
water

Article

Experimental and Numerical Analyses on Mixing
Uniformity of Water and Saline in Pipe Flow

Bin Sun 1, Yuanbo Lu 1, Quan Liu 1, Hongyuan Fang 1,2,3,*, Chao Zhang 1,* and Jinping Zhang 1

1 School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China;
sunbin@zzu.edu.cn (B.S.); 18137852539@163.com (Y.L.); lq15207204451@163.com (Q.L.);
zhjp@zzu.edu.cn (J.Z.)

2 National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology,
Zhengzhou 450001, China

3 Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety,
Zhengzhou 450001, China

* Correspondence: 18337192244@163.com (H.F.); chao.zhang.zzu@outlook.com (C.Z.);
Tel.: +86-183-3719-2244 (H.F.); +86-371-6778-0116 (C.Z.)

Received: 30 May 2020; Accepted: 10 August 2020; Published: 13 August 2020
����������
�������

Abstract: Liquid—liquid mixing is commonly observed in many applications such as the chlorination
of water supplies and the agricultural fertigation. In order to study the mixing law of water-chlorine
or water-fertilizer in a turbulent pipeline, saline was selected as a tracer injected into the pipeline.
In this paper, the computational fluid dynamics (CFD) software was employed to study flow fields
in water-saline pipelines. Four variates (mixing ratio δ, pipe diameter D, volume flow rate in the
main pipe Q, saline density ρs) were considered to investigate the effects of multiple variates on
mixing uniformity. The coefficient of variation (COV) was selected as the evaluation index of mixing
uniformity, effective mixing length (LEML, the distance from the saline inlet to the fully mixed position)
was chosen to quantitatively analyze the fully mixed position of water and saline in pipelines.
The results of this numerical model agree well with experimental measurements and it shows that
this model can effectively predict the concentration field of water and saline in the pipeline. Based on
the experimental and simulated results, it was found that for the fixed mixing ratio, saline density
and volume flow rate, the values of LEML increased significantly with increasing pipe diameters.
Furthermore, dimensional analysis (D-A) was adopted to examine the influences of the four variates
on LEML, and their correlation coefficient of the curve-fitting equation was calculated to be 0.996.

Keywords: concentration distribution; dimensional analysis; effective mixing length; numerical
simulation; pipe flow

1. Introduction

Liquid—liquid mixing, as a complex nonlinear system, is commonly observed in many industrial
applications. Some examples include the chlorination of water supplies [1] and the identification of a
single pollution source in the water supply pipe network [2,3], the online mixing of water and fertilizer
in the agricultural fertigation [4], and the different gas-liquid/oil-water two-phase flow structure [5].
Simultaneous mixing of liquid–liquid in pipes presents considerable challenges and difficulties due
to the complexity of the two liquid streams’ mixing processes. Conventional mixing devices include
a venturi-type mixer, batch mixer, and screw mixer. However, their use may require a disruption of
the flow or the energy required and the possible maintenance problems for mixers or obstructions in
a pipe.

One viable alternative is to use the pipeline as a mixing chamber by injecting the substance into the
pipe flow. The method is sometimes referred to as pipe-flow mixing, in-line mixing, or mixing-on-the-fly.
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This method does not require the use of mixing units fixed in the pipe to change the flow state of
the fluid to achieve good mixing, which is mainly focused on how and when one liquid diffuses
into the other liquid. The effects of injection layout and structure on mixing uniformity have been
widely investigated in the recent years. Zughbi [6] investigated mixing uniformity for miscible fluids
in pipelines with the mesh size and turbulence model [7]. Ger and Holley [8] evaluated the given
degree of mixing under three single-point injections (a center line source, a wall source, and a jet at
the wall), both experimentally and numerically and stated that a jet injection resulted in production
of the most rapid mixing. Fitzgerald and Holley [9] carried out their studies on jets located on the
pipe wall and found that the proper angles and dual jet injection can yield a proper mixing uniformity.
Forney and Lee [10] examined the effects of the ratio of jet to tube velocity and diameter on effective
penetration and mixing, and the correlation of reliable data with a theory based on the study of mixing
uniformity [11] was found.

Although fundamental mixing characteristics under different operating conditions and geometries
have been reported by the researchers above, the complexity of the characteristics of the pipe-flow
mixing process mean that the quantitative study of this process has still been inadequate. With the help
of rapid development of computer technology, the computational fluid dynamics (CFD) method has
been employed as an effective means in studying the mixing uniformity inside the pipe-flow mixing.
In this paper, four variates (mixing ratio, pipe diameter, volume flow rate and saline density) were
considered to investigate the effects of multiple variates on mixing uniformity by experimentation and
simulation. Further, the coefficient of variation (COV) was selected as the evaluation index of mixing
uniformity in order to quantitatively analyze the fully mixed position of pipe-flow mixing.

