh value

VN,, The vehicle number identification of ant m

reaching the charging station. The EV goes on to
fulfill the service at client point i. If the constraint is
unsatisfied, another client point is found by forward
recursion and operation (2) is repeated until finding
the appropriate charging station, which is then placed.

(3) Updating the remaining power when reaching client
point i and all the client points following client point
i, and go to operation (1).

The corresponding process is shown in Figure 1.

3.4. Algorithm Process. By the integration of all the steps,
described above, we propose an improved ant colony algo-
rithm for solving the distribution route optimization model
for EVs in urban cold chain logistics for fresh products under
time-varying traffic conditions. The optimization objective of
the model is the total distribution cost. The general structure
of the improved ant colony algorithm is shown in Algorithm
2, the corresponding process is shown in Figure 2, and the
relevant parameters are shown in Table 4.

In order to further analyze the relationship between cost
elements in the model, we take economic cost and fresh
value loss cost as two targets, respectively, to solve the
problem. The biobject optimization question is dealt with by
the main object method [41]. The economic cost is chosen as
the main objective, and the fresh value loss is taken as the
constraint condition to solve the biobject optimization
problem. The selection of the main objective function de-
pends on the strategic planning of fresh e-commerce en-
terprises. The specific transformation is as follows:

minZ, =C, +C, +C; +C, +Cs + C,, (32)
F2(j

minZ, = Cg —> MS& (33)
P,-d,

The objective function (32) minimizes the economic
cost; the objective function minimizing the fresh value loss
cost is converted to constraint (33) by the transformation.
Constraint (33) which indicates the ratio of the fresh value
loss to the total fresh value of each customer point should be
lower than the minimum threshold e. According to the
characteristics of the model, we further improve the ant
colony algorithm. For each ant route selection, we added the
fresh value loss ratio constraint. The specific process is
shown in Algorithm 3.

4. Simulation Tests

4.1. Test Settings. Because of the diversity of customer dis-
tribution in fresh cold chain distribution, the data of the test
example were from the international standard EV route
databases [42]. Considering various factors of the EV dis-
tribution, we used the data of the type C (concentrated
distribution), type R (random distribution), and type RC
(mixed distribution) examples of the international standard
of the EVRPTW database. In each example, there are 20
charging stations (No.l to No.20), 100 customer points
(No.21 to No.120), and 1 distribution center (No.0). Con-
sidering that there are multiple scenarios for the coordinates
of fresh-product cold chain distribution clients, (1) the
starting and ending times of the model are set to 7:00
(corresponding to time 0, i.e., O0min) and 24:00 (corre-
sponding to 1,020 min), respectively. The length of each time
period is 10 min. According to urban traffic patterns, the
period 7:30-9:00 (i.e., 4"-12" periods) and the period 17:
30-19:00 (i.e., 64™-72" periods) are set as traffic congestion
periods (vehicle speeds vary with the road-section type), and
the other periods are set as normal periods. According to
Xiao and Konak [37], let @ =0.1. Three vehicle speeds
[VR(1 - ®),VR(1 +2®), VR(1 — 3®@)] are allowed. Based
on the T value of the time period, the remainder function
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Search for the charging station with the
Start lowest power consumption

Push forward the
previous
customer point

Calculate the current EV Calculate the amount of the remaining
remaining electric quantity electricity at the charging station

Whether the quantity constraint is met

Whether the remaining power can meet
the EV to reach the next customer point

Select charging stations and update route

Go to the next client point e .
information

F1GURE 1: Charging strategy flowchart.

(i) Input: traffic network information, electric vehicle information, customer points, charging station related information, etc.
(ii) Output: optimal path BR and optimal value BC

(1) Set M, NCppax> o, 3, 6, etc.

