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Although transit stop location problem has been extensively studied, the two main categories of modeling methodologies, i.e.,
discrete models and continuum approximation (CA) ones, seem have little intersection. Both have strengths and weaknesses,
respectively. This study intends to integrate them by taking the advantage of CA models’ parsimonious property and discrete
models’ fine consideration of practical conditions. In doing so, we first employ the state-of-the-art CA models to yield the optimal
design, which serves as the input to the next discrete model. Then, the stop location problem is formulated into a multivariable
nonlinear minimization problem with a given number of stop location variables and location constraint. The interior-point
algorithm is presented to find the optimal design that is ready for implementation. In numerical studies, the proposed model is
applied to a variety of scenarios with respect to demand levels, spatial heterogeneity, and route length. The results demonstrate the
consistent advantage of the proposed model in all scenarios as against its counterparts, i.e., two existing recipes that convert CA
model-based solution into real design of stop locations. Lastly, a case study is presented using real data and practical constraints
for the adjustment of a bus route in Chengdu (China). System cost saving of 15.79% is observed by before-and-after comparison.

1. Introduction

Transit route design problem can be divided into two cat-
egories: transit network design and single transit route
design [1-5]. Well-designed transit routes constitute as the
basic bricks to the big transit network in many cities for
defending the wide spread of roadway traffic congestion. The
design of a single transit route mainly concerns the locations
of stops/stations and the service headways/frequencies
during the operation periods. Being physically inflexible (at
least for a short term), transit stop locations affect the service
accessibility to potential patrons as well as their experienced
level of service in terms of, e.g., commercial speed. On the
supply side, the design of stop locations also influences
transit agency’s operation efficiency in terms of vehicle fuel
cost and vehicle fleet size, for instance.

The transit stop location problem has been extensively
studied in the literature. Methodologically, two categories

can be identified: discrete models and continuum approx-
imation (CA) models. A majority of studies belong to the
discrete-method category. For instance, Vuchic and Newell
and Vuchic [6, 7] may be the two pioneering works. They
sought to find the optimal interstation spacings of a rapid
transit corridor to minimize passenger travel time and
maximize number of passengers, respectively. Later on,
Gleason [8] developed a set covering approach for locating
bus stops. This work was extended by Murray with a hybrid
set covering model, which determined the stop locations of
an existing route segment as well as the locations of new
stops for route extension in unserved areas [9]. Furth and
Rahbee [10] optimized bus stop locations from a set of
prespecified candidate stops in a bus route of Boston.
Similarly, Chien and Qin [11] identified a set of demand
points as candidate locations and proposed to minimize the
total system cost through finding the optimal number and
locations of bus stops. Recently, Ceder et al. [12] integrated
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the impacts of uneven topography into a bus stop location
model to more precisely account for users’ walking-access
speed and vehicles’” acceleration performance.

In the second category, CA models had been developed
as an alternative option in locating transit stops. Instead of
based on dozens of location variables, these models were
built upon a single stop density/spacing variable or function.
This parsimonious property endows the CA model with the
high-eflicient finding of the global optimum solution, or
sometimes the closed-form solution. The first endeavor in
this vein was made by Newell [13, 14]. Later, Wirasinghe and
Ghoneim [15] proposed a more general CA-based model for
determining bus stop spacing (expressed as a function of
location). Hurdle and Wirasinghe and Wirasinghe and
Seneviratne [16, 17] analyzed the influence of stop spacing
and line length with the objective function of system cost
minimization. Medina et al. [18] applied a similar CA-based
model to locate bus stops considering multiperiod demand
in Santiago, Chile. Mostly recently, Su et al. [19] incorpo-
rated environmental factors into CA models for an e-bus
stop location problem.

