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Abstract. The passage of planar shocks in a dusty gas was 
investigated to note effects due to particle loading and initial 
shock Mach number. Two-phase flow equations have been 
added to a conservative, monotonic flow solver to allow 
study of compressible particle and droplet flows, which are 
of importance for shock propagation in two-phase flows and 
spray propulsion systems. The formulation developed herein 
employed a conservative Eulerian treatment for the gas and 
particle phases. The computations were performed using the 
finite element method-flux corrected transport (FEM-FCT) 
scheme, which has shown excellent predictive capability 
of various compressible flows which include both strong 
and weak shocks. The flux limiting technique was modified 
to provide monotonic particle velocity fields to increase 
the scheme's computational stability. Adaptive unstructured 
methodology based on adapting to high gradients of both the 
fluid and particle densities was used in conjunction with the 
conservative shock-capturing scheme to adequately resolve 
strong flowfield gradients. The shock attenuation of this 
scheme was then compared with previous experimental and 
numerical results and was found to yield robust predictions. 
Various interphase coupling terms were also considered to 
note their effect on the shock attenuation. 

Key words: Adaptive unstructured grid, Dust, Finite ele- 
ment, Particles 

1. Introduction 

Two-phase compressible flow phenomena present an impor- 
tant field of study for engineering systems which include: 
solid rocket motors, shock induced dust lofting, detonations, 
and sprays in high speed jet engines. Experimental and 
computational studies are needed to provide detailed analy- 
sis of such flow fields and to allow increased understanding 
necessary for improved engineering design. 
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When solving the compressible two-phase equations, 
the continuum gas dynamics are usually best represented 
by an Eulerian description, that is, the gas characteristics 
are calculated at fixed points within the flow. However, as 
the particles may be relatively sparse in the flowfield, the 
particles can be modeled by either an Eulerian description (in 
the same manner as the gas flow) or a Lagrangian description 
(where individual particle groups are monitored and tracked 
in the flow). Both descriptions have been used extensively 
(Crowe 1982), but for particles present throughout a large 
extent of the computational domain, the Eulerian description 
is typically a more efficient approach. In the present study, 
this Eulerian approach is coupled with an unstructured finite 
element method to take advantage of the beneficial aspects 
of an adaptive grid strategy. Adaptive grids can provide 
high resolution of the particle gradients as well as the flow 
gradients, e.g. shocks and slip layers. 

1.1. Previous studies 

Sommerfeld (1985) performed experiments to study the at- 
tenuation of a shock as it propagated into a gas-particle 
mixture. A vertical shock tube was used to provide a planar 
shock interaction with a homogeneous air-particle mixture. 
Glass spheres with an average diameter of 27 #m were used 
for the particles. The shocks were generated in pure air and 
propagated upward into the dusty flow. A number of tests 
were run at different initial shock speeds Mo and particle 
loadings ~ (the ratio of particle mass to gas mass in a given 
volume of mixture). A one-dimensional numerical scheme 
was used to examine the dusty shock attenuation were also 
conducted using the random-choice method by adding the 
particle phase equations in an Eulerian manner. 

Igra and Ben-Dor (1980) conducted a one-dimension- 
al numerical study of the relaxation zone behind a normal 
shock in a dusty gas. The particle phase was added in an 
Eulerian fashion and various representations of the drag co- 
efficient, CD, and the Nusselt number, Nu, were examined, 
including effects of compressibility. Only minor changes 
were noted in the relaxation lengths and no comparison 
with experiment was made. Additional one-dimensional nu- 
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merical studies based on Sommerfeld's experimental data 
were conducted by Olim et al. (1987), using an Eulerian 
two-phase formulation in conjunction with a finite differ- 
ence FCT (flux corrected transport) method. In this scheme, 
the limiting was applied before the dissipative interphase 
coupling terms were added. The study was used to show 
that the attenuation of the shock wave takes the form of 
an exponential decay curve and to examine the variations 
that result from particle loading and diameter changes. The 
choice of FCT showed marked improvement over Sommer- 
feld's random-choice method for predicting an M0 of 1.25 
with a particle loading of 0.63. 