(2) NC=1

(3) while NC#£NC,_,,

(4) Initialize the ant colony path RY,, pheromone matrix CL. All ants go back to the distribution center

(5) For m=1:M

(6) while Cﬁ +J

(7) Select customer point j according to state transition strategy
(8) if LT + 9;<Q
9) if E2 (j) < Epoy
(10) Insert the charging station in the route according to the minimum power consumption principle and update the RY,
information
(11) end if
12) Insert the customer point j to the end of the route R? , update tabu list, delete j from C,. If j is the first service node,
calculate the departure time.
13) else Lﬁ +9;>Q
(14) Ant m returns to the distribution center, insert 0 to the end of R%, VN,, = VN, + 1, LT =0
15) end if

(16) end while

(17)  end for

(18)  Calculate the fitness of each ant and select the optimal value for this iteration f¢
(19)  Update the segment pheromones according to each ant’s path and fitness

(20) if f3€<BC

(21) BC = f}€, update BR
(22) end if

(23) NC=NC+1

(24) end while

(25) return BC, BR

ALGORITHM 2: IACA for the model that targets the total cost of distribution.



10

Initialization parameter, NC = 1

Put M ants in the distribution center, NC=NC+1,m=1 Q

Initialize the ant m path, tabu list, and pheromone
matrix
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Return to
istribution center

Meet the charge constraint

Insert the customer point n; to
the end of the path, update C1

Select customer point n; according to state transition strategy

Insert the
charging station
in the path
according to the
minimum power
consumption

Return to distribution center,
and calculate fitness

Update the pheromone matrix

Select the optimal value and
path of this iteration

NC = NCmax

End and return the result

FIGURE 2: IACA for the model that targets the total cost of distribution.

(1) For m=1:M
(2) while CL + 9
(3) Select customer point j according to state transition strategy
(4) if LT +q i1<Q
(5) if E2 (j) < By,
(6) Insert the charging station in the path according to the minimum power consumption principle and update the R%,
information
(7) end if
8 if (F2(j)/P,- dj)<e
9) Insert the customer point j to the end of the path R and delete j from CY
10) if j is the first customer point that is served by EV
1) Calculate the EV departure time
12) end if
13) else (F2(j)/P,- d;)>e
(14) Ant m returns to the distribution center, insert 0 to the end of R%, VN,, =VN,, +1, Lfn =0
(15) end if
(16) else LT +4;>Q
17) Ant m returns to the distribution center, insert 0 to the end of R%, VN,, = VN,, + 1, LT =0
(18) end if
(23) end while
(24) end for

ALGORITHM 3: Intermediate process of IACA for the optimization model with the fresh value loss constraint.
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7 =mod (T, 3) is used. The 7 values of 0, 1, and 2 correspond
to three vehicle speeds during the normal time periods. The
vehicle speeds vary with the road type. (2) In the actual
distribution, the nodes are not connected by straight roads
but by multiple roads; therefore, using the straight line
distance instead of the distance between two points will lead
to quite different from the actual situation. This paper in-
troduces the circuitous coefficient § (6 = 1.5)[43], and d; is
the product of the straight-line distance between two points
and the circuitous coefficient. (3) To be more consistent with
real life, the areas where any nodes are located within the
road network are classified into three types with urban
inner-ring highways as boundaries ((40, 40) is the center of
each inner ring; the radii of the second and third rings of the
city are 20 and 30, respectively). The area within the second
ring is denoted by A,. The area between the second and third
rings is denoted by A,. The area outside the third ring is
denoted by A;. (4) Based on the area where any two arbitrary
nodes are located, road sections are classified into six types.
Table 5 summarizes the attributes of the road sections.

The vehicle had an unloaded weight of 4000 kg, with a
capacity of 200 weight units; assuming that one weight unit
is 10kg, the vehicle’s load capacity is 2 tons. The model
parameters are shown in Table 6, and the algorithm pa-
rameters are shown in Table 7. The calculation was per-
formed using MATLAB R2016 on a PC with a 2.0 GHz CPU
and 8G memory.

4.2. Analysis of the Stability of the Algorithm, Charging
Planning, and Departure Time Based on a Large-Scale Dataset.
To examine its stability, the proposed algorithm was tested
on the R204 dataset. The program was run 10 times. The
average running time was 378.491 s. This demonstrates that
the proposed algorithm can produce an optimum EV route
planning scheme within a relatively short time. Figure 3
shows the optimum EV route planning based on the R204
dataset (the cyan and brown rings are the second and third
rings of the city, respectively).

