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0is paper investigates the problem of containership sailing speed and fleet deployment optimization in an intercontinental liner
shipping network. Under the consideration of the time value of container cargo, three kinds of impact of sailing speed changes on
long legs of each liner route are analysed, and a time-based freight rate strategy is proposed. 0en, the optimization problem is
formulated as a mixed-integer nonlinear programming. Its goal is to maximize the total profits of a container liner shipping. To
find the optimal solution to the model and improve the efficiency of model solution, a discretization algorithm is proposed.
Numerical results verify the applicability of the proposed model and the efficiency of the algorithm. In addition, the time-based
freight rate strategy is able to achieve more profit compared to a fixed freight rate strategy.

1. Introduction

Container liner shipping services play an important role in
maritime freight transportation [1]. Its main task is the
transportation of containerized cargo (containers) such as
manufactured products, food, and garment [2]. 0e unit
value of the containers is generally much higher than bulk
cargo [3]. Hence, the sailing speed of containerships should
be high (e.g., 20–25 knots) to deliver containers to their
destination in short transit time (Wang and Meng [3]). In
fact, short transit time is preferred by customers because it
implies less inventory cost associated with cargoes in the
containers [4] and more revenues gained from the increase
of product sales for customers [5]. Offering short transit time
is a competitive factor in liner shipping [6]. 0erefore, the
freight rate may be agreed between container shipping lines
and customers based on the containers’ transit time.

Container shipping lines usually face two types of cus-
tomer demands: long-term contractual demand and spot
market demand [7].0e freight rate for long-term demand is
often fixed and contracted once a year, whereas the freight

rate for spot market demand may be agreed between con-
tainer shipping companies and shippers (customers) dy-
namically on daily/weekly basis [7]. As short transit time is
preferred, spot market customers are willing to pay for saved
time [8]. In other words, the freight rate increases as the
sailing speed of transported cargo increases. It is beneficial
for container shipping lines to employ a time-based dif-
ferentiated freight rate strategy (hereafter TDFRS) for spot
market customers when they decide containership sailing
speed.

Fleet deployment is one of the most important problems
which container shipping lines have to face. Fleet deploy-
ment is to determine the number and type of ships to be
assigned to the shipping routes [9] over a planning period of,
e.g., 6 months [10]. 0e sailing speed of containership is an
important factor in the fleet deployment problem [11].
Reducing (or increasing) the sailing speed of containerships
requires an increase (or decrease) in the number of deployed
containerships in order to maintain a regular service fre-
quency [12]. Besides, sailing speed has a significant impact
on the total operating cost because it is closely related to the
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bunker consumption [13], which occupies a large proportion
of the total operating cost [3]. It is thus meaningful for
container shipping lines to investigate the optimization
problem of sailing speed and fleet deployment (hereafter
SSFD) under TDFRS.

1.1. Literature Review. Previous studies on the problem of
SSFD assumed that containerships sail at fixed sailing
speeds.0en, the problem of SSFD was simplified as the fleet
deployment problem. 0e fleet deployment problem was
first addressed in the literature by Perakis and Jaramillo [14].
It was formulated as a linear programming. 0is linear
programming is improved as an integer linear programming
by the two authors because the number of deployed con-
tainerships should be treated as an integer rather than a
continuous variable. Powell and Perkins [15] extended the
model developed by Jaramillo and Perakis [16] by adding
ship lay-up costs to the objective function. 0e extended
model is an integer programming. It optimizes fleet de-
ployment for a container shipping liner. Christiansen et al.
[17] proposed a mixed-integer linear programming for-
mulation for the fleet deployment problem to determine
voyages and lay-up times for each ship route during a given
planning period. In those studies, cargo (container) ship-
ment demand between two ports is assumed to be deter-
ministic. Taking cargo shipment demand uncertainty into
consideration, some researchers relaxed that assumption
and further investigated the fleet deployment problem.
Assuming that cargo shipment demand followed a normal
distribution, Meng and Wang [18] developed a chance
constrained programming for the fleet deployment problem
formulation. However, the distribution which cargo ship-
ment demand followed may be complicated and far away
from a normal distribution. To relax that oftentimes re-
strictive assumption, Ng [19] proposed a distribution-free
model for the fleet deployment problem. 0e distribution-
free model only required the mean, standard deviation, and
an upper bound of the cargo shipment demand. In all these
existing models, the optimal sailing speeds decision were
made exogenously and thus independent to the optimal fleet
deployment decisions.

Due to high bunker prices caused by high sailing speed,
container shipping lines began to adjust the sailing speed to
reduce the total operating cost [20]. As indicated by Ronen
[13], when bunker fuel prices hover at approximately 500
USD per ton, the bunker fuel cost accounts for about three
quarters of the operating cost of a large containership.
Engine theory and empirical data demonstrated that the
daily bunker consumption of a containership is approxi-
mately proportional to the third power of its sailing speed
[21]. Considering that reducing (or increasing) the sailing
speed of containerships requires an increase (or decrease) in
the number of deployed containerships in order to maintain
a regular service frequency [12], some researchers are in-
creasingly interested in the relationship between sailing
speed optimization and fleet deployment optimization.
Ronen [13] constructed a cost model of SSFD to analyse the
trade-off between speed reduction and adding