2. Materials and Methods

2.1. The Experimental Set-Up

2.1.1. Experimental Purpose and Equipment

Experiments were conducted to investigate the effect of different main pipe diameters, volume
flow rates, saline densities and mixing ratios on hydraulic characteristics and mixing uniformity for
the pipe-flow mixing system. As experimental setup consisting of a main pipe and a side-tube of
8mm in diameter is attached to the main pipe as shown in Figure 1. To enable the sampling along the
pipeline, the sampling tubes were constructed. Based on practical engineering, polyethylene (PE) pipe
parameters were considered for the designed water pipeline. According to the standard dimension
ratio (SDR) of 11.0 with a nominal pressure of 1.6 MPa, the pipe diameters (D = 51.4 mm, 61.4 mm,
and 73.6 mm) of the main pipeline were selected [12]. For the secondary stream, water solution of
sodium chloride (NaCl) was chosen as a tracer salt. Considering safety and economy, the values of
flow velocity were chosen in the range of 0.5~2 m·s−1 with mixing ratios (δ = jet flow rate/volume flow
rate) of 0.5% and 1% (See Table 1).
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Figure 1. Experimental setup: (a) schematic diagram and (b) layout of test equipment ( I—tap water 
supply system, II—jet control system, III—mixed pipeline; 1,6—plastic water tank; 2,5—centrifugal 
pump; 3,10—ball valve; 4—electromagnetic flowmeter; 7—jet inlet; 8—acrylic visible pipe; 9— 
polyethylene (PE) pipe). 
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Figure 1. Experimental setup: (a) schematic diagram and (b) layout of test equipment (I—tap water
supply system, II—jet control system, III—mixed pipeline; 1,6—plastic water tank; 2,5—centrifugal
pump; 3,10—ball valve; 4—electromagnetic flowmeter; 7—jet inlet; 8—acrylic visible pipe;
9—polyethylene (PE) pipe).
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Table 1. Working conditions for the experiment design.

No. δ D (mm) Q (m3
·h−1) Re No. δ D (mm) Q (m3

·h−1) Re

1

1% 51.4

4 30,847 19

0.5% 51.4

4 30,847
2 6 46,270 20 6 46,270
3 8 61,694 21 8 61,694
4 10 77,117 22 10 77,117
5 12 92,541 23 12 92,541
6 14 107,964 24 14 107,964

7

1% 61.4

6 38,735 25

0.5% 61.4

6 38,735
8 9 58,102 26 9 58,102
9 12 77,469 27 12 77,469

10 15 96,836 28 15 96,836
11 18 116,204 29 18 116,204
12 21 135,571 30 21 135,571

13

1% 73.6

8 43,085 31

0.5% 73.6

8 43,085
14 12 64,628 32 12 64,628
15 16 86,170 33 16 86,170
16 20 107,713 34 20 107,713
17 24 129,256 35 24 129,256
18 28 150,798 36 28 150,798

2.1.2. Testing Sequence

To simulate the concentration distribution along the pipeline under different working conditions,
the following experiments are designed:

(1) System control involved adjusting the volume flow rate Q through a ball-valve opening,
and control of the jet flow rate q through a control knob to change the motor speed and achieve the
mixing ratio δ. In the design of the pipeline experimental system and simulated working conditions,
the design flow and pipe diameter in the relevant design specifications were combined, as well as the
real engineering conditions were simulated as far as possible considering the scale effect. Table 1 shows
the working conditions of proposed design and Reynolds numbers of the main pipelines. In this study,
various concentrations of saline were considered, including 1%, 2%, 4%, 6% and 8%. The concentration
of saline used in the experiments was 1%, correspondingly, and other concentrations were simulated
as controls.