The R204 dataset was used in the example, and the
detailed route optimization scheme is shown in Table 8. In
Table 8, “VN” represents the vehicle number; “EVR” rep-
resents the vehicle route; 0 stands for the distribution center,
1-20 for the charging stations, and 21-120 for the customer
points; “ST” represents the EV departure time/(min); “ET”
represents the end of the EV distribution time; “CN” rep-
resents the number of times EV is fast charging; “CT”
represents the EV charging time/(min); “QT” represents the
EV queuing time for charging/(min); “TT” represents the
total EV travel time/(min). The test calculation results show
the following. The total distribution cost is 5,579.2 yuan.
Eight EVs are used. The travel distance is 1,164.6 km. The
fixed, travel, refrigeration, fresh value loss, energy con-
sumption, charging, penalty, and battery loss costs are 1,600,
1,429.3, 397.4, 741.3, 238.2, 187.2, 760.8, and 225 yuan,
respectively. Table 8 summarizes the routes and times in
detail. The following can be derived from Table 8. (1) A
comprehensive analysis of the EVR and the CN finds that
there is a significant difference in the distribution route

11

between EVs due to limiting factors (e.g., time-varying road
network conditions, load, and battery capacity). The 5™ and
7™ EVs have the most distribution tasks, serving 15 clients.
The 8™ EV has the fewest, only 9 clients. The 5%, 6, 7, and
8™ EVs need to be charged at public charging stations during
the distribution process so that they can continue to com-
plete their distribution tasks, whereas the other EVs do not
need to be charged during the distribution process. This
suggests that to complete their distribution tasks, EVs need
to go to public charging stations for charging to increase
their single-charge mileage and expand their distribution
area within a short time. (2) An analysis of the ST finds that
the 1%, 279, 3™, 4™ 6™ 7" and 8" EVs depart at time 0 from
the distribution center to distribute goods, while the 5™ EV
departs at the other time. If departing at time 0, an EV needs
to bear a relatively high time-window penalty cost. This
suggests that a logistic enterprise needs to scientifically plan
routes based on the actual conditions (e.g., road network
conditions and time windows at client points). (3) An
analysis of the QT and CT finds that the 5™, 6™ 7, and 8™
EVs extend their passage range by fast charging, but the
travel time of EV is increased due to charging time and
queuing time. It is obvious that in all charged EVs, the
hi%hest proportion of queuing time to the travel time is 6.6%
(5™ EV), and the smallest proportion is 4.7% (7' EV). The
hi%hest proportion of charging time to the travel time is 7.9%
(6™ EV), and the smallest proportion is 6.3% (7™ EV). In
addition, the highest proportion of the sum of charging time
and queuing time to the travel time is 13.9%. Therefore, in
the distribution process, charging time and queuing time
cannot be ignored. (4) An analysis of the ST and ET finds
that the 1%, 279, 3, 4™ 6™, 7" "and 8™ EVs operate during
the morning peak congestion time period only, and the 5

EV operates during the evening peak congestion time period
only. This demonstrates that the proposed algorithm can
relatively effectively avoid congestion time periods and
improve the distribution efficiency of vehicles.

4.3. Analysis of Vehicle Path Planning for Various Types of
Cases. Fresh-product electronic commerce enterprises have
various types of clients distributed in various patterns. In
view of this, solutions are found based on various Solomon
datasets. In the type-C dataset, the clients are distributed in a
concentrated area, the time windows are less than 1h, and
the client service time is relatively long (90 min). In the type-
R dataset, the clients are distributed randomly, the time
windows are greater than 1h, and the service time is rela-
tively short (10 min). In the type-RC dataset, the clients are
distributed in a mixed manner, most of the time windows are
30 min, and the service time is 10 min. Figure 4 shows the
optimal route map based on various datasets.