The CA models, however, have been criticized being too
idealized with unrealistic assumptions, such as a continuous
space for locating stops at anywhere along the route. Thus, it
is recognized that the designs offered by CA models are not
ready for implementation. Endeavors had been made to
enhance the applicability of CA models. In Wirasinghe and
Ghoneim and Medina et al. [15, 18], the continuous stop
density/spacing function was discretized into specific loca-
tions via the integral method. Yet their models still lack the
consideration of realistic street layout and practical location
restrictions, e.g., intersections, bridges, and natural obsta-
cles, where no bus stops should be placed.

This paper intends to fill the gap. We propose an op-
timization framework that integrates CA models with dis-
crete ones for locating bus stops with respect to location
constraint. The idealized design of the CA model serves as
input to the discrete model, which accordingly defines a
given number of stop location variables and formulates the
location constraint. The corresponding problem is a non-
linear multivariate optimization problem. A heuristic so-
lution algorithm is presented to find the optimal solution. To
the best of our knowledge, this is the first work connecting
CA and discrete models so as to furnish implementation-
ready transit route designs.

The remainder of the paper is organized as follows. The
next section introduces the existing CA and discretization
models. After that, a novel optimization model is proposed
for locating bus stops. In Section 3, the solution method is
developed to solve the bus stop location problem model.
Section 4 presents numerical studies of various experiments
in a hypothetical route and a case study in Chengdu (China).
Conclusions are drawn in the final section.

2. Models

Section 2.1 presents the state-of-the-art CA model of bus
route design, followed by the existing recipes that discretize
the solutions of the CA model into real designs. Sections 2
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and 3 propose our discretization recipe that offers the
improved designs and admit practical constraints on stop
locations. Table 1 summarizes the notation used in the

paper.

2.1. Continuum Approximation Model. Consider alinear bus
route with length L km. The daily operation time can be
divided into I periods, e.g., I = 2 indicating peak and off-
peak hours. For each period 0 = 1,. . ., I, the duration time is
denoted by Ty hours. The CA model of bus route design can
be expressed as the following minimization problem with
the decision variables/functions being headways hy and stop
density & (x) (as a function of location x, or equivalently stop
spacing function 1/8(x)) (Medina et al. [18]):

I L
hI:(lsl(I;) Z = ;::ITQ ,[0 (Ug (x) + Uy (x) + Uy (x)) (1a)

+ (Af + Aj (x) + Aj (x) )dx,

which is subject to

vehicle capacity constraint Og (hy, 8 (x)) < K5, (1b)
stop capacity constraint Og (hg, 8 (x)) < Ky, (1c)

hed(x)20, 0=1,2,....1, (1d)

where Z is the total generalized system cost, which is the sum
of bus users’ costs and the agency’s costs. The integrands
Uj(x), Uy (x), and Ujp(x) are patrons’ access/egress time
cost, waiting time cost, and in-vehicle travel time cost at
location x during period 6, respectively. The Ak, Ag (x), and
Af(x) are agency’s distance-based cost (irrelevant to loca-
tion x), time-based cost, and amortized infrastructure cost
during period 0. The O (hg, § (x)) is the maximum vehicle
load of the bus route, which is restricted from exceeding
vehicle capacity, Ky patrons/vehicle, by constraint (Ib).
Constraint (Ic) is the stop capacity constraint that guar-
antees the maximum amount of waiting patrons
Og (hy, 8 (x)) does not exceed the stop’s capacity K patrons/
stop. Constraint (1d) dictates decision variables/functions
being nonnegative. The Uj (x), Uy (x), Uy (x), Ak Ag(x),
A (x), Og (hg, 6 (x)), and Og (hy, 6 (x)) can be approximated
by hg and & (x), of which detailed expressions are referred to
our previous work [19] and omitted here for the sake of
brevity.

From the first-order conditions of (1a)-(1d), the fol-
lowing relationship can be derived for the optimal h; and
8(x)*[18, 19]:

h = min<\/f’;(5(x)*,d’;(x),dg (x), 0by (x)) ,hg"‘“‘>,
(2a)

0" = max(\[75(h; 1 (x).dj (), 0by (x)). 65" ), (2b)

where h; and J(x)" are interdependent, ie,

hg ~ f4(8(x)*) and 8(x)* ~fg(h9* ); d(x), di(x), and
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TaBLE 1: Notation.