Crowe (1982) presented a review of numerical models 
for two-phase flow. Both Eulerian and Lagrangian methods 
were discussed and compared for structured finite difference 
calculations. Eulerian methods allow particle diffusion to be 
incorporated into the model, whereas Lagrangian methods 
typically require less memory overhead when particles of 
different sizes are considered and when particles rebound 
off of boundary surfaces. 

1.2. Current study 

The objective of the present study is to incorporate Eulerian 
two-phase flow methodology into a state-of-the-art finite el- 
ement, two-dimensional compressible flow solver. This new 
computational technique will allow enhanced simulations 
of dusty shock flows over complex shapes by taking ad- 
vantage of the mesh adaptive, shock-capturing ability of 
FEM-FCT (finite element method flux corrected transport). 
This approach is evaluated with experimental results of one- 
dimensional wave attenuation in a dusty gas (Sommerfeld 
1985; Olim et al. 1987). In addition, the empirical interphase 
coupling terms for energy and momentum were studied to 
examine their effects on solution sensitivity and robustness. 

In modeling the flowfield, the following usual assump- 
tions were incorporated: the particles do not significantly 
contribute to the gas pressure, the particle volume fraction is 
negligible, the particles are spherical, inert, of uniform size 
and temperature, and are also dilute, i.e., particle-particle 
interactions do not account for a significant portion of the 
forces on the particles. Since the particle density, pp, is more 
than three orders of magnitude larger than the surrounding 
gas density, p, the added mass effect is neglected. Since the 
quiescent terminal velocities of the particles are much less 
than typical shock accelerating gas velocities, gravitational 
effects are also neglected. Finally, since the gas velocity gra- 
dients through which the particles will be convected have 
scales much larger than the particle diameter (except at the 
shock), Basset history terms are also neglected. Thus, the 
only forces acting on the particles (pressure and viscosity) 
can be described based on a single coefficient of drag. As for 
the energy coupling, the effects of radiation can be consid- 
ered negligible since phase temperature differences are not 
excessive; therefore, heat transfer can be expressed simply 
in convective terms based on a constant Prandtl number. 

2. Numerical method 

2.1. Gas equations 

The following is a brief summary of the numerical method 
and the implementation of the gas-particle equations used 
in this study. For more detail of FEM-FCT applied to the 
Euler equations (single-phase), see L6hner et al. (1987). The 
two-phase flow equations are written in conservation form 
as  

0U 0Fj 
+ = s (1) 

where the summation convention is used for the four con- 
servation equations of mass, momentum and energy: 

U =  t)ui , F j  = I P u i u j  +P~i j  , 

pe L uy(p~ + p) (2) [o]  
S = - D i  

- O  - upiDi 

where Di is the component of particle drag force per unit 
volume of the gas in the direction x~ of a Cartesian coordi- 
nate system, and Q is the heat transferred from the gas to 
the particles. The state equations are 

1 ( e - ~ u j u j )  C V (3) p = ( 7 _ l ) p ( e _ ~ u j u j ) ,  T =  1 

where p, p, e, T, k, 7, and Cv are density, pressure, 
specific total energy, temperature, thermal conductivity of 
the fluid, ratio of specific heats, and specific heat at constant 
volume, respectively, and u~ is the component of the fluid 
velocity in the direction x(. Thus, the fluid is assumed to be 
compressible with viscous effects confined to the interaction 
with the particles (although artificial viscosity is present in 
the numerical scheme). 