The experimental results are shown in Table 9. In Table 9,
“EX” is the dataset type, “TC” is the total distribution cost
(yuan), “VD” is the total travel distance (km), “ECC” is the
energy consumption and charging cost (yuan), “TMC” is the
time management cost (yuan) (including the time cost and
the penalty cost), “RC” is the refrigeration cost (yuan), “VL”
is the cost of fresh value loss (yuan), “VN” is the number of
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TaBLE 5: Attributes of various road sections.
Road-section type Road-section describe Vehicle speeds at different periods (km/h)
? icA,jeA Normal periods: VR =30, three speeds: (27, 36, 21); congestion periods: 20
? icA,jeA, Normal periods: VR =40, three speeds: (36, 48, 28); congestion periods: 20
? icA,jeA, Normal periods: VR =50, three speeds: (45, 60, 35); congestion periods: 30
? icA,jeA, Normal periods: VR =60, three speeds: (54, 72, 42); congestion periods: 30
? icA,jeA, Normal periods: VR =70, three speeds: (63, 84, 49); congestion periods: 40
? icA;jeA, Normal periods: VR =80, three speeds: (72, 96, 56); congestion periods: 40
TABLE 6: Model parameters.
Parameter Description Value
E,ox The EV maximum battery capacity (kWh) 60
Ejow The EV minimum battery power level (kWh) 12
P, Fixed cost of per EV (yuan) 200
P, Travel cost of EV per unit time (yuan/min) 0.5
P, Cost per unit electricity consumption (yuan/kWh) 0.5
P, Unit electricity price of fast charging (yuan/kWh) 1
P, Refrigeration costs during EV transportation process of unit time (yuan/h) 5
Py Refrigeration costs during EV unloading process of unit time (yuan/h) 12
P, Price of the unit commodity (yuan/kg) 10
Py Cost of waiting for the unit time if refrigerated EV arrives at customer node in advance (yuan/min) 0.3
P, Cost of punishing for the unit time if refrigerated EV is late to the customer node (yuan/min) 0.3
si The number of charging piles in the charging station Li € F 10
Congestion periods:
A The number of EVs that reach the charging station i (vehicles/h) 25
Normal periods:15
Congestion periods:
Ui The number of EVs that have completed charging per unit time in the charging station i (vehicles/h) 3
Normal periods:2
© Area factor for charging demand which is introduced to differentiate the charging demand between IZI 1 '11
4 different areas,A; € A 2
A3:0.9
re Charging speed of the public charging station (kWh/min) 1.5
CNmax The maximum number of charging cycles 800
CE Cost of a battery (yuan) 45000
0, Freshness decay coeflicient during the transportation process 0.01
0, Freshness decay coefficient during the unloading process 0.02
g The acceleration of gravity (m/s’) 9.8
n The mechanical efficiency of the transmission system 0.9
f The rolling resistance coefficient 0.01
Cy The air resistance coefficient 0.7
W, The windward area of the vehicle (m?) 5.9
TaBLE 7: Ant colony algorithm parameters.
Parameter Description Value
NCmax The maximum iteration number 400
o Weight of the pheromone concentration 1
B Weight of the visibility
0 Weight of the time-window span 2
M The total number of ants 30
o The volatilization factor 0.2
w The total pheromone strength 100
Ry Algorithm parameter in the interval of [0, 1] 0.7

vehicles, and “CPUT” is the running time (s). Table 9 shows
the following. (1) The longest running time is only 395.1s.
This suggests that the proposed algorithm can produce an
effective optimization result for each dataset within a short
time. (2) The TC, TMC, RC, VL, and VN for the type-C

dataset are the highest. This is primarily because the service
time for all the type-C clients is 90 min (compared to the
service time of 10 min for the R- and RC-type clients), and
the total distribution time is relatively long. Consequently,
the TMC, VL, and RC, which are related to the total
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FIGURE 3: Vehicle route planning of the example R204.

TaBLE 8: Vehicle route optimization results of the example with the R204 dataset.