Variables Unit Descriptions

I Number of operation time periods

L km Bus route length

N Number of stops

Z RMB/day Total generalized system cost

Ug (x) RMB Patrons’ access/egress time cost at x during period 6

Uy (x) RMB Patrons’ waiting time cost at x during period 0

Ué (x) RMB Patrons’ in-vehicle travel time cost at x during period6

A RMB Agency’s distance-based cost during period 0

Ag (x) RMB Agency’s time-based cost at location x during period 6

Ag(x) RMB Agency’s amortized infrastructure cost at x during period 6

Ug (s;) RMB Patrons’ access/egress time cost during period 0

Uy (s;) RMB Patrons’ in-vehicle travel time cost during period 0

Ag (s RMB Agency’s distance-based cost during period 0

AZ (s;) RMB Agency’s time-based cost during period 6

Ag(s;) RMB Agency’s amortized infrastructure cost during period 6

Ty h Duration of period 0

b (x),d3 (x) pax/km/h Boarding and alighting demand density at x during period 0
Y pax Onboard flow passing stop i

S; km Location of stop i

\ The restricted locations to be avoided from being stop locations

L7 km Left and right coverage boundaries of stop i

b, a? pax/h Boarding and alighting volumes at stop i during period 0

hg h Headway during period 6

oby (x) pax/h Onboard flow at x during period 6

8(x) Stop/km Stop density at location x

0 Subscript representing time periods

Parameters Unit Descriptions

a,,ay m/s> Vehicle acceleration and deceleration

Ky Pax/vehicle Vehicle capacity

K pax/stop Stop capacity

D km Minimum distance between bus stops and restricted locations

et RMB/h Value of access time

Vp RMB/h Value of in-vehicle travel time

pe RMB/km Unit cost of distance-based operation cost, e.g., vehicle fuel consumption cost

ys RMB/h Unit cost of the time-based cost, e.g., drivers’ wage and amortized vehicle purchase cost

p*e RMB/h Unit amortized costs of stop construction

pim RMB/h Unit cost of stop maintenance

v km/h Patrons’ average walking speed

vg km/h Vehicles’ cruising speed during period 6

th h Time delay due to bus deceleration and acceleration at stops

ty,t, h Average boarding and alighting delays per passenger

t, h Average delay caused by opening door and closing door

obg (x) are demand functions of boarding density, alighting
density, and onboard flow at x during period 0, respectively.
The hy™ is the maximum headway obtained from the vehicle
capacity constraint (1b). The min(-) operator in (2a) guar-
antees hj no larger than h§™, and thus, vehicle load never
exceeds the maximum capacity. The 83" is the minimum bus
stop density obtained from the bus stop capacity constraint
(1b). The max (-) operator in (2b) guarantees § (x)" no less than
8", and thus, the number of waiting patrons never exceeds
the bus stop capacity. The detailed expressions of f/(-) and
fg (+) can be found in Su et al. and Medina et al. [18, 19].
Based on the above analytical results, the efficient al-
gorithm can be readily developed using the iteration method
to find the optimal solution (see again in Su et al. and
Medina et al. [18, 19]). The solution to (1a)-(1d) is, however,
still not real design. The & (x)" is a continuous function in

space, as illustrated in Figure 1, and needs to be discretized
into specific stop locations (see the next section for the
discretization method).