The higher order solution chosen for FEM-FCT is ob- 
tained via a two step form of the Taylor-Galerkin scheme 
of Donea (1984), which has been used for the computation 
of inviscid and viscous flows for the Cartesian (LShner et 
al. 1989; Baum et al. 1990) and axisymmetric coordinate 
systems (LShner et al. 1989; Loth et al. 1990a; 1990b). The 
Taylor-Galerkin scheme is used to increase the order of the 
approximation of the time derivative and produce a second 
order scheme. The spatial discretization is implemented with 
the usual Galerkin weighted residual method. The scheme 
involves two steps (LShner et al. 1985), which together 
progress the solution from time t n to time t n+l = t n + At.  
Quantities with integer timestep values (in and t n§ are 
located at nodes and have piecewise linear shape functions, 
denoted by Nj for a given node j.  At the half timesteps, 
(t '~+l/u) quantities are centered at the elements and have 
piecewise constant shape functions for a given element, e. 
Solution with the consistent mass matrix is achieved by iter- 
ating with the lumped mass matrix. For the explicit two step 
Taylor-Galerkin scheme, a Courant type stability condition 
(LShner et al. 1985) is applied to each element to obtain a 
local time step, Ate; from this a maximum CFL of 0.25 is 
used for the global timestep. 
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To formulate the FCT approach, the low order scheme 
must be monotonic and is simply obtained by inexpensively 
adding 'mass-diffusion' to the high order scheme (LShner et 
al. 1987). The low order solution and the high order solution 
can then be combined to yield monotonic conditions for the 
conserved quantities near discontinuities and a second order 
solution in the rest of the domain, through the FEM-FCT 
formulation. The six steps of FEM-FCT are defined as: 

1) Compute the high order element contribution (HEC) 
from the high order scheme. 

2) Compute the low order element contribution (LEC) from 
the low order, monotonic scheme (which is based on 
diffusing the high-order scheme). 

3) Define the antidiffusive element contribution (AEC), 
where AEC = HEC - LEC. 

4) Compute the updated low order solution: U} *+1. 
5) Limit the AEC such that U n+l found in step 6 below is 

free of extrema not present in U n or U~ +1, i.e. AEC c = 
Gel " AEC, where 0 _< Gel ~ 1. 

6) Apply this limited AEC e, i.e. U n+l = U n + AEC c. 
Crucial to this procedure is the limiting method used to 

calculate Cel in step 5. To maintain strict conservation, this 
limiting is carried out on the four unknowns (p, pu, pv, and 
pe) at the element level (L6hner et al. 1984). Zalesak (1979) 
showed that the original limiting method of Boris and Book 
(1976) needs to be modified for multi-dimensional flow 
problems. For a system of PDE's such as that in (1), it is 
typical for one global Cei to be chosen in some manner 
from the individual Cel'S of the four unknown fluxes. For 
the current study, a limiter based on the minimum of the 
C d s  for p and pe was found to be sufficient to guarantee 
monotonicity in the gas unknowns while minimizing the 
diffusion caused by the low order element contribution. 

Adaptive H-refinement was employed to optimize the 
distribution of grid points by refining areas with high gradi- 
ents of density and coarsening areas of low gradients of den- 
sity. This allows efficient use of memory and computational 
time. In general, such refinement may reduce storage and 
CPU requirements by 10-100 times in advection-dominated 
flows as compared to an overall fine grid (L6hner et al. 
1987). As in previous studies, a local 'error indicator' was 
used to determine if a given element needed to be refined, 
coarsened, or left alone based on the H2-seminorm. 

2.2. Particle description 

For the two dimensional case, five particle equations (Olim 
et al. 1987) were added to solve for the five particle un- 
knowns: spatial density ~r, x-particle velocity Up1, y-particle 
velocity Up2, particle energy ep, and number density n. The 
two densities are defined as: 

(mass of particles) 
O ~  

(unit volume of gas) 

and n = (number of particles) 
(unit volume of gas) ' 

The two different density definitions are employed to allow 
for a variable particle diameter, such as occurs in combustion 

or evaporation. The mass loading of the particles is then 
defined as r/= ~r/p. The equations then become: 

OUp OFpj 
Ot + ~ = Sp (4) 

where: 

Up = 

Sp = 

~ ~ F p j  = 

L= J 
0 
Di 

Q + �89 
0 

ff Up j 
(YUpiUpj 
Up j ff ep 

nUpj 
(5) 

The two-step second-order Taylor-Galerkin algorithm 
discussed above is used to solve the homogeneous parts 
of the gas and particle equations. The gas/particle coupling 
terms (drag and energy transfer) are then calculated sepa- 
rately and added to yield the particle HEC, as is done for 
the gas phase equations. From this, the low order contribu- 
tion may be calculated. The HEC and LEC were combined 
through flux limiting similar to,but separate from the gas 
equations to yield a monotonic flowfield. Note that this is 
not the same technique used by Olim et al. (1987) where 
the dissipative terms were added after the flux limiting, and 
which incorporated individual limiters for each of the con- 
servation equations. By employing a more conservative flux 
limiter and applying it after the interphase coupling terms 
are added (as is done herein), the addition of the LEC may 
be reduced resulting in a scheme of potentially higher order 
accuracy. 

