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Abstract. This is a tutorial paper that outlines, through a benchmark example,
an effective method for coupling nonmatched finite element meshes. Coupling is
done through a displacement frame interposed between the interface meshes. That
frame is treated with a FEM discretization and “glued” to the meshes through
localized Lagrange multipliers collocated at mesh-interface nodes. The approach
can be used to couple meshes of arbitrary geometry, discretization type (e.g., FEM
and BEM) and even meshes of different physics (e.g., structure and fluids). The
example, however, focuses on a simplified 2D case that can be explained within
space constraints. The requirement for preservation of constant stress states leads
to an easily visualized condition, called the zero-moment rule or ZMR, that can
be used to locate frame nodes on frame geometry. The ZMR provides all possible
consistent frame-node configurations. Generalizations of the 2D ZMR rule to 3D
problems involve partitioning of the frame and are not reported here. Thus the
ZMR is necessary but not sufficient. The constant stress consistency condition
may be interpreted, according to the reader’s taste, as either an interface patch
test, a vanishing of the first variation of the interface potential under admissible
kinematic modes, or a requirement for energy conservation across the interface.

Key words: Finite element methods, nonmatching meshes, interface frame,
localized Lagrange multipliers, constant stress consistency, interface potential test,
interface patch test, zero moment rule.

1 AN EXAMPLE

To motivate the theme of the article, we study the benchmark example defined
in Figure 1. A homogeneous rectangular plate in plane stress, of width 2a and
uniform thickness, occupying domain Ω, is under uniform inplane surface tractions
+q on the horizontal faces. The exact stress solution is σyy = q, others zero.

Cut the plate in two halves along Γ12 as depicted in Figure 1(b). This divides Ω
into two partitions: Ω1 and Ω2 (A partition is a spatial subdivision of a continuum
or discrete system [1].) Partitions Ω1 and Ω2 are discretized into four-node bilinear
quadrilateral elements as shown in Figure 1(c). Partition 1 is divided into five
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Figure 1. A benchmark problem for nonmatching FEM meshes: five bilinear
elements (bottom) connected to four bilinear elements (top).

elements of equal size, and partition 2 into four. The surface traction q is converted
to nodal forces by energy-consistent methods, which for these elements gives the
same result as simple static load lumping.

1.1 The Interface-Mesh Connection

The theme of this article is: how can the two meshes be connected so that
the constant stress solution of Figure 1(a) is exactly preserved? In answering this
question one faces many choices, which may be collectively grouped into primal
and dual methods. Primal methods link directly interface node displacements
through some kind of master-slave interpolation scheme. These schemes have
the advantage of not introducing additional unknowns, but generally violate
consistency. In fact recovered stresses can be arbitrarily bad. Dual methods rely on
the injection of dual variables, which in mechanical problems are the interaction
forces conjugate to the interface displacements. Mathematically the interaction
forces are Lagrange multipliers, hence the alternative name multiplier methods.

Of the set of available multiplier methods we chose, for reasons elucidated in [2–
4], a connection frame method. A frame line is interposed between the two meshes
as illustrated in Figure 1(d). The frame is endowed with a 2D displacement field
ug, which (in the variational sense discussed later) is viewed as a primary field
independent of the partition interface displacements u1 and u2. (The g subscript
stands for “global,” a term arising from domain decomposition applications [3].)

The frame is “glued” to each interface side through two Lagrange multiplier
fields λ1

` and λ2
` , which in a 2D problem such as this one must include normal and

tangential components. The ` subscript stands for “localized”, since each field is
associated with one and only one partition.
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Figure 2. Placing connection frame nodes for the benchmark problem of
Figure 1 by the ZMR: (a) meshes; (b) frame-FBD forces; (c) moment
diagram along frame; (d) 15 symmetric frame node configurations.

Terminology for this class of mesh connection methods is yet not standardized.
In the applied mathematics literature the approach is said to pertain to the class of
“3-field methods”, because three interface fields can vary: the partitioned domain
displacement (u1,u2), the frame displacement ug, and the Lagrange multipliers
(λ1
` ,λ

2
`). In the engineering literature one finds the terms connector and interface

frame, which can be traced back to the development of hybrid elements in the late
1960s [2].

