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Reasonable deployment of connected and automated vehicle (CAV) lanes which separating the heterogeneous traffic flow
consisting of both CAVs and human-driven vehicles (HVs) can not only improve traffic safety but also greatly improve the overall
roadway efficiency. ,is paper simplified CAV lane deployment plan into the problem of traffic network design and proposed a
comprehensive decision-making method for CAV lane deployment plan. Based on the traffic equilibrium theory, this method
aims to reduce the travel cost of the traffic network and the management cost of CAV lanes using a bilevel primary-secondary
programming model. In addition, the upper level is the decision-making scheme of the lane deployment, while the lower level is
the traffic assignment model including CAV and HVmodes based on the decision-making scheme of the upper level. After that, a
genetic algorithm was designed to solve the model. Finally, a medium-scaled traffic network was selected to verify the effectiveness
of the proposed model and algorithm. ,e case study shows that the proposed method obtained a feasible scheme for lane
deployment considering from both the system travel cost and management cost of CAV lanes. In addition, a sensitivity analysis of
the market penetration rate of CAVs, traffic demand, and the capacity of CAVLs further proves the applicability of this model,
which can achieve better allocation of system resources and also improve the traffic efficiency.

1. Introduction

Recently, connected and automated driving technology has
attracted the attention of automobile enterprises, universi-
ties, and scientific research institutions due to the great
function of intelligent networking technology in improving
traffic safety [1, 2], road capacity [3, 4], energy consumption
[5–7], driving experience [8], etc. In addition, the devel-
opment of connected and automated driving technology has
prompted the rapid progress of a new generation of intel-
ligent transportation systems [9]. It can be predicted for a
considerable time to come with the scenario for a traffic
development mode coexisting with CAVs and HVs.

As a new generation of the automobile, CAVs have
natural differences in driving behavior compared with HVs.

,ey need more accurate environmental perception, less
headway, and shorter reaction times with following and
changing lanes [10]. Currently, the main control strategies
for CAV technology focus on adaptive cruise control (ACC)
and cooperative adaptive cruise control (CACC). First of all,
ACC strategy is to obtain the acceleration and speed of the
front vehicle through on-board detection equipment (via
vehicle-to-vehicle (V2V) communication) and realize ac-
celeration optimization control through the ACC control
system. Secondly, CACC is based on ACC and realizes
vehicle formation via V2V technology to maintain a smaller
headway, thus can greatly improving traffic efficiency
[11–13]. Due to truck drivers experience significantly higher
risk of suffering serious injury and fatality than passenger
vehicle drivers [14, 15], a number of machine learning
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models were established to examine crash severity on
roadway segments [16, 17]. Until now, truck CACC is be-
lieved as one of the potentially effective solutions to these
challenges. However, CACC will be affected by HVs or other
emergencies, when the CACC market penetration rate
(MPR) is low. In addition, the formation of CACC vehicles
will deactivate and switch to ACC or human-driven mode,
which results in a drop for the road’s vehicle capacity. Zeng
et al. [18] studied the impairment of capacity caused by the
failure of a CACC formation in the freeway merging area.
,e simulation results showed that the reduction of capacity
in the merging area is 15.4%–17.2% under the same MPR
compared with the pipeline capacity. In addition, Qin et al.
[19] established the fundamental diagram model for the
heterogeneous traffic flow of CACC vehicles mixed with
ACC vehicles and found that the capacity of the hetero-
geneous traffic flow is lower than an HV traffic flow situation
when the CACC MPR is less than 40%.

In order to better accommodate CAVs, some scholars
considered providing special roadway rights for CAVs so
that they make a separation of CAVs from the mixed traffic,
such as the Connected and Automated Vehicle Lanes
(CAVLs) which are studied in this paper. In this strategy,
CAVs are supposed to use the dedicated lane on which
homogeneous traffic flow of CAVs is created [20]. On the
contrary, setting CAVL will reduce the number of lanes for
accommodating other HVs. If the CAVL deployment is not
set properly, it will lead to a great waste of road system
resource and cause drastic congestion in the traffic flow and
decreases the overall performance of the road. For system
planning, policymakers are interested in understanding
possible sets of system enhancement options to meet their
performance goals and obtain the most cost-effective de-
ployment strategies for the future. ,erefore, to improve the
capacity and safety characteristics of existing traffic facilities,
how to design and deploy CAVLs become an urgent
problem for policymakers.