Determining a proper limiter for the particle equations 
occupied a significant portion of the methodology develop- 
ment. Using a limiter based on the particle spatial density 
was found to leave a non-monotonic solution in Upi at the 
interface between regions with gas only and regions with 
gas and particles. A limiter based on the conservative flux 
~rUpi gave similar results. These oscillations in Upi, when 
combined with several levels of mesh refinement at the par- 
ticle density interface, even led to unstable solutions. This 
was probably due to the fact that the interphase coupling 
drag is based on the difference in velocity between the gas 
and the particle, as opposed to a difference in momentum. 
The oscillations arose because the CrUpi discontinuity at the 
interface extends over fewer cells than the o- discontinuity. 
Therefore, large peaks will form in Upi at the interface, even 
though cr and aUp~ are monotonic (see Fig. 1). 

It was found that basing the limiter on the non- 
conservative variable Upi removed most of the oscillations 
in Ups. This was accomplished by transforming the contribu- 
tions to non-conservative form in order to find the amount of 
LEC required to prevent no new undershoots or overshoots 
of Upi in terms of a Cel, then returning the contributions to 
conservative form and proceeding as in the gas equations. 
Small oscillations remained due to a final scatter of element 
values to nodes of the conserved quantities, but these had 
little effect on the solution. Similar to the gas density p, a 
scheme for refining and coarsening the mesh was applied to 
cr in order to provide an accurate description of any particle 
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Fig.  1. Schemat ic  o f  non-mono ton ic  behavior  in veloci ty  
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density discontinuities. Separate tolerances were required 
since changes of cr were typically much more severe com- 
pared to p, thus yielding more relaxed tolerance parameters 
for (7. 

2.3. Interphase coupling 

Based on the approximations mentioned in Sect. 1.2, the 
particles affect the gas through the interphase coupling terms 
De and Q. The drag force per unit volume, De, is: 

7T 
De = -~ npCD [ui - Upil(ui - U p i ) d  2 (6) 

where summation is not carried out over the indices, d is 
the particle diameter, and CD is the coefficient of drag. 

Two different CD'S were investigated in the present 
study. The first CD is given by Clift et al. (1978) which is 
based on several sets of steady flow experiments of sphere 
drag: 

24 (1 + 0.15Re 0'687) (7) c~=-~ 
which is valid for Re < 800, where Re is the flow Reynolds 
number based on slip velocity defined by: 

Re = plui - upild (8) 
# 

and where # is the coefficient of viscosity. For air, Som- 
merfeld (1985) describes # as: 

1.458 x 10-ST t'5 g (9) 

# =  l l 0 + T  c m . s  

and T is the gas temperature in degrees Kelvin. Olim et 
al. (1987) noted the following formula for the viscosity of 
oxygen in referring to their numerical method: 

# = 5.1 x 1 0 - 6 T  0"6487 g (10) 
c m -  s 

&ommerfeld (1985) stated that the standard CD (Eq. (7)) 
is valid only for steady flows and empirically determined a 
C D for unsteady flows based on the experimental two phase 
shock tube results: 

CD = 112Re -~ (11) 

% 
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Fig .  2. Sommerfe ld  and Clift  drag coefficients as a funct ion o f  Reynolds  
number  

This CD was derived from laser-Doppler-velocimetry mea- 
surements of particle velocities and presumably valid for 
7 ] < 2 . 0 a n d l  < M s  <1.7.  

A comparison of the standard and 'unsteady' CD'S is 
given in Fig. 2, which shows that for Re numbers above 
130, the unsteady CD will yield much less drag than the 
standard CD. There are several other studies of 'unsteady 
drag coefficients' based on experiments (see Sommerfeld 
1985). Recent theoretical work on the unsteady effect on 
particles has been carried out to include the Basset history 
term by Mei (1990), for which it was shown that frequency- 
based unsteady drag was always higher than steady drag for 
particle Reynolds numbers at least up to 140. It should be 
noted that for the current study, compressibility effects in 
the drag were considered to be negligible since slip Mach 
numbers were small - this was supported by empirical rela- 
tionships for compressibility (Sommerfeld 1989). However, 
Olim et al. (1987) retained these terms in their calculations. 