1.2 Connector Discretization Decisions

Whatever name is chosen, the three interface fields must be discretized. This
leads to the following decisions:
Frame discretization. Select location of frame nodes, pick degrees of freedom
(DOF) therein, and interpolate the frame displacements ug.
Multiplier discretization. Make similar choices for the multipliers λm` for m = 1, 2.

The decision on multiplier discretization is made first. We pick them
as concentrated forces located at partition interface nodes, in one-to-one
correspondence with the interface DOFs found there. (Mathematically, the
multiplier space is that of delta functions collocated at those nodes.) This choice
is computationally convenient because it avoids boundary integrals, and leads to
modular mesh-coupling software, since the “coupler” needs to know little about
what interface DOFs it couples with.

But it “passes the buck” to the other decision. In particular: how many frame
nodes and where? If this is directly attacked from the standpoint of constant-stress
consistency, and a general frame displacement interpolation assumed, we end up
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with a system of generally nonlinear equations under inequality constraints on
the frame node locations. Consequently, there is no a priori guarantee that such
system will have feasible solutions.

1.3 The Zero Moment Rule

Fortunately a simple and effective rule can be invoked if the frame displacement
interpolation (both normal and tangential) is piecewise linear. Transfer the applied
nodal forces of Figure 1(c) onto the frame as illustrate in Figure 2(a), in which we
have taken a = q = 1 to make the calculations dimensionless. Consider the frame
line as an isolated object subject to this system of forces, and draw the free-body
diagram (FBD) shown in Figure 2(b).

Frame points are located by an isoparametric-style dimensionless coordinate ξ,
which varies from ξ = −1 at the left to ξ = +1 at the right. The 11 normal point
forces acting on the frame FBD of Figure 2(b) are called fmi and act at ξmi , where
i = 1, . . . 6 for partition m = 1, and i = 1, . . . 5 for partition m = 2. Define the
moment function M(ξ) for −1 ≤ ξ ≤ 1 as

M(ξ) =
∑
i

fmi R(ξ − ξmi ), where R(x− a) def=
{

0 if x < a
x− a if x ≥ a.

(1)

where R(x−a) is McAuley’s ramp function, often denoted as 〈x−a〉1 in Mechanics
of Materials textbooks. The diagram of M(ξ) for the benchmark problem is shown
in Figure 2(c). The Zero Moment Rule (ZMR) states that for preservation of
constant-stress states

Frame node locations must be located at the roots of M(ξ) = 0. (2)

In the benchmark problem M(ξ) = 0 has eight roots at ξ = ±1, ±19/35, ±2/25
and ±2/5. (The two end nodes are of course solutions, since M(−1) = M(1) = 0.)
The ZMR does not say how many frame nodes one should take. Fifteen symmetric
arrangements are shown in Figure 2(d), using 2 through 8 nodes. The best
configuration out of these possibilities is dictated by stability (rank sufficiency)
and accuracy considerations, which are not discussed here. The rule has been
verified through actual FEM calculations in contact problems [5]. An alternative
procedure for the determination of frame nodal points based on the self-equilibrium
conditions of the frame is presented in [6] for elasticity computations. That
procedure stipulates that no additional deformation energy is created on the
partitioned domains in constant stress states when they are assembled together.

Thus the rule is necessary but not sufficient. However, it reduces significantly
the complexity of the original problem. Searching among a discrete set of feasible
configurations, as in Figure 2(d), is an order of magnitude less taxing than starting
with unknown node locations.

Structural engineers will note that M(ξ) has the same interpretation as that of
a bending moment diagram if the frame is regarded as a free-free beam. It is well
known that in beam design the best places to place hinges are zero moment points.
Hence engineers with that training may want to mentally convert the problem of
placing frame nodes to that of selecting beam hinge locations.
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2 CONNECTING ELEMENTS OF DIFFERENT ORDER

Before justifying the ZMR mathematically, it should be noted that its scope
is not restricted to connecting bilinear quadrilaterals. In fact it is valid for 2D
elements of varying interpolation order on either side of a straight and open
interface, as long as they possess only translational freedoms, and the frame motion
is interpolated by piecewise linear displacements.