containerships to a container liner route and designed a
simple procedure to identify the optimal sailing speed and
number of containerships. Wang et al. [22] optimized sailing
speed on each leg and number of containerships for a single
liner route with the goal of minimizing the total cost of
SSFD. Considering that a container shipping liner usually
operates a group of liner routes, Gelareh and Meng [23]
presented a mixed-integer nonlinear programming for the
SSFD problem, in which the optimal sailing speeds for
different ship types on different routes are interpreted as
their realistic optimal travel times. Wang andMeng [11] also
formulated the SSFD problem in a liner shipping network as
a mixed-integer nonlinear programming. 0ey employed an
efficient outer-approximation method to transform the
nonlinear programming model into an integer linear pro-
gramming model which was solved by CPLEX. Wang et al.
[24] proposed a practical tactical-level liner container as-
signment model for liner shipping companies, in which the
container shipment demand is a nonincreasing function of
the shipping time. However, considering the impact of
shipping time on demand is difficult to measure in our
manuscript, we assumed that demands are insensitive to
shipping time. If cargo shipment demand and freight rate is
assumed to be steady within a certain period, minimizing the
total cost is tantamount to maximizing the total profit.
Hence, the above studies chose the minimization of the total
cost of transporting containers in a planning horizon as the
objective function in the problem formulation. When the
allocation of cargoes is considered, the minimization of the
total cost is not tantamount to the maximization of the total
profit anymore because the allocation has impact on the total
freight revenue. Taking cargo allocation into consideration,
Xia et al. [25] chose the maximization of the total profits as
the objective function in the SSFD problem formulation.

0ese studies have significantly contributed to the de-
velopment of mathematical programming for SSFD opti-
mizations. However, to the best of the authors’ knowledge,
the problem of SSFD optimization under TDFRS is still
open.

1.2. Objective and Contributions. 0e objective of this paper
is to develop a model to achieve the optimal sailing speed of
containership and the optimal number of deployed con-
tainerships under TDFRS with the goal of maximizing the
total profit of a container shipping liner.

0e contributions of this paper are threefold. First, it
takes the initiative to address the SSFD problem under
TDFRS while considering the time value of container cargo
for an intercontinental liner network. 0is provides a ref-
erence for container shipping lines to design an optimal
TDFRS and a freight rate for spot market customers.
Consequently, the container cargo’s time value is converted
into revenue, which increases the total profit of the container
shipping liner. Second, the SSFD problem under TDFRS is
an extension to the SSFD problem in the literature [11] and it
is formulated as a mixed-integer nonlinear programming.
0is modelling approach not only nests the model proposed
by Wang and Meng [11] as a special case but also is more
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practical since it provides a reoptimal sailing speed decision-
making approach on the two long legs of each liner route for
the container shipping liner. Finally, managerial insights
from the numerical experiment are obtained, providing
significant references for container shipping lines.

0e remainder of this paper is organized as follows.
Section 2 describes the SSFD problem under TDFRS con-
sidering the time value of container cargo. In Section 3, the
problem is formulated as a mixed-integer nonlinear pro-
gramming. Section 4 proposes a discretization algorithm to
solve the mixed-integer nonlinear programming. Section 5
presents the numerical example to demonstrate the per-
formance of the proposed model and analyses its sensitivity
to different parameters. Conclusions are presented in Sec-
tion 6.

2. Problem Statement

Consider a container shipping liner that operates a set of
intercontinental routes which regularly serves a group of
calling ports. In practice, the calling ports on each liner route
form a loop and the sequences of these calling ports are
determined in advance. A string of homogeneous con-
tainerships is deployed on each liner route to provide service
once a week. 0e SSFD problem faced by the container
shipping liner is how to decide the sailing speed of the
containership and fleet deployment with the consideration
of time value of container cargo within a planning horizon.
0e length of the planning horizon is assumed to be 3–6
months, as it is the maximum period of time over which the
cost parameters can be regarded as unchanged [26].

Table 1 shows an intercontinental liner network con-
sisting of four Asia-Southwest America liner routes. Each of
these four liner routes is deployed with either type 1 con-
tainership (10 060 TEUs) or type 2 containership (8 400
TEUs).

It can be seen from Table 1 that calling ports of each liner
route can be divided into two types according to their
geographical location (i.e., China and America). 0e voyage
between two consecutive calling ports is defined as a leg.
0ere are two long legs on each route and the rest are short
legs. Take route 1 as an example. 0e ports of Lianyungang,
Shanghai, and Ningbo are located in Asia and the other two
ports are located in Southwest America. In route 1, Ningbo
to Long Beach is one long leg on the head-haul direction,
while Seattle to Lianyungang is the other long leg on the
back-haul direction.

Under the consideration of the time value of container
cargo, it is necessary to reoptimize sailing speed of con-
tainerships on long legs because it has three kinds of impact
on SSFD optimization. First, it affects containerships’ sailing
time on long legs, which is an important part of the transit
time of container cargoes between corresponding port pairs.
Meanwhile, inventory cost associated with container cargoes
changes, especially for shippers with high container cargo
values. If shippers pay part of the saved inventory cost to the
container shipping liner, the container shipping liner ach-
ieves an increased revenue generated by the transit time
savings. Second, it influences the number of deployed

containerships on each liner route because the number of
deployed containerships needs to be changed according to
containerships’ sailing speed to maintain the weekly service
frequency.0us, a container shipping liner has to choose “fast
steaming with less containerships” or “slow steaming with
more containerships.” Different choices result in different
containership cost. 0ird, it significantly affects the bunker
fuel cost on long legs due to the relationship between bunker
fuel consumption and sailing speed. Meanwhile, for short legs
on each liner route, the impact of the reoptimizing sailing
speed is negligible because of short oceanic distance [4]. 0e
increase in sailing speed on the short legs has little impact on
the cargo transit time. For example, the short leg from Los
Angeles to Oakland is 369 nautical miles, which can only save
2.65 hours when containership sailing speed increased from
19 to 22 knots. However, the saved shipping time is usually
buffered because of possible delays at ports. On the contrary,
the increase in sailing speed on long legs can greatly reduce
time and thus have a significant impact on the container cargo
time value. For example, the long leg from Ningbo to Long
Beach is 5 761 nautical miles, which can save 41.35 hours
when containership sailing speed increased from 19 to 22
knots. 0erefore, the sailing speed of a containership on short
legs does not need to be reoptimized and the containership is
still sailing at the optimized speed without the consideration
of the time value of container cargo.