2.2. Discretization Recipes in Literature. In the literature of
CA transit route design models, we found two discretization
recipes for translating §(x)" into real designs, namely, the
“midpoint” and “endpoint” approaches, as demonstrated in
Figure 2 (Medina at al. and Wirasinghe and Ghoneim,
[15, 18]). The underlining logic is straightforward: when the
integral of the stop density function yields an integer, one stop
should be located in the integral interval, e.g., [0,R;] and
[R,,R,] in Figure 2. Specifically, the midpoint approach
locates the stop in the middle of the integral interval, while the
endpoint approach locates at the end, as shown in Figure 2.
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Stop density §(x)*
e = N ©
g = U1 NN WU
T

(=}

0 1 2 3 4

5 6 7 8 9 10

Location along bus line x km

O Specific bus stop location

—— Bus stop density curve

Figure 1: Example of the optimal stop density function §(x)* (source: Medina et al. [18]).

Stop density 5(x)*

® ®
0 (RO) (R1) (R2)
Location along bus line x km
@ Stop location by using midpoint approach

X Stop location by using endpoint approach

F1GUrk 2: Illustration of two discretization recipes.

The two methods are formulated as follows. First, define
R; (R, =0) as the boundaries that let Ifji 8 (x)"dx yields
integer i =1,2,...,N, where N = JéS(x)dx is the total

number of stops along the route. Then, bus stop locations, s;,
are determined by

R, +R;

, 1=1,2,...,N, 3
3 i (3)

midpoint method s; =

endpointmethods; =R;, i=1,2,...,N. (4)

The endpoint method further includes a default stop at
x =0, ie., s, = 0. Given above stop locations, we obtain the
demand coverage of stop i by the left and right boundaries /;

and r;:
S, 1 +S; S+ S;
li=< 1—12 1>)ri=< i 21+1)’

i=2,3,...

(5a)
,N -1,
I, =0,

ry = L.

(5b)

Consequently, discrete system metrics can be computed:
e.g., broarding and alighting volumes at each stop by
b = fl“ d(x)dx,a? = L_’ d3(x)dx, respectively, and pa-
trons costs and agency costs in the next section.

It is worth noting that although (3) and (4) produce real
stop locations, the two discretization recipes have flaws. For
instance, they cannot guarantee that the discrete stops are
optimally located. This is because both midpoint and endpoint
methods neglect the locally nonuniform demand distribution,
which apparently impacts the specific locations of stops. In
addition, the existing recipes are blinded by ignoring practical
location restrictions. The consequence may be improper stop
locations that cannot be directly implemented in practice.

2.3. Proposed Discretization Recipe. Other than arbitrarily
determining stop locations, we propose a multivariate op-
timization model to do so and admit constraint of stop
locations. Given the knowledge of the total number of stops
obtained from the CA model, we accordingly define N
variables of stop locations, s;,i = 1,2,..., N. We also specify
the restricted locations to be avoided from being stop lo-
cations, S,k =1,2,...,K. Thus, we can formulate the
following optimization problem of minimizing the system
cost with respect to s;:

mSin Z Tez (Ug (s;)) +Ug(s:)) +(A§ (si)+ AZ (si)+Ag (Si))’

to6=1 i=1

(6a)
which is subject to
R, ,<s;<R, ie€{l,2,...,N}, (6b)
|si=Sk|=D, ke{l,2,...,K}, (6¢)
Os(s;) <K, (6e)
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where Uj(s;), Up(s;), A'g (sp), Ag (s;), and Aj(s;) are the
corresponding cost items derived based on s;. Constraint
(6b) defines the feasible space of s;. Constraint (6¢) restricts
stops from being located in the domain of any restricted
locations, ie., [S,—-D,S.+D], k=12,...,K. Con-
straints (6d) and (6e) are the capacity constraints of bus
vehicles and stops.