To visualize the ZMR for higher order elements it is convenient to proceed
graphically, drawing “interface bending moment diagrams.” As noted above, this is
particularly helpful for structural engineers, who are taught to draw such diagrams
since undergraduate courses. If the meshes on both sides are regularly spaced with
the same element type, moment functions can be compactly written for numerical
experiments. For example, using Mathematica, functions for an interface that
looks like that of Figure 1 and contains ne elements of identical size can be defined
as

Ramp[xi_,a_]:= If [N[xi]>N[a],N[xi-a],0,0];
Mlin[xi_,ne_]:=Sum[(2/ne)*Ramp[xi,2*(i-1)/ne-1],{i,2,ne}]+

(1/ne)*Ramp[xi,-1]+(1/ne)*Ramp[xi,1];

Mqua[xi_,ne_]:=Sum[4/(3*ne)*Ramp[xi,2*(i-1)/ne-(1-1/ne)],{i,1,ne}]+
Sum[2/(3*ne)*Ramp[xi,2*i/ne-1],{i,1,ne-1}]+

1/(3*ne)*Ramp[xi,-1]+1/(3*ne)*Ramp[xi,1];

Mcub[xi_,ne_]:=Sum[3/(4*ne)*Ramp[xi,2*(i-1)/ne-(1-(2/3)/ne)]+
3/(4*ne)*Ramp[xi,2*(i-1)/ne-(1-(4/3)/ne)],{i,1,ne}]+
Sum[2/(4*ne)*Ramp[xi,2*i/ne-1],{i,1,ne-1}]+
1/(4*ne)*Ramp[xi,-1]+1/(4*ne)*Ramp[xi,1];

These functions assume that boundary forces are scaled such that they add up to 2
on each interface side. Functions Mlin, Mqua and Mcub pertain to 2D elements with
boundary displacements varying linearly, quadratically and cubically, respectively.
With these functions in place one can solve what on first look appear to be
intractable mesh-connection problems in a few seconds. For example, the plot
of Figure 2(c) was produced by saying

Plot[Mlin[xi,5]-Mqua[xi,2],{xi,-1,1}, AxesOrigin->{0,0}].

2.1 Example 2: Linear-Quadratic Nonmatching Meshes

The second example considers again the original problem of Figure 1(a) with
a = q = 1. The bottom partition is again discretized by five bilinear quadrilaterals
but the top partition consists of two biquadratic 9-node quadrilaterals as depicted
in Figure 3(a). Coordinate ξ is defined as before. Consistent node forces are shown
in Figure 3(a) and mapped on the frame-FBD as depicted in Figure 3(b). A plot
of the moment function M(ξ) is generated by the Mathematica command

Plot[Mlin[xi,5]-Mqua[xi,2],{xi,-1,1}, AxesOrigin->{0,0}].
The resulting moment diagram is shown in Figure 3(c). It has six zero roots at

ξ = ±1, ±9/35 and ±3/25, which are candidates for frame node locations. Figure
3(d) shows 7 possible symmetric frame node configurations. The selection from
these seven is done according to other criteria not discussed here.

It is important to note that this solution is not restricted to matching bilinear
and biquadratic elements. The same frame forces would be produced, for instance,
if each bilinear quadrilateral is replaced by two linear 3-node triangles, and each
biquadratic quadrilateral by two quadratic 6-node triangles. Further, the internal
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Figure 3. Five bilinear elements (bottom) connected to two biquadratic
elements (top): (a) meshes; (b) frame-FBD forces; (c) moment
diagram; (d) 12 symmetric frame node configurations.

element formulation: displacement, hybrid, etc., is irrelevant. This is important as
regards maintaining software modularity should meshes to be linked be extracted
from commercial FEM programs.

2.2 Example 3: Quadratic-Cubic Nonmatching Meshes

This example aims at illustrating a rather special case in which both nodes and
freedoms match at the interface, but the displacement boundary variation does
not. Again consider the problem of Figure 1(a) with a = q = 1. The bottom
partition is discretized into three biquadratic 9-node quadrilaterals and the top
one into two bicubic 16-node elements, as depicted in Figure 4(a). Coordinate ξ
is defined as before. Consistent node forces are shown in Figure 4(a) and mapped
on the frame-FBD as shown in Figure 4(b). A plot of the moment function M(ξ)
is generated by the Mathematica command

Plot[Mqua[xi,3]-Mcub[xi,2],{xi,-1,1}, AxesOrigin->{0,0}].
The resulting moment diagram is shown in Figure 4(c). It has six zero roots at

ξ = ±1, ±7/12 and ±4/21, which are candidates for frame node locations. Figure
4(d) shows 7 possible symmetric frame node configurations. Note that interior
frame node locations do not match the partition nodes locations. Hence it would
be an error to connect the meshes as if the nodes and freedom matched.
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Figure 4. Three quadratic elements (bottom) connected to two bicubic
elements (top): (a) meshes; (b) frame-FBD forces; (c) moment
diagram; (d) 7 symmetric frame node configurations.