In traffic flow research, one important problem has
aroused much attention: how the impact in roadway ca-
pacity will evolve as the connected and automated driving
technologies mature and the penetration rate gradually
increases? Some existing studies provide effective methods
to solve this issue. During the theoretical research, Ghiasi
et al. [21] developed an analytical capacity model to calculate
the impact of different CAV technology scenarios and de-
termine the optimal number of dedicated CAV lanes using
the Markov chain method. Chen et al. [22] presented a
mathematical framework to optimize a time-dependent
deployment plan of autonomous vehicle lanes on a trans-
portation network with heterogeneous traffic stream. In
their work, the per-lane capacity can become tripled when it
is converted from a regular lane to an AV lane. In order to
shed light on how traffic operational capacity will change
with the introduction of AVs, Chen et al. [23] developed a
general theoretical framework to determine the valid do-
mains of different lane policies and, more generally, AV
distributions across lanes with respect to demand, as well as
optimal solutions to accommodate AVs. Simulation is an-
other significant method which can be utilized to investigate

this problem. Liu et al. [24] analyzed the influence of the
CAVL strategy on multilane freeway facilities under the
mixed traffic flow. ,e analysis results showed that the
strategy of CAVs lanes can improve pipeline capacity by 22%
compared with conventional strategy with the CACC MPR
approaching 60%. Talebpour et al. [25] examined the im-
pacts of reserving one lane of a four-lane highway for AVs on
traffic flow dynamics and travel time reliability. It was found
that throughput can be improved significantly if the AV
penetration rate is greater than 30%. Ye and Yamamoto [20]
investigated the performance of traffic flow under different
numbers of CAV dedicated lanes, compared it with mixed
flow situation, and found that the benefit of setting CAVLs
can only be obtained within a medium density range.

However, it is well known from “Braess” paradox
[26, 27] that unilaterally improving the capacity of an
existing link or adding a new link in the network instead of
reducing the unit travel cost within the network. ,erefore,
some scholars turned to study the CAVL deployment
problem for the transport network level. For example, Chen
et al. [28] developed a mathematical framework to optimally
design AV zones and developed a mixed-integer bilevel
programming model to optimize the deployment plan.
However, there is limited systematic research talking about
the optimization of CAVLs deployment considering the total
travel expense and the management cost of CAVLs.

As a result, this paper proposes an optimization method
for CAVL deployment plan considering from the viewpoints
of the whole traffic network. ,e objective of this method is
to reduce the travel cost of the traffic network as well as the
management cost of CAVLs. A primary-secondary method
with a bilevel programming model is established. ,e upper
level is the decision-making scheme of lane deployment,
while the lower level assigns traffic flow including CAV
mode and HVmode using the upper-level scheme. Based on
the characteristics of the model, a genetic algorithm is
creatively designed to solve the abovementioned models,
and a medium-sized network is listed as an example to be
analyzed in this research.

,e remainder of this paper is structured as follows.
Section 2 presents the mathematical formulation to optimize
the CAVLs deployment plan and to describe the flow dis-
tributions of both CAVs and HVs. Section 3 designs a ge-
netic algorithm to solve the proposed bilevel programming
optimization model. Section 4 conducts numerical studies
and sensitivity analysis. Finally, conclusions and recom-
mendations are delivered in Section 5.

2. Mathematical Formulation

2.1. Problem Description. “Connected and automated ve-
hicle lanes” refer to a lane management method that pro-
vides the exclusive right for CAVs to travel on some links of
the traffic network according to the traffic demand. ,e
following conditions need to be considered when setting
CAVLs: the first condition is lane conditions, which exists at
least two or more lanes going on the same direction and
there is no interference from other traffic modes besides
HVs; the second condition is the traffic conditions, which
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the basic capacity of HV lanes will not be affected by the
CAVLs; and the third one is the link conditions, which the
link has the construction conditions needed for CAVLs,
such as the requirements for the layout of communication
equipment and the construction cost.