0e objective of the proposed optimization model is to
reoptimize the sailing speed on each long leg on each liner
route and the number of deployed containerships as well as
the freight rate for the spot market customers. Before this,
the optimal sailing speeds on each leg of each liner route
need to be determined first without the consideration of the
time value of the container cargo. 0e proposed models aim
atmaximizing the total profit.0e total profit is calculated by
the difference between the freight revenue and the total
operating cost consisting of the bunker fuel cost and con-
tainership cost.

3. Problem Formulation

3.1.Notion. 0e notions used in this paper are introduced as
follows:

Sets

Φ � 1, 2, . . . , R{ }: set of liner routes; r ∈ Φ is the route
index
Ω � 1, 2, . . . , V{ }: set of containership types; v ∈ Ω is
the containership type index
Ar � 1, 2, . . . , Nr{ }: set of ports in one region on the
intercontinental route r

Br � Nr + 1, Nr + 2, . . . , Nr + Mr{ }: set of ports in
the other region on the intercontinental route r

Parameters

Lr
i : oceanic distance on leg i on route

r(i ∈ 1, 2, . . . , Nr + Mr{ }) (nautical miles)
Lr

Nr: oceanic distance on leg Nr on route r, which is
the distance on long leg Nr on route r in the head-
haul direction (nautical miles)
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Lr
Nr+Mr: oceanic distance on leg Nr + Mr on route r,

which is the distance on long leg Nr + Mr on route r

in the back-haul direction (nautical miles)
Sr

D: designed sailing speed of a containership on route
r (knots)
Fr

D: fuel consumption at the designed sailing speed of
the containership on route r (tons)
Tr

i : port calling time at port i on route r of every
voyage (hr)
Tr

ij: maximum acceptable transit time for container-
ships from port i to port j on route r (hr)
P: bunker fuel price (USD/ton)
Cr: unit containership cost on route r (USD/week)
Yr

ij: initial freight rate for spot market customers from
port i to port j on route r (USD/TEU)
Dr

ij: average container demand for all customers from
port i to port j on route r (TEU/week)
αr

ij: freight rate discount for long-term contractual
customers on the basis of initial freight rate from port
i to port j on route r

Ur: unit container cargo value on route r (USD/TEU)
Sr∗

i : optimal sailing speed on leg i on route r without
considering the time value of container cargo (knots)
Sr
min: minimum sailing speed of the containership on
route r (knots)
Sr
max: maximum sailing speed of the containership on
route r (knots)
ϕ: revenue sharing rate obtained by a container
shipping liner, which is the proportion of revenue
generated by the transit time savings (0≤ ϕ≤ 1)
ρ: coefficient of the time value of container cargo
cr

ij: container demand ratio of the spot market cus-
tomers from port i to port j on route r

Nv: total number of type v containerships owned by
the container shipping liner

Variables

Sr
i : sailing speed on leg i on route r without consid-
ering the time value of container cargo (knots)
sr

Nr: sailing speed on leg Nr on route r considering the
time value of container cargo (knots)
sr

Nr+Mr: sailing speed on leg Nr + Mr of route r

considering the time value of container cargo (knots)
mr

v: the number of deployed containerships v on route r

yr
ij: freight rate for the spot market customers from

port i to port j on route r considering the time value of
container cargo (USD/TEU)

3.2. Impact Analysis of Sailing Speed Changes. According to
the problem statement, the change of sailing speed has three

kinds of impact on fleet deployment decisions considering
the time value of the container cargo. 0e first impact is that
it affects the transit time of containerships on the long legs
on each liner route. If a container shipping liner increases
sailing speeds of containerships, sailing time between port
pairs can be shorten and the inventory cost of customers can
be saved [8]. Since the container shipping liner achieves an
increased revenue generated by the inventory cost saving,
the increased revenue can be formulated as the saved in-
ventory cost as shown in the following equation:

E
r
Nr �

Urρ Lr
Nr/S

r∗

Nr􏼐 􏼑 − Lr
Nr/sr

Nr( 􏼁􏼐 􏼑

24 × 365
, ∀r ∈ Φ,

E
r
Nr+Mr �

Urρ Lr
Nr+Mr/S

r∗

Nr+Mr􏼐 􏼑 − Lr
Nr+Mr/sr

Nr+Mr( 􏼁􏼐 􏼑

24 × 365
, ∀r ∈ Φ,

(1)

where Er
Nr represents the increasing revenue on the long leg

Nr and Er
Nr+Mr represents the increasing revenue on the

long leg Nr + Mr.
0e inventory (holding) cost per unit is a linear function

of time in storage [27]. Accordingly, the inventory cost per
unit of container cargoes in liner shipping is a linear
function of shipping time. A shorter shipping time for
container cargoes can save inventory costs for shippers.
0us, these shippers will be willing to pay higher freight rates
to container shipping lines if their cargoes can be trans-
ported quicker. According to the study ofWang et al. [8], the
time-sensitive freight rate for spot market customers can be
modeled as a linear function on the inventory cost savings
(increased revenue). Time-sensitive freight rate is expressed
linearly by the inventory cost savings because inventory cost
is a linear function of time. As a result, the time-sensitive
freight rate can be obtained by adding a certain proportion
of increased revenue into the initial freight rate. 0en, the
TDFRS can be formulated on the basis of the freight rate for
spot market customers as follows:

y
r
ij � Y

r
ij + ϕE

r
Nr, ∀r ∈ Φ, i ∈ A

r
, j ∈ B

r
,

y
r
ij � Y

r
ij + ϕE

r
Nr+Mr, ∀r ∈ Φ, i ∈ B

r
, j ∈ A

r
.