3 JUSTIFYING THE ZMR FROM THE IPT

The ZMR can be proven, or at least justified, in a surprising variety of
ways, which range from pure variational mathematics (such as that given in
the Appendix) through heuristic arguments. Proofs may rely on finite element
concepts or be dissociated from them; independence being useful for extension to
other discretizations such as BEM or FDM. The argument that follows is algebraic-
variational in nature, and uses FEM tools such as shape functions. (Readers
uninterested in these gyrations should skip directly to the Summary section).

3.1 Variational Formulation

To keep unessential clutter to a minimum, only a slight generalization of the
problem of Figure 1 is considered. A free-free plate is subjected to a force system
consistent with the constant plane stress solution σyy = q, others zero. We take two
plate partitions: 1 and 2, discretized into nonmatching FEM meshes, as illustrated
in Figure 5(a).

The following geometric and discretization restrictions are enforced: (1) the
interface Γ1,2 is a straight open line fully covered by elements from both sides, (2)
the elements have only translational freedoms, (3) the multipliers are collocated
on partition boundary nodes. Frame points are located by coordinate x. The two
generalizations from the three example problems is that element sizes are arbitrary,
and the frame displacements are not required to be piecewise linear.
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Figure 5. Connecting two nonmatched plane stress meshes to explain the IPT.
(a) connection schematics: crossed partition boundary nodes are a reminder
that two Lagrange multiplier freedoms “live” there; (b) connection frame
as free-free object endowed with partition boundary freedoms and forces.

The problem will be further reduced in the next subsection by assuming that
mesh elements are rank sufficient and satisfy the constant stress consistency
condition (sotto voce, the patch test). All freedoms not pertaining to the interface
will be statically condensed out, and the problem reduced to that depicted in
Figure 5(b). This is called the frame-reduced system, in which the frame is viewed
as a free-free object with “attached” partition nodes, and gets rid of partition
fabrication details. Partition boundary nodes are marked with a cross as a
reminder that two Lagrange multiplier freedoms “live” on each side.

The discrete governing functional for a quasistatic case is given by

Π(u1,λ1
` ,u

2,λ2
` ,ug) = Π1(u1,λ1

`) + Π2(u2,λ2
`) + π1,2(λ1

` ,λ
2
` ,ug). (3)

Here Πm is the functionals for the separated partitions m = 1, 2, and π1,2 is
the frame potential that “glues” Π1 and Π2. In this form um, λm` (m = 1, 2) and
ug denote nodal values. The continuum version of (3) is discussed in [2].

For further use we split um into interface freedoms umb (at the crossmarked
nodes of Figure 5) and the remainder: umi . The FEM equations are obtained from
the first-variation stationarity condition δΠ = 0, which gives [2]

δΠ =



δu1
i

δu1
b

δλ1

δu2
i

δu2
b

δλ2

δug



T 



K1
ii K1

ib 0 0 0 0 0

K1
bi K1

bb −I1 0 0 0 0

0 −I1 0 0 0 0 C1

0 0 0 K2
ii K2

ib 0 0

0 0 0 K2
bi K2

bb −I2 0

0 0 0 0 −I2 0 C2

0 0 (C1)T 0 0 (C2)T 0





u1
i

u1
b

λ1

u2
i

u2
b

λ2

ug


−



f1
i

0
0
f2
i

0
0
0




= 0.