Computations of U§ (s;), Uj (s;), A’g (s;)s Ag (s, Ag(s),
and Og(s;) and Og(s;) are straightforward, and their ex-
pressions are given below:

Up(si) = ypj (db(x)+d“(x))(lv—px|>dx,

(7a)
i=1,2,...,N,

v ?Pf( +fd(5)+t9>, i=1,2,...,N-1,
Ug(s;) = V@
0, i=N,

(7b)

where p? is the onboard flow passing stop i, obtained by
Pl =25, b) - Z’J 1 a, and t, (s;) = max (t,b, t . )hg is bus
dwelling delay at stop i due to passenger boarding and
alighting:

L’“ (501-5,), i=1,2,...,N—1,
Ag(s)=1"" (8a)
0, i=N,
yds s 1
o i+l .
> +t +t, |, i=1,2,....,N—1,
Ab(s) he< g )
0, i=N,
(8b)
Y +V , i=1,2,...,N—1,
Ag(s)= ‘[0 =N (8¢c)
0\, *
Og (s;) = max(p; ) g (8d)
Oq(s;) = miax(bia +a?)h;. (8e)

Note in (6a)-(6e) that patrons’ waiting cost U}’ is dis-
carded from the total system cost because it is irrelevant to
stop locations. Also note that in (7a)-(7b)-(8a)-(8e), the
headways take the optimal h; obtained by the CA model
(1a)-(1d).

3. Solution Method

Problem (6a)-(6e) is a nonlinear optimization problem with
respect to N decision variables, s;. The interior-point of the
barrier method can be used to solve this problem. For any
inequality constraint f (x) in problem (6a)-(6e), we can use

a barrier function I (x) in objective function to replace the
inequality constraint f (x). As problem (6a)-(6e) is a
minimization problem, the used barrier function should
produce 0, when the constraint is satisfied; otherwise, the
barrier function produces co. Therefore, the barrier function
can be expressed approximately by

I(x) = {%)log(—?(x», (9)

where & is a parameter in the approximated barrier function
I(x). The larger is the value of &, the better is the approx-
imated function. Therefore, an iteration process can be used
to update the variable of s; by increasing the parameter &
[20]. In this paper, we directly employ the interior-point
algorithm of ‘fmincon’ function in Matlab 2018a. The
“fmincon” function is a built-in program in Matlab to solve
the nonlinear problems.

Admittedly, the above solution method does not guar-
antee a globally-optimal solution due to the nonconvex
nature of (6a)-(6e). Thus, we repeated the solution-
searching procedure 10 times for each instance examined in
the following numerical studies. Each time, the optimization
started with an initial solution generated from the ideal so-
lution to (1a)-(1d) by randomly adjusting stop locations that
validate the space constraints (6b) to the neighborhood area.
We found that each repetition of the solution procedure
always produced the same final solution and thus reckoned
that the global optima were attained. Similar treatment can
also be found in Wu et al. and Fan et al. [21, 22].

4. Numerical Studies

To demonstrate the effectiveness of the proposed model,
Section 4.1 compares two existing discretization recipes via a
variety of experiments in a hypothetical bus corridor. Sec-
tion 4.2 illustrates an application of the proposed model in a
case study of a bus route in Chengdu city (China).

4.1. Experimental Comparisons. Following Vaughan and
Cousins [23], we consider an arbitrary demand density
function as follows:

A
) =(5) @ @n0 + g @a ) 10

where A is the total demand of the corridor; the distributions
of trip origins and destinations, g, (-) and g, (-), are assumed
to follow a truncated normal distribution, denoted by
TrN (0, 0%,0,L) and TrN (L, 02,0, L) with means of 0 and L
km, respectively, and variance of o® being the same. The
symmetric setting is purposely made to isolate the findings
with regards to the spatial variance of demand. Larger o
indicates lower spatial variation, and vice versa. Other pa-
rameter values are all retrieved from Li [24]. They are
summarized in Table 2.