(2) Tap water was applied in the pipeline system during the initial 10 min to stabilize the
system and then saline was injected into the system through a centrifugal pump until the mixing was
finished. Saline, as a tracer, is safe, non-toxic, soluble in water and does not influence the properties of
groundwater, as well as having high stability and detection capability. In addition, the conductivity
of saline with different concentrations is significantly different from that of water, which can meet
the test requirements. As can be seen in Figure 2, samples were collected at P0–P14 and each point
consisted of upper wall point (UW) and lower wall point (LW). When the inlet pressure and flow
reached stability, the solution in the sampling points was collected, and the electrical conductivity (EC)
was measured at thirty points. Every sampling solution was measured three times, and ninety data
were obtained for each working condition. Considering the influence of temperature on EC, an EC
meter and a temperature meter were used for the measurement, and the temperature-conductivity
indicator had the function of automatic temperature compensation.
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(2) Tap water was applied in the pipeline system during the initial 10 min to stabilize the system 
and then saline was injected into the system through a centrifugal pump until the mixing was 
finished. Saline, as a tracer, is safe, non‐toxic, soluble in water and does not influence the properties 
of groundwater, as well as having high stability and detection capability. In addition, the 
conductivity of saline with different concentrations is significantly different from that of water, which 
can meet the test requirements. As can be seen in Figure 2, samples were collected at P0–P14 and each 
point consisted of upper wall point (UW) and lower wall point (LW). When the inlet pressure and 
flow reached stability, the solution in the sampling points was collected, and the electrical 
conductivity (EC) was measured at thirty points. Every sampling solution was measured three times, 
and ninety data were obtained for each working condition. Considering the influence of temperature 
on EC, an EC meter and a temperature meter were used for the measurement, and the temperature‐
conductivity indicator had the function of automatic temperature compensation. 
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Figure 2. (a) The sampling point arrangement, (b) schematic diagram of sampling tube.

2.2. The Numerical Model

2.2.1. Geometric Model

A geometry identical to the experimental test pipe section was constructed. The length of the
proposed pipeline model was 10 m, and the vertical jet inlet (inlet 2) of 8 mm diameter was placed at a
distance of 1.5 m from the cross-flow inlet (inlet 1) (See Figure 3a). The CFD module of Ansys software,
which is the most popular finite element analysis software in the field of fluid mechanics, was used in
the model construction and calculation.
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According to the pipeline parameters presented in Table 1, three 3-dimensional flow region models
(A, B, and C) were developed using tetra meshes (total numbers of cells were 1,838,167, 2,498,301,
and 3,453,428, respectively). In order to improve the computational accuracy, a local grid refinement
method was proposed. The pipeline geometry with numerical mesh for model A is presented in
Figure 3b.

2.2.2. Governing Equation

The mixing process was considered as two liquid mixing processes under turbulent flow.
The turbulence model was developed based on the renormalization group (RNG) k-ε model [13,14]
and various liquid mixing models adopted the mixture model [15], which can effectively simulate the
strong coupling isotropic fluids [16]. The continuity equation is expressed as follows:

∂
∂t
(ρm) + ∇ · (ρmvm) = 0 (1)

with

vm =

n∑
k = 1

ϕkρkvk

ρm
(2)

ρm =
n∑

k = 1

ϕkρk (3)

where k is the number of fluid phases in the model, ρk is the density of k, ϕk is the volume fraction
of k, vk is the average velocity of k, and ∇·(ρmvm) is the mass flux of surface area of the control body.
The momentum equation was developed as follows.

∂
∂t
(ρmvm) + ∇ · (ρmvm

2) = −∇P +∇ ·
[
µm(∇vm +∇vm

T)
]
+ ρmg + f (4)

where µm is the viscosity coefficient of the mixture, g denotes gravitational acceleration, and f signifies
volume force. The k-phase volume fraction was formulated as follows [17]:

∂
∂t
(ϕkρk) + ∇ · (ϕkρkvm) = −∇ · (ϕkρkvdr,k) (5)

with
vdr,k = vk − vm (6)

where vdr,k is the drift velocity of k and vk is the velocity of mixed-phase flow.

2.2.3. Boundary Conditions

The entrance and the outlet of the calculation domain were designed based on velocity-inlet and
outflow boundary conditions, respectively. The absolute roughness of PE pipes is 0.01 mm, and the
material characteristics were set the same in the simulation. The wall treatment method selected the
standard wall function method with the fixed non-slip surface. The physical parameters and their
corresponding boundary types are presented: the density of water in inlet 1 was 997.05 kg·m−3, and the
viscosity was 0.89008 mPa·s; the density and viscosity of saline in inlet 2 varied with concentrations
of saline.