One of the key points for CAVL deployment is that the
decision-making scheme for every kind of lane should be
coordinated in order to achieve the best combination effect.
,e best combination effect will be achieved only after
setting a reasonable scale on the network. ,e second key
point is that travellers will choose the most advantageous
route for themselves according to the well-established CAVL
schemes, and the traffic flow can be balanced under the
current network conditions. ,e third consideration is that
the traffic organizer will optimize the scheme of the CAVLs
based on the equilibrium state caused by the travellers route
choice behavior. Finally, a master-slave game (also known as
a Stackelberg game) is formed between the traffic organizers
and the travellers.

In summary, CAVL deployment is a systematic problem
that is really necessary to consider the deployment, con-
sidering from the level of the traffic network. In addition, the
master-slave game relationship exists between traffic plan-
ning organizers and travellers. Finally, a comprehensive
decision will be achieved based on the traffic equilibrium
theory.

2.2. Assumptions and Definitions. ,e analyzed model
established in this section is based on the following
assumptions:

(i) ,ere are only two kinds of managed lanes in this
research: CAVLs and HV lanes

(ii) ,e topology of the traffic network is predefined
known

(iii) ,e traffic demand among the origin-destination
(OD) pairs is predefined known and unsaturated

(iv) ,e scope of CAVs cooperation could not affected
by V2V communication distance in CAVLs, that is,
CAVs are all fully communicated in each CAVLs

2.3. Primary-Secondary Method with Bilevel Programming
Model. For the optimization problem of CAVL deployment,
the traveller aims to minimize the travel cost or travel time,
while the government planning department enhances how
to design or improve the traffic network under a limited
investment tomaximize the performance of a certain system.
With the need of comprehensive decision-making for two
different lanes, this paper establishes a primary-secondary
bilevel programming model. ,e upper level establishes the
decision-making scheme for lane deployment, and the ob-
jective function is the system cost including the travel cost
and the management cost of CAVLs. In addition, the lower
level utilizes the User-Equilibrium (UE) model to describe
the traffic flow assignment of the CAV mode and HV mode,
respectively, according to the decision-making scheme of the
upper level. ,e assignment results obtained from the route

choice of two travel modes are used to evaluate the per-
formance of the decision-making scheme.

Considering the constraints of the number of lanes and
link capacity, a decision-making scheme to minimize the
system cost is established in the upper-level planning. ,e
formulation of the model is listed as follows:
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where equation (1) is the objective function; equations (2)
and (3) are the constraints of the number of CAVLs and HV
lanes, which ensure that the number of HV lanes is not less
than one; equation (4) is the conservation of lane number;
and equation (5) is the conservation of link flow. In equation
(1), the first term is the sum travel cost of links with CAVLs,
the second term is the sum travel cost of links without
CAVLs, and the third term is the sum management cost of
CAVLs.

In the lower-level planning, the flows should be differ-
entiated in the route selection for the HV mode and CAV
mode. In order to promote the CAV mode, CAV traffic flow
is first loaded, initial cost of the unmodified links is updated
when the network is balanced, and then HV traffic flow is
loaded. ,erefore, there is a primary-secondary relationship
for the two traffic flow assignment models.

,e assignment model of CAV traffic flow is listed as
follows:
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,e assignment model of HV traffic flow is listed as
follows:
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where equations (7) and (12) are flow conservation con-
straints; equations (8) and (13) are nonnegative constraints
on the route flow; equations (9) and (14) describe the re-
lationship between the link flow and route flow; and
equations (10) and (15) are Bureau of Public Road (BPR)
functions which are undetermined coefficients.

3. Solution Algorithm

In view of the complexity of the bilevel programming model,
this paper creatively utilizes the genetic algorithm to search
the optimal scheme. ,e specific steps of the algorithm are
listed and shown in Figure 1.