Experiments are conducted under a variety of demand
scenarios  with  respect to o¢€{1,2,...,100} km,
L € [5,20] km, and A € [100, 1000] x L passenger/h. Table 3
summarizes the cost savings of our model as compared to
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P
TaBLE 2: Values of parameters.
Parameters Values
v 1m/s
VP ko Vot peak 20km/h, 30 km/h
y‘; 6.6 RMB/h
Vp 9.9RMB h
vy 3.3RMB/h
ty 3s
téeak, ti)ff_peak 5.1 s/stop, 7.64 s/stop
a,,a, 1m/s% 1.2m/s*
t 1.555
t, 0.99s
pds 37 RMB/h
ye 2.68 RMB/km
¢ 1.67 RMB/h
yom 0.6 RMB/h
Kg 80 pax/vehicle
K 120 pax/stop
TaBLE 3: Comparisons between the proposed method and existing approaches.
Cost saving against, %
Parameters Cost items Midpoint approach Endpoint approach
Max Min Avg. Max Min Avg.
System cost 0.91 0.12 0.50 2.36 0.88 1.68
Spatial variation, ¢* Passenger cost 3.36 -1.43 0.27 -0.76 -2.68 -1.82
Operator cost 2.18 -0.28 0.61 5.39 2.56 3.41
System cost 0.86 0.13 0.36 2.39 0.44 1.12
Corridor length, L* Passenger cost 2.61 -0.93 0.37 -0.62 -5.34 -1.84
Operator cost 1.40 -0.18 0.50 6.00 2.21 3.36
System cost 0.58 0.12 0.28 2.95 0.46 1.11
Demand level, A™* Passenger cost 1.03 -2.51 -0.12 -0.68 -3.94 -1.68
Operator cost 2.23 -0.14 0.51 6.44 1.82 3.11

* Land A are set to be 10 km and 300 x L, respectively; ** o and A are set to be 10 km and 300 x L, respectively; and ***¢ and L are set to be 10 km and 10 km,

respectively.

that of midpoint and endpoint methods. It is observed that
the proposed method always leads to positive system cost
saving in a range of 0.12% to 2.95%. Comparatively, slightly
more savings are found as against the endpoint approach
than against the midpoint approach. Closer observation
shows that for the midpoint approach, the comparative
savings in terms of user cost and agency cost may be
negative, but the average savings remain mostly positive. For
the endpoint approach, the savings in user cost are always
negative, which is opposite for the agency cost. This result
can be partly explained by the additional default stop in
endpoint design (see Section 2.2), which leads to less user
cost but higher agency cost.

Note that the values in Table 3 may look small. This is
because the result of the CA model is quite flat at the optimal
solution, Estrada et al. [25]. Such benefit will accumulate in
the day-to-day operation and become substantial for both
bus patrons and agency.

4.2. Case Study in Chengdu. We apply the proposed model to
bus route no. 3 in Chengdu (China), as depicted in Figure 3.

Figure 3: The existing bus stop locations of bus route no. 3 in
Chengdu (China).

According to our survey, the bus route is of length 18.85km
and the operation time is between 6:15 am and 11: 00 pm on
weekdays. The peak period is 6 hours on each weekday.
Based on historical records, bus vehicles’ cruising speed
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TaBLE 4: Intersections along bus route no. 3.

Intersection label Location (km)

Intersection label Location (km)

1 0.17 23 11.14
2 0.5 24 11.59
3 0.78 25 12.1
4 1.08 26 12.2
5 1.71 27 12.6
6 242 28 134
7 3.01 29 13.86
8 3.58 30 14.24
9 4 31 14.7
10 4.74 32 14.93
11 5 33 15.12
12 5.3 34 16.04
13 6.1 35 16.29
14 6.4 36 16.59
15 6.79 37 17.28
16 7.35 38 17.61
17 7.7 39 17.86
18 8.6 40 18
19 9 4 18.4
20 9.72 ) 18.64
21 9.8 43 18.71
22 10.61
600 -

g 4ot

2

S Dgpal M0

3 oI Ml M ILD r pa

5 VN " ’{ ‘ 1J

£ 200 | .

o0

(=]

5

5 400 -

g

<

g

2 600

800 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18

Location at the corridor (km)

[l Boarding number
] Alighting number

FIGURE 4: Boarding and alighting demand along the bus route (the peak period, for example).

during peak and off-peak periods are 20 km/h and 30 km/h,
respectively. The headways during the peak period and off-
peak period are 3 min and 6 min, respectively. The gener-
ation of candidate bus stops follows the policy that the bus
stop should keep a minimum distance from restricted lo-
cations (e.g., intersections) [26]. Other parameters take the
same values in Table 2 as above. Along the bus route contains
43 intersections, whose locations were measured in Google
Map and given in Table 4.