The heat transferred from the gas to the particles is 
described by (Olim et al. 1987): 

Q = An  [h(T - O) + or* (T 4 --  04)] (12) 

where A is the area of the particle (Trd2), h is the coefficient 
of heat convection, ~r* is the Stefan-Boltzmann constant for 
radiation, and 0 is the particle temperature. The radiation 
term was ignored, since this contribution was found to be 
negligible for the present study. The coefficient of heat 
convection is: 

Nuk 
h - (13) 

d 

where Nu is the Nusselt number and the thermal conductiv- 
ity of the gas, k, is taken as a constant; 1.787 x 103 g/cm.s. 
Two different Nu numbers were examined; one with: 

Nu = 2 (14) 

and a second more robust expression, as: 

Nu = 2 + 0.459Pr~ Re ~ (15) 

where the Prandtl number, Pr, is taken as a constant, 0.75. 

3. Discussion 

Since two-dimensional experimental results were not avail- 
able, only one-dimensional dusty shock attenuations could 
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Fig. 3. Initial computational domain 

Fig. 5. Particle spatial density after initial refinement 

Fig. 4. Particle spatial density before initial refinement 

be used to evaluate the performance of the present method- 
ology. However, a two-dimensional formulation and domain 
was employed. Figure 3 shows the initial computational do- 
main used for all the simulations. A right moving shock 
is initially located 100 mm upstream of a quiescent particle 

region. Before the time integration is initiated, the initial 
particle front discontinuity and the shock wave were re- 
fined to four levels of refinement from a background mesh, 
where each refinement level corresponds to a subdivision 
of one triangular element into four elements. A close-up of 
the particle discontinuity is shown before (Fig. 4) and after 
(Fig. 5) this original refinement based on spatial density is 
completed, and is similar to the refinement across the shock 
based on gas density before the time integration proceeds. 

The mesh dynamic refinement and coarsening for the 
moving gas and particle discontinuity are shown for a 
timestep after the shock has entered the particle laden re- 
gion in Fig. 6, where the shock front is to the right and 
the particle front is to the left. The minimum element size 
has a length scale of approximately 0.6mm. At a later 
time, Fig. 7 shows gas density (p) contours of a typical 
right-running shock propagating into a dusty gas, using the 
present numerical method. The reduction in gas density due 
to particle drag is evident in the gradient which spans the 
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Fig. 6. Mesh refinement and coarsening to shock and particle fronts 
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Fig. 7. Gas density contours showing edge of particle laden region on far left, shock discontinuity at the far right, and gradual decrease in gas density left 
to right indicating shock attenuation 

particle laden region behind the shock front and terminates 
at the far left side where the particle interface is located. 
Figure 8 shows a close-up of the same gas density con- 
tours near the shock overlapped by the mesh, indicating 
such density discontinuities are typically resolved across 
four computational cells, similar to that found for the parti- 
cle density. In general, noise levels are quite low, typically 
limited to one contour out of 256 equal contours. However, 
attempts to apply Lapidus diffusion (Lthner et al. 1987) to 
the calculations in order to further reduce this noise level 
resulted in numerical instabilities. The reason for this is not 
known and will be the subject of subsequent research. 

Figure 9 shows the Mach number variation due to at- 
tenuation of a shock wave propagating into a two-phase 
flow consisting of air and glass spheres with a diameter of 
27/zm (as used in the experiments of Sommerfeld, 1985). 
The shock is initially at M0 = 1.49 and the loading ratio 
(r/) is 0.63. Results from the present two-phase Eulerian 
implementation of FEM-FCT are presented along with ex- 
perimental and numerical results from Sommerfeld. As the 
shock wave continues to travel through the particle laden re- 
gion, the exponential type decay of its strength can be seen. 

In view of the data scatter, all predictions show reasonable 
agreement with the experimental results. The predictions of 
Sommerfeld and FEM-FCT with the same 'unsteady' drag 
coefficient of (11) are quite similar. However, the predic- 
tions with the standard drag coefficient exhibit increased 
attenuation initially, where slip velocities and thus Reynolds 
numbers are expected to be higher. Such a trend is consistent 
with the differences noted in Fig. 2. 