This study referred to the simulation methods of some classical fluid mechanics cases to set up
the simulation process, the main parameters in the solver were set as follows: the PRESTO format was
adopted for pressure, the first-order upwind style discretization was selected for momentum, volume
phase fraction, and turbulent kinetic energy [18], and the second-order upwind style discretization was
employed to calculate the turbulence dissipation rate. In addition, the couple algorithm was chosen
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to solve Equations (1)–(6), and the turbulence intensity (I) and the turbulence length scale (L) were
calculated based on the following empirical relationships [19]:

I =
0.16

Re1/8
(7)

L = 0.07Dh (8)

where Dh is the characteristic dimension and Re is the Reynolds number at the inlet. All calculations
were performed using a steady-state solver with a convergence precision of 1 × 10−6.

2.2.4. Data Processing

In this paper, liquid—liquid mixing refers to the uniform distribution of water and saline in
a pipeline. The COV method and the relative standard deviation (RSD) method are often used to
evaluate the mixing performance [20]. In the current paper, COV was selected as the evaluation index
of multi-phase flow:

COV =
s
c

(9)

where s is the standard deviation of saline-phase fraction on the cross section, which can be calculated
by the concentration of all nodes on the cross section.

s =

√√√
1
N

N∑
i = 1

(ci − c)2 (10)

c =
c1 + c2 + c3 ++cN

N
(11)

where N is the total number of sampling points, ci is the volume fraction of saline-phase at each
node, and c is the average value of saline-phase volume fraction on the section. It was noticed that
a lower COV value resulted in more homogeneous mixing. Ideally, in the beginning of the mixture,
the standard deviation is high, the mixture parameter COV is also high, and the mixture parameter
COV is close to zero in the mixed completion section. In this study, the electrical conductivity of the
mixed solution was measured in the experiments, which determined the uniform mixing position in
the experiments.

2.3. Model Validation

2.3.1. Calibration of the Relationship between EC and Concentration

The relationship between EC, volume fraction (VF) and solution concentration (C) is shown in
Figure 4. In CFD software, solution concentration can be expressed by volume fraction. As shown in
Figure 4, the relationship among electrical conductivity, volume fraction, and concentration of saline
solution was established. The preferred relationship between compensated EC and VF of saline was
linear and the fitting degree was 0.998, which indicated that this equation fitted the measured data
well and can be used to calculate the VF of saline in each sampling point.
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2.3.2. Comparison of Numerical and Experiment Data

The simulation was verified by comparing the numerical results with the experimental results.
To take the comparison results of pipeline with No.5, No.9, and No.14 as examples, Figure 5 shows the
UW and LW points of experimental and numerical values of concentration versus location along the
pipeline, and the results for the experimental (Exp.) and numerical simulations (Sim.) are indicated
with different symbols and lines (See Figure 5).
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The figure shows that the numerical results of VF of saline location along the UW and LW pipe
line agree well with experimental results; meanwhile, the maximum relative error and the average
error were within the allowable range. Moreover, the experimental data have the same variation trend
as the simulated data. The trends of the VF of the saline on the UW decrease from large to small while
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those on the LW are opposite, which further indicated that numerical simulations were feasible for
solving the mixing problem of the second phase in the main pipeline.

3. Results

3.1. Mixing Process and Concentration Analysis

The simulated result of No.36 was selected as an example to examine the mixing process of water
and saline. The CFD analysis for concentration distribution is illustrated in Figure 6. Figure 6 shows
concentration contours in a lengthwise-sectional plane along the axis of the pipeline. Before the injection
of saline at inlet 2, water filled the whole volume, and after injection, saline started to mix with water.
The mixing zone gradually expanded along the opposite direction of the pipe axis. After injection,
the concentration of the mixture gradually increased along the Z-axis and simultaneously, decreased
along the Y-axis. Further, the concentration difference between each horizontal liquid layer gradually
decreased under the mixing of water and saline.Water 2020, 12, x FOR PEER REVIEW 9 of 15 
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Figure 6. Contour of concentration distribution (VF phase-saline) in the pipeline.

According to the Figure 6, the initial concentration field of the mixed liquid was relatively
concentrated and it will take a longer distance to mix well. This could be further explained by looking
at Figure 7. Figure 7 shows concentration contours in cross-sectional planes at various distances
downstream of the pipeline.

Before the injection of the saline, water was filled in the entire pipeline; hence, the concentration
remained constant. However, after the injection of the saline, the concentration near the upper wall
first decreased sharply along the direction of cross-flow, then increased slowly, and finally, tended to
be stable. Further, along the Z-axis, the concentration difference between each cross section gradually
decreased and eventually, became stable.