(4)
Here the Km’s and fm’s are the stiffness matrices and applied force vectors,
respectively, for partition Ωm; Im are identity matrices of appropriate order;
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and Cm are connection matrices that link the frame to partition m. The Cm

matrices are constructed by evaluating frame displacements on the mesh nodes.
Condensation of the umi (interior) freedoms gives the frame-reduced system

δΠ =


δu1

δλ1

δu2

δλ2

δug


T 


K1
b −I1 0 0 0

−I1 0 0 0 C1

0 0 K2
b −I2 0

0 0 −I2 0 C2

0 (C1)T 0 (C2)T 0




u1
b
λ1

u2
b
λ2

ug

−


f1
b
0
f2
b
0
0



 (5)

where Km
b = Km

bb −Km
bi (K

m
ii )−1Km

ib , and fmb = −Km
bi (K

m
ii )−1fmi .

3.3 The Interface Potential Test

Equations (4) are valid for any force system. Now assume that both partitions
m = 1, 2 are in the same constant-stress state induced through force system fmb
in (5). The associated displacements umb are unique except for possibly a rigid
body motion that produces no forces. The first four matrix equations in (5) are
identically verified by the solution

umb = Cmug, λm = fmb −Km
b umb = fmb −Km

b Cmug, (6)

Observe that if fmb produces a constant stress state, then the interface forces, λm,
acting on the frame must also preserve the corresponding constant stress state.
Thus, the meaning of umb = Cmug is: the constant-stress solution displacement
must be reproduced exactly (pointwise) by the frame displacements. Variation of
π1,2 with respect to the frame displacement ug leads to

δπ1,2
g

def= δuTg [(C1)Tλ1 + (C2)Tλ2] = 0 (7)

Note that (7) mus be verified for all variations δug that are kinematically
admissible with respect to the assumptions made on frame displacements, namely
degrees of freedom and interpolation. Despite its apparent simplicity, (7) may in
fact be a highly complex expression because δub, C1 and C2 are functions of the
number of frame nodes and their location, which is exactly the problem we are
trying to solve. We can now state the Interface Potential Test or IPT as

The variation (7) of the interface potential must vanish
identically for all kinematically admissible frame motions while
under constant-stress interface forces λ1 and λ2.

Physically this says that no spurious energy can be absorbed or released by the
frame when the adjacent meshes are in a uniform stress state. Note that the IPT
involves only the motion of the frame, viewed as a free-body object, under the
known interface forces. A glance at (7) shows that the variation has the same form
as the Principle of Virtual Work (PVW) if the frame node locations are regarded
as given. So a technically equivalent statement, possibly more easily grasped by
an engineer familiar with the PVW, is

The virtual work δπ1,2 of the frame on the constant-stress
interface forces λ1 and λ2 must vanish for all kinematically
admissible virtual frame displacements, ug.
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Figure 6. Example illustrating equivalence of IPT and the zero moment condition (10) for the frame
of Figure 5 under piecewise-linear displacements: (a) frame discretized into four
elements; (b) frame patch functions; (c) rigid body motions about nodes as “hinges”.

The complexity of the frame location problem comes from two sources. If the
frame interpolation is nonlinear in the frame coordinate x, δug is also nonlinear in
x. Furthermore entries of the connection matrices C1 and C2 are discontinuous
at partition node locations. So the innocent looking system (7) in fact leads to a
system of nonlinear equations with inequality constraints. As noted before there is
no guarantee that this system will have real solutions, and that those real solutions
will be within the interface segment. A substantial simplification occurs, however,
if the frame displacements is piecewise linear, which leads directly to the ZMR.

3.4 Equivalence of IPT and ZMR for Piecewise Linear Frame

The reduced frame system of Figure 5(b) is reproduced in Figure 6(a) with
additional node and force labels required for the manipulations that follow. To
derive the ZMR we assume that frame displacements are piecewise linear in both
normal and tangential directions. For simplicity, however, only normal-to-the-
frame displacements and forces are treated. The frame is pictured as discretized
with five nodes and four frame elements (although two nodes are placed at the
frame ends, this is not strictly necessary.) The frame nodes are 1, . . . , 5. The
frame-attached boundary nodes from partition m are labeled 1m, 2m, . . .. Symbol
λmn labels the normal-to-the-frame constant-stress force at node n of partition m.

As this point we introduce some FEM paraphernalia and do a hat trick. The
five normal-displacement patch trial functions (the well known “hat” functions)
associated with the frame nodes are shown in Figure 6(b). Although in principle
these could be used for the IPT (7), they provide little insight. Consider instead
the five frame motions depicted in Figure 6(c). The top one is a normal rigid-body
translation. The bottom four depict rigid body rotations about four frame nodes:

10
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2, 3, 4 and 5, viewed as hinges; that is, only the left portion of the frame moves.
(Considering node 1 as hinge gives of course nothing). It is easily verified that
the five motions can be built as unique linear combinations of the hat functions
of Figure 9(b), since the transformation matrix, not shown here, is triangular and
square nonsingular. Hence the IPT can be indistinctly applied to either set.