In preparation for bus route adjustment, boarding and
alighting demand at 35 stops were surveyed on April 10th,

2018. Correspondingly, the density functions of boarding
and alighting demand are fitted using spline interpolation, as
shown in Figure 4.

Based on the CA model and proposed discretization
recipe, we redesign the current transit service. Figure 5(a)
presents the optimized bus stop density along the corridor as
well as the specific bus stop locations with and without the
consideration of location constraint. The stop density ranges
from 1.25stops/km to 4.42stops/km. After stop density
being discretized, 44 bus stops are determined in the cor-
ridor. Figure 5(b) exemplifies two stops, i.e., the 10th and
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Density (stop/km)

Location (km)

o Optimal bus stop location considering location constraint
o Optimal bus stop location without considering location constraint
—— Stop density curve

o Optimal design with location constraint o Optimal design with location constraint
o Idealized design o Idealized design
—— Busline —— Busline
(®)

FIGURE 5: Stop locations for the optimized transit service. (a) Stop locations with and without the location constraint. (b) Locations of 10th
and 23th stops for different results.

TaBLE 5: Comparison of cost items among different scenarios.

Scenarios Average passenger cost Average agency cost Average system cost Location
(RMB) (RMB) (RMB) constraint

Current service 5.44 5.39 10.83 No

Idealized design 5.68 3.42 9.10 Violated

Optlmgl design with location 5.66 3.46 9.12 Satisfied

constraint

*Difference (%) —-0.35% 1.65% 0.22% —

*'The difference is the calculated by (Z§ - Z;)/Z5, I € {p,a, s}, where Z¢, Z, and Z are the costs of passenger, agency, and system with the consideration of
location constraint, respectively. Z, Z,,, and Z; are the costs of passenger, agency, and system without the consideration of location constraint, respectively.
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23th stops. The location constraint is violated by the ide-
alized design while the optimal design with location con-
straint can guarantee the bus stop location satisfies the
location requirement.

Table 5summarizes the current transit service, opti-
mized transit service with and without considering the
location constraint. The results show that the optimized
result without considering the location constraint is the
best but cannot be used into practice due to the constraint
violation. Besides, the cost difference between the results
with considering and without considering location con-
straint is very small. The optimized result addressing the
location constraint can save 35.81% agency cost at the
expense of 4% increasing passenger cost, forming 15.79%
system cost saving when compared with the current transit
service.

5. Conclusion

This paper proposes a modeling framework that connects
continuum approximation methods and discrete ones in
optimizing bus stop locations. To our best knowledge, this is
the first work in the transit route design literature. Our
model is no longer limited by the given set of candidate stop
locations as the conventional discrete models. Meanwhile,
our design outreaches the idealized design of CA models and
explicitly addresses practical stop locating restrictions. The
proposed hybrid model not only bears the solution efficiency
of CA models due to the parsimonious property but also
produces implementation-ready designs as do by discrete
models. Numerical studies of various scenarios demonstrate
the effectiveness of the proposed model. A case study in
Chengdu (China) illustrates how the model is applied to bus
line redesign/adjustment in reality.

Of note, the present study still has several limitations.
For instance, more realistic concerns (e.g., socioeconomic
and political ones) are involved in locating bus stops,
which may require further fine tuning. The local condi-
tions (e.g., design and safety) of streets may also influence
the decision of bus stop location [27]. To account for these
constraints, it is expected to develop a decision-support
platform based on the proposed modeling framework and
integrate other computer aided tools to facilitate designers’
operation.
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