VN EVR ST ET CN CT(CI/TT) QTQI/TT) TT

1 0-73-78-60-93-41-92-61-42-94-95-76-59-0 0 25770 0 0(0) 0(0) 257.70
2 0-47-48-96-97-23-99-53-101-98-54-55-91-109-26-0 0 35634 0 0(0) 0(0) 356.34
3 0-33-120-57-118-105-113-119-79-112-117-115-0 0 22019 0 0(0) 0(0) 220.19
4 0-72-51-108-27-102-68-67-39-31-82-30-110-0 0 31756 0 0(0) 0(0) 317.56
5 0-114-116-25-104-37-65-103-80-38-28-66-56-69-84-8-83-0  509.60 94637 1  32.01(7.3%)  29.02(6.6%) 436.77
6 0-46-32-100-88-87-43-77-62-107-22-15-111-81-0 0 39942 1 31.54(7.9%)  24.26(6.0%)  399.42
7 0-89-21-70-71-29-40-50-90-52-86-85-49-1-75-45-24-0 0 49856 1 31.32(6.3%)  23.65(4.7%)  498.56
8 0-74-44-34-64-36-106-12-58-63-35-0 0 37217 1 29.26(7.8%)  19.58(52%)  372.17

“VN” represents the vehicle number; “EVR” represents the vehicle route; 0 stands for the distribution center, 1-20 for the charging stations, and 21-120 for
the customer points; “ST” represents the EV departure time; “ET” represents the end of the EV distribution time; “CN” represents the number of times EV is
fast charging; “CT” represents the EV charging time; “QT” represents the EV queuing time for charging; “I'T” represents the total EV travel time.

distribution time, are relatively high, resulting in the highest
TC. (3) The VD and ECC for the type-C dataset are lower
than those for the type-R and -RC datasets. This is mainly
because in the type-C dataset, the clients are distributed in a
relatively concentrated area, so the travel distance and time
are relatively short during the distribution process, resulting
in relatively low power consumption. (4) In these datasets,
the ECC accounts for a very small proportion of the TC, with
the highest proportion being 7.8% (in the R203-type data-
set). In comparison, the TMC, RC, and VL, which are related
to the delivery time, each account for a relatively large
proportion of the TC. The highest proportion of the sum of
these three costs to the TC is 80.0% (in the C103-type
dataset), and the smallest is 60.0% (in the R204-type dataset).
This suggests that reducing transportation time is the key to
effectively reducing the cold chain transportation cost of
EVs. Therefore, how to improve the single-charge mileage of
EVs and reduce their charging time and frequency is the key
to reducing the distribution cost of EVs in cold chain lo-
gistics for fresh products.

4.4. Analysis of Vehicle Route Planning for Various Optimi-
zation Objectives. The route planning produced by the
proposed algorithm is compared with that produced with
the minimization of the total travel distance of vehicles as an
objective. Table 10 summarizes the test results. In Table 10,
“min TC” is the minimization of the total distribution cost
(yuan), “min VD” is the minimization of the total travel
distance (km), and “min PC” is the minimization of energy
consumption (kWh). The meanings of “EX,” “TC,” “VD,”
and “ECC” are the same as in Table 9.

Table 10 shows the following. (1) The proposed model
can produce a lower total cost than models with other
objectives. (2) In the type-C dataset, the TC values obtained
with the three objectives differ relatively insignificantly. The
TC obtained with the minimization of the VD as the ob-
jective is 4.2% higher than that produced by the proposed
algorithm. The TC obtained with the minimization of the PC
as the objective is only 3.4% higher than that produced by the
proposed algorithm. In comparison, in the type-R and type-
RC datasets, the TC values obtained with the objectives differ
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FIGURE 4: Route planning based on various datasets. (a) Route planning based on C103. (b) Route planning based on RC203. (c) Route
planning based on C104. (d) Route planning based on RC204.

TaBLE 9: Simulation results of examples with different customer distributions.