Figure 10 shows a similar but less rapid attenuation be- 
havior for the same particle loading of 0.63 but a lower 
M0 of 1.25. All the predictions agree with the trend of the 
experimental data, but tend to overestimate the rate of atten- 
uation. The effect of the Nusselt number description shows 
less attenuation for the simpler and less accurate N u  = 2 

case for FEM-FCT, which is consistent with the reduction of 
heat transfer associated with this approximation. The Som- 
merfeld simulation exhibits an even lower shock strength at 
four meters as compared to FEM-FCT, whereas predictions 
of Olim et al. (1987) are closer to the data. It should be 
noted that Olim et al. employed a viscosity coefficient for 
oxygen (Eq. (10)) in their calculations; the reason for not 
using a viscosity for air was not given. Tests with FEM-FCT 



21 

Fig. 8. Close-up of gas density Contours across shock superimposed over the mesh 
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Fig. 9. Shock position vs. M~ for M0 = 1.49, ~7 = 0.63 
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Fig. 10. Shock position vs. M8 for M 0 = 1.25, r] = 0.63 

showed that substituting the viscosity coefficient given by 
Olim et al. did not result in any significant change in the 
flowfield. Since the experimental configuration injected the 
particle-gas mixture upstream of the shock at a slow upward 
velocity of  1-3 m/s, numerical tests were also conducted 
with an initial velocity of 1 m/s of  both particles and gas, 
which showed no significant differences as compared to the 
quiescent cases. 

Figure 11 shows results for an M0 of 1.48 and an 
increased r? of  1.25, yielding much stronger attenuation as 
compared to r? of  0.63 (Fig. 9). Agreement for the FEM- 
FCT predictions with experiments is excellent, especially for 
the first meter of attenuation. The Sommerfeld predictions 
show reasonable agreement as well but with the same trend 
of discrepancies noted in Fig. 9, which is presumably a 

result of the different drag coefficients. A low Mach number 
shock attenuation case is shown in Fig. 12 for the case of  
M0 = 1.26 and an r/ of 0.25. The reduced mass loading 
led to much less attenuation and the FEM-FCT calculations 
yielded excellent agreement with the experimental results. 

To investigate the slip velocity distribution, the gas and 
particle velocities a long the lower wall of the tube through- 
out the shock attenuation region are shown in Fig. 13 at a 
single time instant of  the case with M0 = 1.48 and q = 1.25 
(ca. Fig. 11). From the quiescent unshocked region to the 
right, the gas velocity discontinuously rises across the shock 
and then continues to rise through the particle-laden region 
until it finally reaches its unattenuated value upstream of 
this region. The particles are continuously accelerated to 
this same speed, resulting in a maximum slip velocity up- 
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Fig. 13. Velocity distribution due to shock attenuation for M0 = 1.48, 77 = 
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stream of the shock itself. Some oscillations can be seen 
near the particle interface region, which may be a result of 
the absence of Lapidus diffusion in the scheme and will be 
studied in the future. 

Figure 14 shows the distribution of slip Reynolds number 
through the shock attenuation structure at selected timesteps 
for the same case. The Reynolds number distribution extends 
from just downstream of the shock (the rightmost point of 
each curve) to the end of the two-phase region (the leftmost 
point of each curve) and are well within the range of the 
Clift drag coefficient applicability. The distribution shows 
that the maximum Re typically does not occur immediately 
behind the shock, rather it is delayed some distance by 
the relaxation time of the particles. Note, as the shock just 
enters the particle-laden region, the maximum slip Reynolds 
number occurs at the shock (e.g. t = 0.995 ms); however, as 
the shock wave is attenuated, the post-shock gas velocity rise 

Fig. 14. Reynolds number distribution through the shock attenuation struc- 
ture at selected timesteps for Mo = 1.48, ~ = 1.25 

is responsible for the maximum Reynolds number condition. 
Eventually, when the shock front has been attenuated to a 
nearly sonic value, the slip Reynolds number distribution 
should become completely continuous since it will only be 
caused by the continuous gas velocity rise. Thus it is felt 
that if an unsteady drag coeff• is to be used, it should 
probably only be employed at the shock front, which is 
responsible for only a fraction of the particle acceleration. 