Step 1 (initialization): relevant parameters of the ge-
netic algorithm are defined, including population size
P, generation gap, crossover probability, mutation
probability, and maximum evolution number Nm. ,is
algorithm uses integer coding: the specific form of
coding is nCv

1 , nCv
1 , . . . , nCv

a􏼈 􏼉, whose values range among
0, 1, . . . , (na − 1)􏼈 􏼉. Let generation N � 1 and

population p � 1, and randomly generate the CAVLs
deployment scheme.
Step 2 (traffic assignment model of lower level): the
Frank–Wolfe (F-W) algorithm [29] is used to solve the
traffic flow assignment model of the CAV mode. ,e
link cost is updated according to the equilibrium result,
and choose it as the initial cost of the HV mode. After
that, our research team continues to solve the traffic
flow assignment model of the HV mode with the F-W

Parameter setting and initial
solution generation

N = 1

p = 1

Lower level: traffic flow
assignment of CAV mode

Lower level: traffic flow
assignment of HV mode

Optimal solution output

Selection, crossover, and mutation

Upper level: the calculation
fitness function

N = N + 1

p = p + 1

p < P

N < Nm

Yes

Yes

No

No

Figure 1: Flow chart of algorithm.
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Figure 2: Nguyen–Dupuis network schematic diagram.

Table 1: Basic traffic demand of each OD pair.

OD Origin Destination Demand
1 1 2 600
2 1 3 900
3 4 2 750
4 4 3 750
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algorithm, and the results of the two assignment results
are transmitted back to the upper level.
Step 3 (calculate the fitness function of upper level):,e
objective function of bilevel programming established
in this paper is the system cost with the value greater
than zero, and this is a minimization problem. Hence,
the reciprocal of the objective function is chosen as the
fitness function, and the fitness of each individual is
calculated according to xCv

a , tCva , xHv
a , and tHv

a which can
be solved from the lower level.
Step 4: let p � p + 1. Repeat Steps 2 and 3 until p≥P.
Step 5 (iteration): evolutionary operations such as se-
lection, crossover, and mutation [30] are carried out
according to the fitness of individuals, and then the
population is updated.
Step 6: let N � N + 1. Repeat Steps 2 to 5 until N � Nm;
then, we get the optimal solution.

4. Numerical Examples

4.1. Basic Settings and Results. ,is paper uses the Nguyen
and Dupuis test network as a case study. ,e network has 13
nodes, 19 links, and 4 OD pairs [31]. ,e basic topology of
the network is shown in Figure 2, where the red node
represents the traffic demand generation point and the blue
node represents the traffic demand attraction point. Table 1
shows the OD traffic demand. Table 2 is the basic attribute
information of the network including the number of lanes,
free-flow time, and current lane capacity.

According to the existing literature [25], the basic traffic
capacity of a CAV lane is about twice of an HV lane, and
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Figure 3: Evolutionary process diagram of algorithm.

Table 4: Lane deployment schemes for different MPR.

MPR (%) Link
6

Link
9

Link
12

Link
14

Link
18 Other links

10 1 0 2 0 0 0
20 1 2 0 0 0 0
30 1 1 1 0 0 0
40 1 1 1 1 0 0
50 0 2 1 2 0 0
60 2 0 2 0 1 0
70 1 1 3 0 0 0
80 2 2 2 0 0 0
90 2 2 2 0 0 0

Table 2: Parameters of the Nguyen–Dupuis network.

Link Origin Destination Number of lanes Free flow time Current lane capacity
1 1 5 2 4 150
2 1 12 3 6 150
3 4 5 2 5 150
4 4 9 2 8 150
5 5 6 4 4 150
6 5 9 3 10 150
7 6 7 4 4 150
8 6 10 3 8 150
9 7 8 4 4 150
10 7 11 3 10 150
11 8 2 2 6 150
12 9 10 4 4 150
13 9 13 2 8 150
14 10 11 4 4 150
15 11 2 3 5 150
16 11 3 2 7 150
17 12 6 2 4 150
18 12 8 2 12 150
19 13 3 2 6 150