EX TC VD ECC TMC RC VL VN CPUT
C103 11,805.7 998.2 311.2 5,118.2 1,696.7 2,623.30 10 395.1
C104 11,745.1 1,043.1 295.7 5,091.6 1,702.8 2,598.70 10 393.7
R203 5,873.80 1,287.8 461.2 2,405.3 410.7 771.6 8 381.2
R204 5,579.40 1,164.6 4253 2,190.4 397.4 741.3 8 378.5
RC203 6,865.8 1,317.8 431.2 3,123.1 527.2 871.8 9 390.2
RC204 6,712.4 1,240.2 443.1 3,042.3 501.8 812.7 9 388.8

“EX” is the dataset type, “TC” is the total distribution cost (yuan), “VD” is the total travel distance (km), “ECC” is the energy consumption and charging cost
(yuan), “TMC” is the time management cost (including the travel cost and the penalty cost) (yuan), “RC” is the refrigeration cost (yuan), “VL” is the cost of
fresh value loss (yuan), “VN” is the number of vehicles, and “CPUT” is the running time (s).
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TaBLE 10: Calculation results based on various datasets with various optimization objectives.
EX min TC min VD min PC
TC VD ECC TC VD ECC TC VD ECC
C104 11,745.1 1,043.1 295.7 12,236.3 959.1 261.0 12,143.9 962.4 249.9
R204 5,579.40 1,164.6 425.3 6,512.1 1,012.4 401.9 6,634.4 1,027.8 389.5
RC204 6,712.4 1,240.2 443.1 7,696.2 1,148.6 416.4 7,535.8 1,183.1 408.5

“min TC” is the minimization of the total distribution cost (yuan), “min VD” is the minimization of the total travel distance (km), and “min PC” is the energy
consumption (kWh). The meanings of “EX,” “TC,” “VD,” and “ECC” are the same as in Table 9.

relatively significantly. For example, in the R204-type
dataset, the TC obtained with the minimization of the PC as
the objective is 18.9% higher than that produced by the
proposed algorithm, and in the RC204-type dataset, the TC
obtained with the minimization of the VD as the objective is
14.6% higher than that produced by the proposed algorithm.

4.5. Analysis on the Economic Cost Analysis under the Different
Constraints of Fresh Value Loss. To analyze the relationship
between cost elements in the model, we take economic cost
and fresh value loss cost as two targets, respectively, to solve
the problem. We use the main object method to deal with it.
The economic cost is the main object, and the fresh value loss
cost is a secondary goal that is converted to the constraint
(the ratio of fresh value loss to total value of each customer
point should be lower than the minimum threshold). The
experiment was tested on the R204 dataset. Table 11 sum-
marizes the test results. In Table 11, “¢” is the minimum
threshold for the ratio of the fresh loss value to the fresh
value, “TC” is the total distribution cost (yuan), “EC” is the
economic cost (yuan), “VL” is the cost of fresh value loss
(yuan), “VN” is the number of vehicles, and “CN” represents
the number of times EV is fast charging.

Table 11 shows the following. (1) As the proportion of
fresh value loss decreases, the fresh value loss cost decreases,
but the total cost and economic cost increase. Because of the
improvement of customers’ requirements on the quality of
fresh goods, the travel time and the number of customers
serviced of each EV are relatively reduced, so more electric
vehicles are needed for distribution. (2) When the pro-
portion of fresh value loss is reduced, the number of cus-
tomers served, travel time, and the travel distance of each EV
are reduced; therefore, the probability of en routing charging
decreases. In addition, when the proportion is less than 5%,
EVs do not need en route charging.

4.6. Comparative Analysis of Various Algorithms. To ex-
amine its effectiveness, the proposed algorithm (IACA) is
compared with the classical ACA and the tabu search al-
gorithm (TSA). In the classical ACA designed by Devapriya
et al. [20] and the TSA designed by Li and Zhang [44], the
departure time for all the used vehicles is 0. In the classical
ACA, there is no time-window span factor or an
adaptive operator in the state transition rule. The R204 and
RC204 datasets are used in the test. Table 12 summarizes the
results. “EX,” “T'C,” “VD,” and “CPUT” are the same as in
Table 9.