(2)

It should be pointed out that when ϕ equals to 1, it is also
reasonable. It means that the container shipping liner gains all
the revenue generated by the transit time savings. Even so, cargo
owners are still likely to seize themarket owing to shorter transit
time and, as a result, improve the market competitiveness.

0e second impact is that it influences the number of
deployed containerships, which is directly related to the
voyage time on each liner route. 0e voyage time consists of
the port calling time and the sailing time. To maintain a

Table 1: East Asia-U.S. West coast liner shipping network.

Route Containership type Calling ports
1 1 Lianyungang⟶ Shanghai⟶Ningbo⟶ Long Beach⟶ Seattle⟶Lianyungang
2 2 Tokyo⟶Qingdao⟶ Shanghai⟶Ningbo⟶Los Angeles⟶Oakland⟶Tokyo
3 2 Qingdao⟶ Shanghai⟶Ningbo⟶ Los Angeles⟶Oakland⟶Qingdao
4 1 Taipei⟶Xiamen⟶ Shekou⟶Yantian⟶ Los Angeles⟶Oakland⟶Taipei
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weekly service frequency, the following constraint should be
satisfied:

􏽘

Nr−1

i�1

Lr
i

Sr∗

i

+
Lr
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sr
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Nr+Mr−1
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r
v,

∀r ∈ Φ.

(3)

0e third impact is that it affects bunker fuel cost
according to the relationship between bunker fuel con-
sumption and sailing speed [28]. Let f(Sr∗

i ) be the daily
bunker fuel consumption at the optimal sailing speed Sr∗

i on
the short leg i on route r. 0en, the daily bunker fuel
consumption with respect to the optimal sailing speed can be
calculated by

f S
r∗

i􏼐 􏼑 �
Sr∗

i

Sr
D

􏼠 􏼡

3

F
r
D, ∀r ∈ Φ, i ∈ 1, 2, . . . , Nr − 1{ }

∪ Nr + 1, Nr + 2, . . . , Nr + Mr − 1{ }.

(4)

Similarly, the daily bunker fuel consumption on the long
leg Nr on route r in the head-haul direction can be cal-
culated by

f s
r
Nr( 􏼁 �

sr
Nr

Sr
D

􏼠 􏼡

3

F
r
D, ∀r ∈ Φ. (5)

0e daily bunker fuel consumption on the long leg Nr +

Mr of route r in the back-haul direction can be calculated by
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r
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0us, the bunker fuel cost on each voyage Fr on route r

can be calculated by
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3.3. Model Formulation. Based on the consideration of the
time value of container cargo, the SSFD problem under the

TDFRS can be formulated as the following mixed-integer
nonlinear programming model [M1]:
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Objective function (8) expresses the maximization of the
total profit. 0e sum of the first term and the second term
expresses the total freight revenue of every voyage. 0e third
term expresses the bunker fuel cost of every voyage. 0e
fourth term expresses the containership cost of every voyage.
0e sum of the third term and the fourth term are the total
operating cost paid by the container shipping liner. Con-
straint (9) represents the relationship between the inventory
cost saving and the reoptimized sailing speed on long legs.
Constraint (10) represents the relationship between time-
sensitive freight rate and the initial freight rate for spot
market customers. Constraint (11) indicates that the weekly
service frequency should be maintained. Constraints (12)
and (13) enforce the transit time for containerships from
port i to port j on route r to be no larger than a pre-
determined acceptable value. Constraint (14) ensures that
the total number of containerships of each type not to exceed
the limitation. Constraints (15) and (16) enforce the lower
bound and the upper bound to the containership sailing
speed, respectively. Constraint (17) requires the number of
deployed containerships to be a positive integer variable.

4. Solution Algorithm

Model [M1] is a mixed-integer nonlinear programming
model with nonlinear terms in its objective function (8) and
constraints (11)–(13). Moreover, constraints (11)–(13) are
nonconvex. 0e optimization problem of SSFD under
TDFRS in our manuscript is an extension of study [22],
which is NP-hard. 0erefore, it is very difficult to solve
model [M1] directly. An efficient and exact algorithm needs
to be designed to find the solution to this problem.

It should be pointed out that one of the most important
pieces of model [M1] is the optimal sailing speeds Sr∗

i on leg i

on liner route r without considering the time value of
container cargo. 0e optimal sailing speed Sr∗

i on each leg of
the liner route can be obtained through model [M1] when ϕ
equals to 0. 0is means the optimal sailing speed Sr∗

i can be
determined before optimizing the decision variable Sr

i (see
[10]). 0en, the sailing speed is reoptimized on the two long
legs of each liner route under TDFRS.