Table 3: Optimal scheme of CAVLs.
Link 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 11
Number of CAVLs 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
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CACC strategy is effective only when CACC MPR is more
than 30%. ,e management cost of CAVLs includes con-
struction cost and maintenance cost with the management
cost of a single CAVL is 500. Let α be 0.15 and β be 4.0 in the
BPR function.,e basic parameters of the genetic algorithm,
respectively, are the population size is 50, generation gap is
0.9, crossover probability is 0.75, mutation probability is
0.05, and maximum evolution times is 100. When CAV
MPR reaches 30%, the lane deployment scheme is shown in
Table 3, and the running process of the algorithm is shown in
Figure 3. As can be seen from Figure 3, the algorithm
converges when iterations reach the 20th generation. ,e
total number of CAVLs is 3 with the management cost is
1500. In addition, the system cost is 147416.8 and the system
travel cost is 145916.8.

4.2. Sensitivity Analysis. In this section, the authors mainly
analyze the impact of market penetration rate of CAVs,
traffic demands, and the capacity of the CAVLs in the
proposed method.

4.2.1. Market Penetration Rate of CAVs. In the future, the
market will inevitably experience a long transition phase of
CAVs coexisting with HVs as connected and automated
driving technology. ,erefore, it is greatly necessary to
analyze the influence of this method when CAV MPR
changes.

Fixing the traffic demand of each OD pair and the ca-
pacity of the CAVLs, the CAVMPR is adjusted between 10%
and 90%. ,en, the genetic algorithm designed in this paper
was used to solve the bilevel programming model. Con-
sidering the local convergence of the genetic algorithm, ten
experiments were carried out on each group of parameters,
and theminimum target was chosen as the final result, which
is shown in Table 4 and Figure 4.

As can be seen from Table 4 and Figure 4(a), the total
number of CAVLs can be the same with the increase of CAV
MPR, but the deployment location of the lanes is different.
,is analysis shows that MPR in the planning year needs to
be accurately estimated when lanes are set up, and it also
shows the necessity of CAVLs deployment considering from
the network level. ,e traffic volume of CAV increases with
the increase of MPR. Only when the traffic volume of CAV
reaches a certain scale and the cost of adding CAVLs is lower
than the increase of the travel cost, the strategy of adding
CAVLs is beneficial. According to the statistics of CAV lanes
under all the MPRs, it is found that the probability of CAV
lanes set in links 6, 9, 12, and 14 is the greatest, which also
verifies the feasibility of the calculation results shown in this
paper.

Likewise, the system cost shows a downward trend with
the increasing of CAV MPR, which declines rapidly in the
early stage and slowly in the later stage as seen in
Figure 4(b). ,is is because the MPR is gradually
approaching its critical value with the increasing of CAV
MPR accompanied with the utilization rate of CAVLs and
the actual capacity of the link increasing. However, when
the CAV MPR exceeds its critical value, the utilization rate
of HV lanes decreases together with the actual capacity of
the link. In the latter stage, the increase of CAV MPR has
little effect on the decreasing of the travel time due to the
traffic demand constraints. If the number of CAVLs
continue to increase, it will add to the cost of lane man-
agement together with increasing the system cost of the
system at the same time.

4.2.2. Traffic Demand. During the design of CAVLs, the
impact of traffic demand on the decision-making scheme
is also needed to be analyzed except considering the
change of CAVMPR. In addition, the intrinsic mechanism
of the model is complex with many factors involved in
traffic demand forecasting. Additionally, it is necessary to
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Figure 4: Sensitivity analysis of the CAV MPR. (a) ,e total number of CAVLs. (b) System cost.
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consider the variations of system performance under
different traffic demands with many uncertainties in the
actual situation. ,erefore, CAV MPR is fixed and located
at 30%. ,e total traffic demand is multiplied by the
growth factor of 100%–200% compared with the original
basis, while the proportion of OD traffic demand remains
unchanged.

In addition, the total number of CAVLs is the same
(Figure 5(a)) when the growth rate of traffic demand varies
between 1.3 and 1.7, which results from the optimal utili-
zation of lane function by the route selection behavior of
CAVs.,e total number of CAVLs also doubles when traffic
demand doubles. In addition, Figure 5(b) shows that the
system cost increases exponentially with the increase of
traffic demand.