TaBLE 11: Calculation results obtained using two algorithms based
on various datasets.

€ (%) TC EC VL VN CN
10 5579.4 4838.1 741.3 8 4
7 5621.7 4943.9 677.8 10 1
5 5813.2 5182.8 630.4 12 0
3 6250.4 5850.6 399.8 15 0

TaBLE 12: Calculation results obtained using different algorithms
based on various datasets.

EX Algorithm TC VD CPUT
IACA 5,579.4 1,164.6 378.5

R204 ACA 5,957.1 1,225.4 369.3
TSA 6,022.5 1,322.7 351.7

IACA 6,712.4 1,240.2 388.8

RC204 ACA 7,168.9 1309.1 379.9
TSA 7,298.4 1386.8 360.2

“TC” is the total distribution cost (yuan), “VD” is the total travel distance
(km), and “CPUT” is the running time (s).

The algorithms take the total distribution cost as the
target to solve the EVRP. The following can be derived from
Table 12. (1) The proposed algorithm (IACA) outperforms
the ACA and the TSA in terms of TC and VD. (2) In regard
to computational time, while the proposed algorithm takes
into consideration the calculation of the departure time and
the improvement of the state transition probability, which
are not considered in the ACA and the TAS, there is no
significant difference in computation time of the three al-
gorithms. The IACA can produce an optimal result within a
relatively short time. (3) Introducing the adaptive heuristic
operator and the expected heuristic factor effectively im-
proves the local search and global convergence performance
of the ACA.

5. Conclusion

The characteristics of EVs used in urban cold chain dis-
tribution of fresh products are analyzed. On this basis and in
view of the time-varying nature of urban road network traffic
and the overall power deficiency in EVs, a distribution route
optimization model for EV's in urban cold chain logistics for
fresh products in time-varying urban traffic networks is
established with the minimization of the total cost (including
economic cost and fresh value loss cost) as an objective. This
model accounts for the differences between urban areas,
road types, and queuing times at charging stations. This
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model also satisfies load, power, and client time-window
constraints. Moreover, a corresponding ACA is designed to
solve the model. Furthermore, the state transition strategy
and pheromone update are improved.

Results obtained from multiple tests show the following.
(1) When using EVs in cold chain distribution, it is necessary
to reasonably plan their distribution routes based on the
actual conditions (e.g., urban traffic network, client’s time
window, power consumption and battery capacity of EVs,
and public charging stations) to rationally avoid congestion
time periods and reduce the distribution cost. (2) Reducing
the distribution time is the key to reducing the cost of cold
chain transportation of fresh products. When using EVs in
urban cold chain distribution of fresh products, it is im-
portant to reduce charging time and frequency by means
such as improving battery capacity and increasing single-
charge mileage, to effectively reduce cost. (3) With the in-
crease of customers’ requirement for fresh value loss cost
reduction, the total cost will increase accordingly. Therefore,
it is necessary to scientifically plan the distribution route
according to the specific requirements of customers to
improve customer satisfaction. (4) The model and improved
ACA presented in this study can be used to rationally plan
distribution time, effectively avoid traffic congestion periods,
and reduce the distribution cost.

However, in the actual operation of urban cold chain
distribution of fresh products, logistic enterprises face a
more complex environment, such as the fresh commodity
diversity, the uncertainty about demand for fresh goods, the
dynamic nature of traffic information, multiple distribution
centers, multiple EV models, and time-of-use electricity
prices. Thus, the following several aspects need to be
addressed in future systematic in-depth studies: first, in the
actual traffic environment, the EVRP problem should
consider the dynamics and the speed randomness and study
its specific representation. Second, further consideration
should be given to different fresh goods damage and re-
frigeration temperature control. Third, more practical
constraints can be introduced, e.g., conducting a compre-
hensive analysis of the urban cold chain distribution of the
EVRP problem under different situations including multiple
distribution centers, multiple vehicle types, and multimodal
transport.
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