Due to the small flow rate of saline, the flow characteristics of the mixed solution are greatly
affected by the volume flow rate when saline is injected into the main pipe. The Reynolds number
(Re) is necessary for pipe flow to further analyze the research results by judging the flow state of the
fluid [21]. The Re values of the main pipes all greatly exceed 2300, which indicated the flow in the
main pipe is turbulent and has obvious turbulent characteristics. In the turbulent state, the particles
in the mixed solution are mixed with each other and move in a disorderly manner, and have strong
energy dissipation capability and diffusivity, which has significant impact on the mixing of solutions
in the pipes.
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3.2. Factors Influencing Mixing Process

Considering a pipe diameter (D) of 61.4 mm as a constant, the influence of volume flow rate (Q)
and mixing ratio (δ) on the mixing process was analyzed (Figure 8). Figure 8 shows the plot of the
mixing index COV versus pipe axis with Q and δ as two parameters for the case where D = 61.4 mm.
It can be seen from the figure that an increase in pipe axis position led to a decrease in mixing index.
In the same pipe axis position, when Q was kept constant, an increase in δ (0.5% to 1%) led to a bigger
decrease in index COV; however, when δ was a constant, an increase in Q (18 m3

·h−1 to 21 m3
·h−1) led

to a smaller increase in index COV.
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Figure 8. Mixing index coefficient of variation (COV) as a function of the pipe axis of injection for
D = 61.4 mm with various volume flow rates (Q) and mixing ratios (δ).

Figure 9 shows the concentration contours of the pipeline model with Q = 12 m3
·h−1 and δ = 1%

for D1 = 51.4 mm, D2 = 61.4 mm, and D3 = 73.6 mm. It can be seen from the figure when Q and δ were
kept constant, an increase in D led to a longer mixing distance. In other words, mixing index COV
increased with the increase in D in uniform position.
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According to the definition of COV, a value of zero implies that the saline solution is homogeneous,
and a high COV implies a high degree of heterogeneity. Therefore, the mixing condition could be
improved by decreasing volume flow rate (Q) and pipe diameter (D), and meanwhile increasing mixing
ratios (δ).

In the quantitative analysis, the concentration value of each cross-section of numerical simulation
was substituted into Equation (10) in order to calculate the mixing index COV. Figure 10 shows the
variation of COV along the pipe axis for NO.32. When COV value is less than 0.01 (the point of mixing
uniformity in Figure 10), the COV difference between each cross section was found to be negligible;
hence, this point was considered as the completion of the mixing process. The distance from the
saline-phase inlet to the fully mixed position was defined as the effective mixing length, or ‘LEML’ for
short. Hence, in this working condition, the value of LEML was found to be 6.62 m. In subsequent data
processing, COV = 0.01 is used as the critical value to determine LEML [22].
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Figure 11 shows the effect of saline density on LEML. It can be observed that the effective mixing
length decreases accordingly with the increase in saline density when other conditions remain the
same. The simulated results of experimental working conditions were shown in Table 2. Further,
dimensional analysis was adopted to examine the influences of the variates on LEML.
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Table 2. The simulated results of experimental working conditions.

No. LEML (m) No. LEML (m) No. LEML (m) No. LEML (m)

1 3.5778 10 4.6580 19 3.7818 28 4.8471
2 3.6335 11 4.6688 20 3.8272 29 4.8504
3 3.6388 12 4.6719 21 3.8328 30 4.8534
4 3.6414 13 6.1609 22 3.8356 31 6.5525
5 3.6452 14 6.2353 23 3.8374 32 6.6248
6 3.6487 15 6.2363 24 3.8420 33 6.6455
7 4.5986 16 6.2461 25 4.7770 34 6.6522
8 4.6437 17 6.2541 26 4.8311 35 6.6533
9 4.6555 18 6.2581 27 4.8430 36 6.6630

3.3. Dimensional Analysis of the Effective Mixing Length

Dimensional analysis can qualitatively and quantitatively describe physical phenomena, reveal the
regular relationship between physical quantities, and solve the criterion relationship when problems
cannot be described by a differential equation. In order to clarify the structural relationship and explore
the significance level of each factor, the main physical quantities that affect the physical process must
be correctly determined on the basis of full understanding [23,24]. In this section, the dimensional
analysis was adopted to derive the equation of LEML and a total of eight physical quantities including
effective mixing length (LEML), pipe diameter (D), mixing ratio (δ), the flow velocity of inlet 1 (v), water
density (ρw), dynamic viscosity (µ), gravitational acceleration (g), and density difference of water and
saline (∆ρ, ∆ρ = ρs − ρw) were considered in order to obtain the dimensionless relationship.

f (D, v,µ,ρw, g, ∆ρ, LEML, δ) = 0 (12)

where D, v, and µ are the basic physical quantity, δ is the dimensionless quantities, thus the range of
dimensional matrix is three. The dimensionlessπ relationship was expressed according to Equation (13).