In order to get the optimal solution, a discretization
algorithm is designed to transform model [M1] into a
mixed-integer one. 0en, it can be solved by the linear
optimization solvers. 0e steps of the discretization algo-
rithm are described as follows:

Step 1: without the consideration of the time value of the
container cargo, a new mathematical program-
ming is formulated based on a fixed freight rate
strategy (FFRS). 0at is, freight rates for spot
market customers between port pairs do not
change as sailing speed changes. 0erefore, the
sailing speeds Sr

i on leg i on route r are treated as
decision variables, and model [M1] can be
simplified as model [M2]:
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Step 2: linearize constraints (19)–(21) of model [M2] by
defining the reciprocal of sailing speeds as new
decision variables. Constraints (19)–(21) con-
tain the reciprocal of the sailing speeds Sr

i ,
which is one of the factors causing the non-
linearity of model [M2]. To linearize these
constraints, new decision variables are defined:
Wr

i � 1/Sr
i , Wr

min � 1/Sr
max, and Wr

max � 1/Sr
min,

∀r ∈ R and i ∈ 1, 2, . . . , Nr + Mr{ }. 0erefore,
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model [M2] can be reformulated as model [M3]
as follows:

[M3]maxZ � 􏽘
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All the constraints of model [M3] become linear constraints.
Since the objective function (25) contains nonlinear terms,
model [M3] is still a mixed-integer nonlinear programming. In
the following, the solution efficiency of model [M3] is improved
by taking the advantage of the special structure of model [M3]
and the convexity of objective function (25).

Theorem 1. /e objective function (25) of model [M3] is
convex in Wr

i .

Proof. Let

h
r
i W

r
i( 􏼁 � L

r
i W

r−2
i . (33)

Since hr
i (Wr

i ) is a differentiable function with respect to
Wr

i within the definition domain [Wr
min, Wr

max], equations
(34) and (35), respectively, express the first-order and the
second-order derivative of Wr

i with respect to Wr
i :

dhr
i Wr
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dWr
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� −2L
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i W

r−3
i , (34)
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dWr2
i

� 6L
r
i W

r−4
i . (35)

According to equation (35), the second derivative of
function hr

i (Wr
i ) is always greater than zero within the

definition domain [Wr
min, Wr

max]. 0at is,

d2hr
i Wr

i( 􏼁

dWr2
i

> 0. (36)

0erefore, hr
i (Wr

i ) is a convex function with respect to
the new decision variables Wr

i on each leg on each route.
According to the superposition of the convex function, it can
be concluded that the objection function (25) of model [M3] is
convex in Wr

i . According to 0eorem 1, the optimal value of
Wr

i can be efficiently obtained by the state-of-the-art mixed-
integer linear programming solvers such as Gurobi.

Step 3: discretize the definition domain [Wr
min, Wr

max] of
decision variables Wr

i in model [M3].

Considering the fact that the sailing speed is usually
taken to the decimal point after the unit of knots, we define

Qr �
Sr
max − Sr

min( 􏼁

0.1
. (37)

0erefore, the feasible domain of sailing speed can be
discretely divided into Qr + 1(r ∈ Φ) cells with equal in-
tervals as follows:

S
r
qr � S

r
min + 0.1qr, ∀r ∈ Φ, qr ∈ 0, 1, . . . , Qr{ }. (38)

Correspondingly, the definition domain of Wr
qr are also

divided into Qr + 1 cells. 0at is,

W
r
qr �

1
Sr

qr

, ∀r ∈ R, qr ∈ 0, 1, . . . , Qr{ }. (39)

Note that Wr
min � 1/Sr

max, Wr
max � 1/Sr

min, and the divi-
sion of Wr

i is shown in Figure 1.
0e optimal sailing speed Sr∗

i on leg i on route r can only
be selected from the Qr + 1 interval discrete values of
Sr

qr(r ∈ Φ, qr ∈ 0, 1, . . . , Qr{ }). Correspondingly, the opti-
mal value of each new decision variable Wr

i can only be
selected in the set Wr

qr, r ∈ Φ, qr ∈ 0, 1, . . . , Qr{ }􏽮 􏽯. To in-
dicate which value to adopt, a new binary variable on each
leg on each liner route is defined as follows:

βr
i,qr �

1, Wr
i � Wr

qr

0, Wr
i ≠Wr

qr,

⎧⎨

⎩ ∀qr ∈ 0, 1, . . . , Qr{ }. (40)
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0us,

W
r
i � 􏽘

Qr

qr�0
βr

i,qrW
r
qr. (41)

0en, model [M3] is equivalent to the following model
[M4]:
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Figure 1: Discretization of the new decision variables.
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Step 4: obtain the optimal sailing speed Sr∗

i on leg i on
route r without considering the time value of the
container cargo. Model [M4] is an integer linear
programming containing only binary variables
βr

i,qr(r ∈ Φ, i ∈ 1, 2, . . . , Nr + Mr{ } and
qr ∈ 0, 1, . . . , Qr{ }), and integer variables mr

v.
Model [M4] is a mixed-integer linear pro-
gramming model which is standard and com-
plete. Besides, the scale of decision variables has
been reduced a lot because the optimal sailing
speed Sr∗

i on leg i on route r of is discretized into
a finite number of values. Since Gurobi is the
fastest and most powerful mathematical pro-
gramming solver available for MIP problems

[29]. 0e optimal value Wr∗

i of model [M4] can
be efficiently obtained by optimization solvers,
such as Gurobi. 0en, the optimal value of Sr∗

i

can be obtained.
Step 5: considering the time value of the container

cargo, the mathematical programming is for-
mulated under the TDFRS. 0en, this formu-
lated programming can be transformed into an
integer linear programming following the
methods of variable substitution and piecewise
linearization in Steps 2 and 3. 0e transforma-
tion process is shown in the appendix:
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Constraints (51) and (52) ensure that only a single sailing
speed value is adopted on each of the long legs on each liner
route, respectively.