In general, the approach of the present study yielded 
shock wave attenuations near that given by the experimen- 
tal data. The Sommerfeld (1985) calculations employed an 
empirical 'unsteady' drag coefficient based on their own 
experiments. It is not clear whether such an approach is 
superior. The actual acceleration of the particle due to the 
time varying slip velocity, expressed as the Basset history 
term, requires long time evolution of the particle flowfield, 
which is not practical to store and evaluate in a high reso- 
lution multi-dimensional calculation. Based on the analysis 
of Maxey and Riley (1983), estimates of the order of con- 
tribution of the unsteadiness away from the shock front for 
the present conditions are about three percent of the vis- 
cous drag contribution. The authors feel that the standard 
steady drag coefficient would lead to more robust solutions 
for complicated flow structures, since it is not based on any 
specific conditions of flow acceleration. The robustness of 
the scheme given by Olim et al. (1987) which also used a 
steady drag coefficient is not easily determined since only a 
single case was compared directly with experiment in their 
study. 

The overestimation of shock attenuation noted in Fig. 10 
for all of the above numerical approaches is interesting. Most 
of the physical mechanisms that were not taken into account 
by the computational assumptions would lead to additional 
attenuation as compared to the ideal case. These effects in- 
clude non-sphericity of the particles (although Sommerfeld's 
micrographs did not record such deviations); a distribution 
of diameters as opposed to a single constant diameter (al- 
though this was shown to increase drag by less than 1% 
based on a simple analysis, using the size distribution given 
by Sommerfeld); unsteadiness, which typically augments 
viscous drag (although expected to be small for low par- 
ticle Reynolds numbers by Mei, 1990); and shock tube 
viscous effects (although for large flow Reynolds numbers, 
this should not significantly affect shock speed). It appears 
that the only effect, other than experimental uncertainties or 
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bias, that could cause a decrease in the shock attenuation 
expected from the ideal case is particle clumping, which 
would result in a lower drag force per particle. It could 
be that such clumping, which may have been caused by 
electro-static effects, is less likely to have been maintained 
for the stronger initial shocks of M0 ~ 1.5 as opposed to 
the shocks of Mo = 1.25. The second low Mach number 
case of Fig. 12 clearly did not lead to excessive attenuation 
predictions, possibly because the lower mass loading may 
have lessened the particle agglomeration. 

Computations for this study were completed on a CRAY 
Y-MP and typically took 2 hours and 2.2 MWords of mem- 
ory to complete one adaptive mesh run with approximately 
3500 points. In comparison to similar FEM-FCT single- 
phase calculations, the two-phase approach took approxi- 
mately twice as much CPU time and thirty percent more 
memory. The efficiency of the present methodology should 
be further realized with complex two-dimensional configura- 
tions, where structured mesh approaches will require sizable 
resources to maintain the same degree of resolution possible 
in the present approach. 

4. Conclusion 

Two-phase flow equations have been added to a conserva- 
tive, monotonic flow solver to allow the study of compress- 
ible particle and droplet flows, which are important to two- 
phase shock flows and propulsion systems. The formulation 
developed in our study employed an Eulerian treatment for 
the gas and particle phases, both in conserved quantities. 
The computations were performed using the finite element 
method-flux corrected transport (FEM-FCT) scheme for the 
time integration of both phases. A special flux limiting 
was employed for the particle equations only in order to 
provide monotonic particle velocity fields and to increase 
the scheme's computational stability. Adaptive unstructured 
methodology based on adapting to high gradients of both the 
fluid and particle densities to provide high resolution was 
implemented in conjunction with the conservative shock- 
capturing scheme. This scheme yielded excellent monotonic 
shock capturing, confined to typically three or four elements 
across the shock. The shock attenuation of this scheme was 
then compared with previous experimental and numerical 
results and was found to yield robust predictions. Various 
interphase coupling terms were also considered, which led 
to significant changes in the flow solution. In general, the 
standard coefficients for momentum and energy transfer of 
spherical particles were found to be quite reasonable to 
describe significant shock attenuation. 
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