Passing the IPT for the normal rigid-body translation requires that the sum
of the normal forces acting on the entire frame vanish. This is automatically
satisfied if constant stress states are correctly lumped to boundary nodes, and
places no constraints on frame node location. The situation changes when the
rotational motions are considered. For the sake of specificity take the rotation
about hinge-node 3 located at x = x3. Examination of the figure shows that five
constant-stress partition-boundary forces: λ1

1, λ1
2, λ1

3, λ1
4, λ2

1 and λ2
2 work on the

lateral displacements, which are α(x3− x1
1), α(x3− x1

2), etc., with α as rotational
rigid motion amplitude. Then the IPT, in PVW disguise, is

δW3 = δα
[
λ1

1(x3−x1
1) + λ1

2(x3−x1
2) + λ1

3(x3−x1
3) + λ1

4(x3−x1
4) + λ2

1(x3−x2
1)+

+λ2
2(x3−x2

2)
]

= δαM3 = 0, whence M3 = 0
(8)

If the “hinge position” is generically denoted by x, M3 generalizes to the moment
function

M(x) =
∑
i,m

λmi R(x− xmi ), where R(x− a) =
{

0 if x < a
x− a if x ≥ a.

(9)

in which m = 1, 2 and i runs over all forces from subdomain m, with appropriate
signs. But this is precisely the ZMR stated, as recipe, in Section 1.3.

As regards shearing boundary forces and tangential frame displacements, the
same argument applies without changes. The frame locations must be at the roots
of M(x) = 0. The difference is that tangential frame motions cannot be physically
interpreted as rigid rotations about hinges, and the IPT is no longer an equilibrium
condition. In summary: the ZMR suffices for frame node placement with respect
to all piecewise-linear motions, whether normal or tangential.

4 SUMMARY: HOW EXTENDIBLE IS ZMR?

The rule is so simple that one is tempted to see whether it extends to more
complicated situations. Here are additional scenarios listed roughly in order of
increasing complexity:
(a) Constant shear consistency tests and tangential displacements
(b) Curved 2D interfaces
(c) Partial 2D interfaces
(d) Rotational degrees of freedom
(e) General 2D interfaces with multiple branches and closed circuits
(f) 3D interfaces
(g) Contact and sliding
(h) Higher order frame interpolation
(i) Dynamic response problems
(j) Different discretizations, e.g., FEM/BEM or FEM/FDM
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(k) Multiphysics interfaces
The ZMR extends with only minor changes to scenarios (a,b,c); in fact for (a)
in 2D the answer is given in the previous subsection. Extensions to (d,e,f) are
presently under study — for (f) the equivalent rule involves the Poisson equation.
Modeling contact, with and without friction, is of course one of the major sources
of nonmatching meshes, and recent studies [5] have shown that the ZMR works
effectively in 2D if used in an iterative setting. The ZMR breaks down under
scenario (h) and in fact no solution to the frame node placement problem generally
exists, even in 2D. For scenarios (i,j,k) new physical interpretations are required.
For 3D nonmatching interface meshes that are rectangular with rectangular
partitioned boundary domains, a simple and effective frame discretization
procedure [6] is available. For arbitrary irregular interface meshes, further
‘localizations’ of the interface potential π1,2 are necessary.
Is failure in more complicated scenarios reason for alarm as regard the universality
of the interface frame approach? No. There are two safety nets:
1. Smoother interpolation spaces may be used for the localized Lagrange

multiplier fields. If this is done, higher order frame interpolations become
feasible. However, the formation of mesh-coupling matrices becomes more
involved because field integrations over the interface boundaries are required,
and the resulting software is much less modular.

2. The IPT (Interface Patch Test or Interface Potential Test, whichever the reader
prefers) is generally applicable as long as the interface potential functional π
can be expressed in term of frame variables — whatever they are — and
localized multipliers — whatever they mean. Then δπ = 0 over the space of
admissible variations of frame primal variables is the test of last resort.