Step 6: reoptimize the optimal sailing speed on long
legas (sr

Nr and sr
Nr+Mr) on liner route r consid-

ering the time value of the container cargo. As
mentioned in Section 2, the sailing speed of a
containership on short legs does not need to be
reoptimized. Model [M5] is an integer linear
programming containing only binary variables
βr

Nr,qr and βr
Nr+Mr,qr(r ∈ Φ, qr ∈ 0, 1, . . . , Qr{ })

and integer variables mr
v. 0e optimal value of

wr∗

Nr and wr∗

Nr+Mr as well as the number of
deployed containerships mr∗

v can be obtained by
solving model [M5] using optimization solvers
such as Gurobi. 0en, the optimal sailing speed
sr∗

Nr � 1/wr∗

Nr in the head-haul direction and the
optimal sailing speed sr∗

Nr+Mr � 1/wr∗

Nr+Mr in the
back-haul direction are obtained.

To summarize, the optimization results of the sailing
speeds on each leg on each liner route and the number of
deployed containerships under the FFRS can be obtained
through Steps 1 to 4, and the optimization results under the
TDFRS can be obtained through Steps 1 to 6.

5. Numerical Examples

5.1. Parameter Settings. To evaluate the applicability of the
proposed model and the efficiency of the designed algo-
rithm, a real-case example provided by COSCO Shipping
Liner Co., Ltd is used in this experiment. In this example, the
interested intercontinental liner network consists of four
Asia-Southwest America liner routes, as shown in Table 1.
For clear illustration, the calling ports on each liner route are
numbered according to their sequences in Table 1. Take
route 1 as an example. 0e calling port sequence
is Lianyungang⟶ Shanghai⟶Ningbo⟶ Long Beach
⟶ Seattle⟶ Lianyungang and is expressed as 1-2-3-4-5-
1.0e first three ports are located in Asia (denoted by set A1)
and the rest two ports are located in Southwest America

(denoted by set B1). 0e port calling time of each port on
each liner route is shown in Table 2. Table 3 demonstrates the
oceanic distance of each leg on each liner route.

0ere are two types of containerships: 10060 TEUs and
8 400 TEUs, as shown in Table 4. In addition, the maximum
allowable port-to-port transit time for containerships is
calculated according to the realistic operating data pro-
vided by the global container shipping liner. However,
some data is unavailable due to commercial confidentiality,
including the data on freight rates for spot market cus-
tomers and the data on average container demand between
port pairs of each liner route. 0us, the two parameters are
determined in a reasonable manner. Since the data of the
freight rates for spot market customers and port-to-port
average container demand is too much, they are not listed
in this paper.

0e other parameters required by the proposed model
are set as follows. 0e bunker fuel price is 500 USD per ton
according to the bunker market situation. 0e coefficient of
the time value of container cargo is 8%, and the unit con-
tainer cargo value on each liner route is set to be 225 000
USD [8]. 0e container demand ratios of spot market
customers between port pairs on each liner route are all set
to be 60% and freight rate discounts for long contracted
customers are all set to be 90%.

After the above required parameters are determined, the
mixed-integer nonlinear programming proposed in Section
3 is transformed into an integer linear programming using
the piecewise linearization algorithm presented in Section 4.
0e integer linear programming is solved by Gurobi 6.5.0is
algorithm is implemented by coding in AMPL.

5.2.ResultAnalysis. 0e optimization results under different
freight rate strategies (FFRS and TDFRS) and different
revenue sharing rates (ϕ � 0.5 and ϕ � 1) are shown in
Table 5.

It can be seen from Table 5 that different freight rate
strategies lead to different results obtained by the proposed
optimization model. When the TDFRS is adopted, different
revenue sharing rates lead to different optimization results.
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When the revenue sharing rate is 0.5, the number of
containerships on the four routes remains constant, which is
different from the optimization results under FFRS. 0e
variation of the sailing speed on the two long legs on each
route is different. Specifically, the long leg sailing speed in
the head-haul direction of routes 1 and 2 increase while
those in the back-haul direction decrease. 0e sailing speed
on the two long legs of route 3 remains unchanged, and the

sailing speed on the two long legs of route 4 increases. It can
be explained that the variations in the sailing speed on long
legs affect the sailing time and consequently affect the total
freight revenue. Meanwhile, the sailing speed affects the
bunker fuel cost. Hence, to determine the optimal sailing
speed on the long legs on each liner route, the container
shipping liner has to make the trade-off between the total
freight revenue and bunker fuel cost. If the average container

Table 2: Port calling time of each port on each liner route.

Routes
Port calling time (hr)

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6
1 20 48 20 83.5 35 —
2 8 28 36 36 72 35.5
3 22 22 20 61 24 —
4 16 18 12 29 46.5 22.5

Table 3: Oceanic distance of each leg on each liner route.

Routes
Distance (nautical miles)

Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6
1 356 235 5 761 1 148 5 122 —
2 1 110 375 235 5 758 369 4 560
3 375 235 5 758 369 5 413 —
4 197 327 85 6 356 369 5 635

Table 4: Containerships.

Containership
type

Capacity
(TEUs)

Total owned
containerships

Containership
cost (USD/week)

Minimum
speed (knots)

Maximum
speed (knots)

Designed
speed
(knots)

Fuel consumption at
designed speed
(tons/day)

1 10 060 12 269 500 18.0 28.0 23.0 222.9
2 8 400 13 245 000 18.0 28.0 22.5 208.4

Table 5: Results obtained by the proposed optimization model under FFRS and TDFRS.