F(π1,π2,π3,π4,π5,π6,π7,π8) = 0 (13)
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Further, π1 = π2 = π3 = 1, π8 = δ, the obtained value of π4–7 from π theorem was formulated.

π4 =
ρw

D−1×µ×v−1

π5 =
g

D−1×v2

π6 =
∆ρ

D−1×µ×v−1

π7 = LEML
D

(14)

The following relationships were obtained.

π7 =
LEML

D
= F2(1, 1, 1,

ρw ×D× v
µ

,
g×D

v2 ,
∆ρ×D× v

µ
, δ) (15)

Then, Equation (15) can be transformed into the following form.

LEML

D
= a× (

ρw ×D× v
µ

)
b
× (

g×D
v2 )

c
× (

∆ρ×D× v
µ

)
d
× δe (16)

with 

v = 4×Q
D2×π

Re =
ρ×D×v
µ

Ar =
g×D3

×ρw×(ρs−ρw)

µ2

(17)

where a, b, c, d and e are coefficients, Re denotes Reynolds number, Ar is Archimedes number [25,26].
Now, by fitting the data of each set of working condition data, the coefficient values in Equation (16)

were obtained, and the equation was simplified accordingly.
LEML

D = 0.9992×Q−0.36444
×D0.9111

× g0.18222
×Re0.37266

×Ar−0.00885
× δ−0.07497

R2 = 0.996
(18)

where LEML is effective mixing length, D represents main pipe diameter, Q is volume flow rate, g is
gravitational acceleration, Re denotes the Reynolds number of the main pipe, Ar is Archimedes number.

The simulation parameters of each working condition were substituted into Equation (18), and the
obtained results were compared with numerical simulation findings and experimental findings. It was
found that the results of dimensional analysis (D-A) were very close to numerical simulation findings,
the maximum relative error did not exceed 3.29%, the minimum relative error was 0.24%, and the
average error was 1.34%. Figure 12 demonstrates a comparison of LEML obtained by experiment and
the calculation, which further indicates that using the Equation (18) could predict the accurate LEML
and has a potential to be applied in practice. The equation further verified the conclusion of the
analysis of influencing factors, moreover, it can be seen that the Reynolds number and Archimedes
number have a significant effect on the mixing efficiency in pipeline turbulent mixing.
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4. Conclusions

In this study, the mixing uniformity of vertical jet saline in cross-flow pipelines was analyzed
using CFD and experiments. The analytical solution LEML at different volume flow rates, mixing ratios,
saline densities and pipe diameters was also evaluated. The main conclusions are as follows:

(1) The concentration distribution of the numerical simulation agrees well with experimental
measurements which indicated that using the commercial software and the established numerical
model were feasible for solving the mixing problem of the second phase in main pipeline.

(2) For the fixed mixing ratio and saline density, the values of LEML started to decrease with
decreasing pipe diameters or volume flow rates, thus smaller pipe diameters and volume flow rates
manifested high saline mixing efficiencies. Similarly, for the fixed pipe diameters and volume flow
rates, it shows the inverse relation between the mixing ratio, saline density and LEML.

(3) Dimensional analysis was employed to examine the influence of the four variates (mixing ratio,
pipe diameter, saline density and volume flow rate) on LEML, and the fitting degree of the methods
was larger than 0.95. It was found that the results of D-A were very close to numerical simulation
findings; the maximum relative error did not exceed 3.29%, the minimum relative error was 0.24%,
and the average error was 1.34%. Therefore, it can be inferred that a D-A equation could accurately
predict the mixing uniformity in the proposed piping system.
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Nomenclature

Ar Archimedes number N total number of sampling points
C solution concentration (g/L) q jet flow rate (m3/h)
COV coefficient of variation Q volume flow rate (m3/h)
Dh characteristic dimension (m) Re Reynolds number
D pipe diameter (mm) v flow velocity (m/s)
EC electrical conductivity (us/cm) VF volume fraction
I turbulence intensity ρw water density (kg/m3)
g gravitational acceleration (m/s2) ρs saline density (kg/m3)
k number of fluid phases µ dynamic viscosity (N·s/m2)
L turbulence length scale (m) δ mixing ratio
LEML effective mixing length (m) ∆ρ density difference (kg/m3)
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