So the cautious answer is: the ZMR does have limited application range, but it
covers a useful range of nonmatching mesh-connection problems. The IPT is more
general, but translating it to precise rules for the practicing engineer is likely to
require specialization of the problem domain.
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APPENDIX - A PURELY VARIATIONAL PROOF OF THE ZMR

This proof looks at the reduced frame system, Figure 6(a), as simply a mechanical object
under the given force system q(x) = λmi δ(x

m
i ) where δ(.) is the delta function. The force source:

FEM nodes, BEM control points or finite difference gridpoints, is irrelevant. (In fact q(x) can be
anything: point forces, distributed forces such as pressures, or a mixture of the two.) The following
proof relies on just one assumption: the virtual work of the frame on all admissible test functions
(the virtual frame displacements) must be zero.

The interface extends from x = 0 through x = L. For the ensuing manipulations it is convenient
to extend the frame outside the interface proper so that its end points A,B are at xA = −a and
xB = L + b, where a and b are arbitrary positive values. The frame nodes are located at xn,
n = 1, . . . N with 0 ≤ xn ≤ L. Also xn+1 > xn, that is, no coincident nodes are allowed.
Coordinates x1 and xN are taken as location of the first and last frame nodes, respectively, a
decision subject to a posteriori verification. The transverse displacement of the frame is w(x), which
is taken to be C0 continuous and piecewise-linear between frame nodes. This is conventionally
prolonged with constant values to cover the remainder of the frame, so that w(x) = w(x1) for
xA ≤ x ≤ x1, and w(x) = w(xN ) for xN ≤ x ≤ xB . The test function for the PVW is δw.

Call V = VA +
∫ x
A
q(x) dx and M(x) = MA +

∫ x
0
V (x) dx so that q = d2M/dx2 = M ′′, where

(.)′ ≡ d(.)/dx. From those definitions V (x) and M(x) are the transverse shear and bending moment
functions, respectively, associated with the force system q(x).

The frame virtual work is δW =
∫ B
A
q(x) δw(x) dx. Setting δw to be a linear function in

x ∈ [0, L] requires the applied forces to satisfy global translational and rotational equilibrium, but
places no conditions on frame node locations. To do that δW is integrated twice by parts:

δW = MA δw
′
A −MB δw

′
B + VB δwB − VA δwA +

∫ B

A

M(x)w′′ dx. (10)

But δw′A = δw′B = 0 since w(x) is constant there. Next, take δwA = δw1 = 1, δwB = δwN = 0,
and interpolate linearly between w1 and wN ; then δW = VA = 0 because there are no forces
between xA and x1 = 0. Likewise take δwA = δw1 = 0, δwB = δwN = 1, and a linear interpolation
between w1 and wN ; then δW = VB = 0 because there are no forces between xN = L and xB .
Consequently all boundary terms in (10) vanish.

Since w(x) is piecewise linear between frame nodes so is δw(x). At a frame node n the following
weighted-finite-difference relation holds:

δw′′n =
δwn+1 − δwn

∆x+
n

− δwn − δwn−1

∆x−n
(11)

where ∆x+
n = xn+1 − xn > 0 and ∆x−n = xn − xn−1 > 0. For the first node (n = 1), xn−1 = x0 is

conventionally taken to be at A; for the last node (n = N), xn+1 is taken to be at B. At location
other than nodes, δw′′ = 0. Hence

δW =
∑
n

M(xn)δw′′(n) =
∑
n

M(xn)
(
δwn+1 − δwn

∆x+
n

− δwn − δwn−1

∆x−n

)
= 0. (12)

At nodes n = 2, . . . N − 1 take δwn+1 = δwn−1 = 0, δwn = 1; since ∆x+
n > 0 and ∆x−n > 0, (12)

requires M(xn) = 0. At node 1 take δwA = δw1 = 1 and δw2 = 0, which requires M(x1) = 0. At
node N take δwN = δwB = 1 and δwN−1 = 0, which requires M(xN ) = 0. Thus function M(x)
must vanish at all frame nodes. We note that M(x1) = M(xN ) = 0 because there are no forces to
the left of x = x1 and to the right of x = xN , thus justifying the a priori choice of those locations
as first and last frame nodes, respectively. Consequently the ZMR is proved.
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