Freight rate
strategy Routes

Sailing speed (knots) Number of
containerships

Voyage
time (hr)

Profit of each
route (USD) Total profit (USD)

Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6

FFRS

1 19.8 19.9 20.0∗ 19.7 19.9∗ — 5 840 10 949 979

49 934 5902 19.7 19.5 19.6 20.0∗ 19.7 19.8∗ 5 840 10 161 789
3 18.0 19.5 19.2∗ 18.0 18.0∗ — 5 803 11 209 699
4 18.2 18.2 18.5 19.0∗ 18.3 18.3∗ 5 840 17 613 123

TDFRS

ϕ � 0.5

1 19.8 19.9 20.2∗ 19.7 19.7∗ — 5 840 10 950 651

49 948 3952 19.7 19.5 19.6 20.7∗ 19.7 19.0∗ 5 840 10 162 840
3 18.0 19.5 19.2∗ 18.0 18.0∗ — 5 803 11 209 699
4 18.2 18.2 18.5 19.8∗ 18.3 19.3∗ 5 811 17 625 205

ϕ � 1.0

1 19.8 19.9 24.6∗ 19.7 23.7∗ — 5 745 11 202 298

51 697 3122 19.7 19.5 19.6 23.4∗ 19.7 21.8∗ 5 777 10 271 035
3 18.0 19.5 24.2∗ 18.0 23.4∗ — 4 672 11 745 238
4 18.2 18.2 18.5 25.6∗ 18.3 25.0∗ 4 671 18 478 741

Note. ∗represents the optimal results.
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demand in the head-haul direction (or the back-haul di-
rection) is high, then the added value of the freight revenue is
higher than the added value of the bunker fuel cost, and the
container shipping liner increases its sailing speed on long
legs (such as long legs in the head-haul direction of routes 1
and 2, and the long legs of route 4). If the average container
demand in the head-haul direction (or the back-haul di-
rection) is low, then the reduction of the total freight revenue
is lower than the added value of bunker fuel cost, and the
container shipping liner increases its sailing speed on long
legs (such as long legs in the back-haul direction of routes 1
and 2). If the average container demand in the head-haul
direction (or the back-haul direction) changes in a certain
range, then the total profit is constant when the variations of
the sailing speed is ignored, and the containerships remain
the original sailing speed on long legs (such as long legs on
route 3).

When the revenue sharing rate increases from 0.5 to 1, all
the sailing speeds on the long legs of the four routes increase.
With regard to the fleet deployment, the number of con-
tainerships on routes 1 and 2 remain constant, and the
number of containerships on routes 3 and 4 reduce from 5 to
4.0e reason is that, although increasing sailing speed on the
long legs on each liner route results in the increase of bunker
fuel cost, the total freight revenue obtained by the container
shipping liner has more increase than the bunker fuel does.
Moreover, the increase of sailing speed may lead to the
reduction of the number of containerships and consequently
reduce the containership cost. As a result, the increase in
total freight revenue caused by increased sailing speed is
higher than that of total operating cost caused by increased
sailing speed. 0erefore, the container shipping liner is
expected to increase the sailing speed on long legs, and when
the sailing speed of some routes increases to a certain value,
the number of containerships decreases.

In addition, it can be seen from Table 5 that, compared
with the voyage time under FFRS, the voyage time under
TDFRS is shorter on the whole. 0e larger the revenue-
sharing rate, the more obvious the shortened amount of the
voyage time. 0is indicates that the TDFRS is beneficial for
reducing the transit time of container cargoes and thus
improve customer satisfaction.

5.3. Sensitivity Analysis. Both the revenue-sharing rate and
bunker fuel price have significant impact on the total profit
achieved by the container shipper liner. To explore the
relationship among the two factors and the sailing speed of
long legs, the impact of the revenue sharing rate and bunker
fuel price on the results obtained by the proposed optimi-
zation model under TDFRS is investigated. 0e bunker fuel
price is ranged from 300 $/ton to 800 $/ton at 50 $/ton
interval, and the revenue-sharing rate is ranged from 0.1 to
1.0 at a 0.1 interval. Sensitivity analysis results of the long
legs’ sailing speeds on the four routes are obtained. Con-
sidering the space limitations, only the optimal sailing speed
on the long legs in the head-haul direction (leg 3) and in the
back-haul direction (leg 5) of route 1 are demonstrated in
this paper, as shown in Figure 2.

It can be seen from Figure 2 that the sailing speed
changes on leg 3 and leg 5 of route 1 are not completely
consistent. Specifically, when the revenue-sharing rate is
between 0.1 and 0.2, the sailing speed on leg 3 first increases
and then declines with the increase of the bunker fuel price.
When the revenue-sharing rate is between 0.3 and 0.5, the
sailing speed on leg 3 first decreases and then increase to a
constant with the increase of the bunker fuel price.When the
revenue-sharing rate is between 0.6 and 1.0, the sailing speed
on leg 3 decreases with the growth of the bunker fuel price.
With regard to the leg 5, when the revenue-sharing rate is
between 0.1 and 0.2, the sailing speed first increases and then
decreases with the increase of the bunker fuel price. When
the revenue-sharing rate is between 0.3 and 0.4, the sailing
speed first increases and then remains constant with the
increase of the bunker fuel price. When the revenue-sharing
rate is between 0.5 and 0.8, the sailing speed first decreases
and then increases with the growth of the bunker fuel price.
When the revenue sharing rate is between of 0.9–1.0, the
sailing speed decreases with the growth of the bunker fuel
price. When the bunker fuel price is fixed, the sailing speed
of leg 3 increases with the growth of the revenue sharing rate.
When the bunker fuel price is between 350 USD/ton and 600
USD/ton, the sailing speed of leg 5 first decreases and then
increases with the growth of the revenue sharing rate. When
the bunker fuel price is between 650 USD/ton and 800 USD/
ton, the sailing speed of leg 5 first increases and then de-
creases and finally increases with the growth of the revenue
sharing rate.