4.2.3. Capacity of the CAVLs. Since the capacity of the
CAVLs is highly sensitive to the performance of CAV in
terms of its average headway, sensitivity analysis on the
capacity of the CAV lane would be necessary. ,erefore,
fixing the CAV MPR and the traffic demand, the capacity of
CAVLs is multiplied by the factor of 150%–300% compared
with the basic lane capacity. ,e results of the total number
of CAVLs and the system cost are shown in Figure 6(a) and
Figure 6(b), respectively.

As can be seen from Figure 6(a), the total number of
CAVLs shows a trend of increasing first and decreasing later,
and its values are the same when the ratio of CAVLs to the
basic lane capacity varies between 1.8 and 2.3. When the
capacity of CAVLs is low, the cost of adding CAVLs is
greater than the reduction of system travel cost, so CAVLs

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
0

1

2

3

4

5

6

7

8

9

10

The ratio of the CAVLs to the basic lane capacity

To
ta

l n
um

be
r o

f C
A

V
Ls

 

(a)

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
1.47

1.472

1.474

1.476

1.478

1.48

The ratio of the CAVLs to the basic lane capacity

Sy
ste

m
 co

st

×105

(b)

Figure 6: Sensitivity analysis of the capacity of CAVLs. (a) ,e total number of CAVLs. (b) System cost.
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Figure 5: Sensitivity analysis of traffic demand. (a) ,e total number of CAVLs. (b) System cost.
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are deployed in a small number. When the capacity of
CAVLs is high, fewer CAVLs canmeet the traffic demand. In
addition, Figure 6(b) shows that the system cost decreases
with the increase of CAVLs capacity.

5. Conclusions

To sum up, this paper proposes an optimization method for
CAVL deployment plan, which aims to solve the problem
with capacity drops whenHVs aremixed into CACC systems.
,is method creatively simplified the CAVL deployment into
a traffic network design problem and established a bilevel
primary-secondary programming model. ,e upper level
generated the decision-making scheme of the lane deploy-
ment scheme, and the lower level assigned the traffic flow
including the CAV mode and HV mode according to the
decision-making scheme of the upper level. ,e equilibrium
results of the lower level were used to evaluate the perfor-
mance of the upper level. Due to the characteristics of the
model, a genetic algorithm was designed to solve this model.
,e numerical results show that the proposed method can
obtain a feasible scheme with the consideration of both the
system cost and the management cost for CAVLs. ,e sen-
sitivity analysis results of CAVMPR, traffic demands, and the
capacity of CAVLs further validate the feasibility and flexi-
bility of the proposed method.

However, there are also some limitations where HVs give
preferences to CAVs when assigning flow in the lower-level
model, which is different from the general situation with
two-mode flow assigned simultaneously. Regarding to the
value of lane management cost, it needs to be quantified
more accurately by considering from much more aspects.
Due to the large number of variables when applying the
proposed model in large-size network, the genetic algorithm
may not converge. A combination algorithm combining the
advantages of genetic algorithm and active set algorithm will
be proposed in future studies.

Abbreviations

G(V, A): Traffic network, where V is the node of the traffic
network and A is the link set

D: Set of links with CAVLs
D: Set of links without CAVLs
RS: Set of demand of OD pair
xa: Flow of link a
xHv

a : Flow of HVs on link a
xCv

a : Flow of CAVs on link a
fCv,k
rs : Route flow of CAVs

fHv,k
rs : Route flow of HVs

t0a: Link cost of link a under free flow
ta(•): Cost function of link a
tCva : Cost function of link a ∈ D

tHv
a : Cost function of link a ∈D

wC: Management cost of single CAVL
ηa: 0-1 variables; if a ∈ D, then ηa � 1; otherwise,

ηa � 0
t0a: Link cost of link a under free flow

CHv
l : Basic capacity of HV lane

CCv
l : Basic capacity of CAVLs

na: Total number of lanes of link a
nHv

a : Number of HV lanes on link a
nCv

a : Number of CAVLs on link a.
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