Generally, the increase of the bunker fuel price will result
in the decrease of the sailing speed, while the increase in the
revenue sharing rate will result in the growth of the sailing
speed. Nevertheless, the above sensitivity analysis results of
the long leg sailing speed are not completely consistent with
the existing knowledge.0e reason is that the SSFD problem
under the TDFRS obtains optimization results under the full
consideration of the total freight revenue, bunker fuel cost,
and containership cost. 0e sailing speed changes in the
head-haul direction and those in the back-haul direction
have impact on each other.

Figure 3 depicts the changes of the total profit changes
under different freight rate strategies (FFRS and TDFRS) and
different parameters (revenue sharing rates and bunker fuel
prices).

It can be seen from Figure 3 that there are some pa-
rameters (the overlapping part of the curved surfaces under
the two freight rate strategies is demonstrated in shadow in
Figure 3) under which the total profit under the TDFRS is
equal to that under the FFRS. In most cases, the total profit
under the TDFRS is greater than that under the FFRS. 0e
greater the revenue-sharing rate is, the more profit the
container shipping liner can achieve under TDFRS. In ad-
dition, as the revenue-sharing rate increases and the bunker
fuel price decreases, the advantage of the TDFRS on the
profit increment increases (that is, the gap between the two
curved surfaces is getting bigger). 0is is because the higher
the revenue sharing rate is, the higher the freight rate for spot
market customers under the TDFRS is and more freight
revenue the container shipping liner gets. In addition, the
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Figure 2: Sensitivity of the optimal sailing speed of route 1: (a) leg 3 and (b) leg 5.
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bunker fuel price reduction also has a positive effect on the
overall sailing speed growth. 0is enables the container
shipping liner to increase the freight rate for spot market
customers and the total profit while the total bunker fuel cost
reduces. 0erefore, the total profit of the container shipping
liner under TDFRS grows with the increase of the revenue-
sharing rate and the decline of the bunker fuel price.

6. Conclusion

In this study, the SSFD problem in an intercontinental liner
network with the consideration of the time value of the
container cargo is investigated. 0e problem is first for-
mulated as a mixed-integer nonlinear programming under
the TDFRS. In consideration of the nonlinearity of the
model, the piecewise linearization algorithm is designed to
transform the model into an integer linear programming.
0e proposed model and the algorithm are evaluated by
numerical examples. 0e results show that, considering the
time value of the container cargo in the SSFD problem affects
containerships sailing speed on long legs and the number of
deployed containerships. Moreover, when the TDFRS is
adopted for spot market customers, the optimization results
obtained by the proposed model are able to not only increase
the total profit for the container shipping liner but also
provide a satisfactory level of service for customers.

It should be noted that the container demand between
port pairs may fluctuate as freight rate changes. 0erefore,

the SSFD problem considering both the time value of the
container cargo and the dynamic container demand should
be explored in future research.

Appendix

First, model [M1] linearization: the objective function (A.8)
and constraints (A.9) and (A.10) in Section 3.3 all contain
the reciprocal of the variables sr

Nr or sr
Nr+Mr. Similarly, three

sets of new decision variables are defined:
wr

Nr � 1/sr
Nr andwr

Nr+Mr � 1/sr
Nr+Mr,∀r ∈ Φ. Considering

the time value of the container cargo, the freight rate for spot
market customers yr

ij from port i to port j on route r can be
rewritten as

y
r
ij � Y

r
ij +

ϕUrρ Lr
Nr/S

r∗

Nr􏼐 􏼑 − Lr
Nrw

r
Nr􏼐 􏼑

24 × 365
,

∀r ∈ Φ, i ∈ A
r
, j ∈ B

r
,

y
r
ij � Y

r
ij +

ϕUrρ Lr
Nr+Mr/S

r∗

Nr+Mr􏼐 􏼑 − Lr
Nr+Mrw

r
Nr+Mr􏼐 􏼑

24 × 365
,

∀r ∈ Φ, i ∈ B
r
, j ∈ A

r
.

(A.1)

Define Wr
min � 1/Sr

max and Wr
max � 1/Sr

min, ∀r ∈ R.
0erefore, model [M1] can be reformulated as model [M3′]:
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Figure 3: Changes of the total profit under the two freight rate strategies.
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m
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,∀r ∈ Φ,∀v ∈ Ω. (A.9)

All the constraints in model [M3′] are linear, but the
third term of the objective function contains nonlinear
functions of wr

Nr and wr
Nr+Mr. 0erefore, model [M3′] is still

a mixed-integer nonlinear programming.
According to 0eorem 1, it can be proved that the

objective function of model [M3′] is also convex, and the
value of wr

Nr and wr
Nr+Mr are uniform on each liner route.

Second, discretize the definition domain [Wr
min, Wr

max]

of the new decision variables wr
Nr and wr

Nr+Mr. For the
sailing speed on each long leg on each liner route, a new
binary variable is defined as follows:

βr
Nr,qr �

1, wr
Nr � Wr

qr

0, wr
Nr ≠Wr
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Finally, the mixed-integer nonlinear programming
model [M3′] can be transformed into an equivalent integer
linear programming model [M5].
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