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Abstract---The development, application and impact of mesh adaptation procedures in the field of 
computational fluid mechanics (CFD) are reviewed. The discussion is restricted to unstructured (i.e. 
unordered) grids, such as those commonly encountered in finite element applications. 

1. INTRODUCTION 

THE DEVELOPMENT of self-adaptive mesh refinement techniques in computational fluid dynamics 
(CFD) and computational structural mechanics (CSM) was motivated by the same reasons: 

(a) With mesh adaptation, the numerical solution to a specific problem, given the basic accuracy 
of the solver and the desired accuracy, should be achieved with the least number of degrees 
of freedom. This, in most cases, translates into the least amount of work for a given accuracy. 

(b) With mesh adaptation, the user must no longer waste time choosing a grid that is suitable for 
the problem at hand; although this may seem unimportant for repetitive steady-state 
calculations, it is of the utmost importance for transient problems with traveling discontinuities 
(shocks, plastic fronts, etc.). In this way, adaptation adds a new dimension of user-friendliness 
to computational mechanics. 

Given these very strong motivating reasons, the last decade has seen a tremendous surge in activity 
in this area. It is interesting to note that mesh adaptation in CFD and CSD both appeared in the 
early 1980s. In fact, the first conferences dedicated solely to this subject took place around 
1984 [1,2]. The present review focuses primarily on unstructured (i.e. unordered) grids, such as 
those commonly encountered in finite element applications. However, parallel developments in the 
area of structured grids (finite differences and finite volume techniques) are mentioned wherever 
appropriate. 

Any adaptive refinement scheme is composed of three main ingredients: 

an optimal-mesh criterion, 
an error indicator, and 
an algorithm or strategy to refine and coarsen the mesh. 

They give answers to the questions: 

How should the optimal mesh be? 
Where is refinement/coarsening required? 
How should the refinement/coarsening be accomplished? 

The topic of adaptation now being a decade old, it is not surprising that a variety of answers have 
been proposed by several authors for each of these questions. In the following, the most successful 
ones are discussed in more depth. 

2. OPTIMAL MESH CRITERIA 

Before designing an adaptive mesh procedure, the analyst should have a clear idea of what 
is to be achieved. Reduction of manual and computational work is the obvious answer, but in order 
to be more definite, a quantitative assessment of the optimality of the adaptive mesh procedure 
is necessary. This leads to the immediate question: What should the optimal mesh be like? The 
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Fig. 1. Error distribution before and after refinement. 

answer to this crucial question is seldom clear, as engineers do no always know a priori  what 
constitutes a sufficiently accurate answer to the problem at hand. For example, if all that is requried 
is the lift of  an airfoil (an integrated, global quantity), there is in most cases no need for an 
extremely accurate solution away from the surface. A number of  researchers have followed 
guidelines with mathematical  foundations, which are outlined below. 

2.1. Equidistribution o f  error 

The aim is to attain a grid in which the error is uniformly distributed in space. One can show 
that such a mesh has the smallest number of  degrees of  freedom (i.e. the smallest number of  
elements) for the general aim: 

~h ~ min Yx ~ f~. (!) 

Conceptually, one can derive this criterion from the observation that the error will have the 
irregular distribution for the first mesh shown in Fig. la. If  the number of  degrees of  freedom is 
kept the same, the distribution of  element size and shape is all that may be varied. After 
repositioning of points, the error distribution in space will become more regular, as shown in 
Fig. lb. One can also see that the general aim stated in eq. (1) will be achieved when the error 
is constant in the domain. This mesh optimality criterion is most often used in conjunction with 
steady-state problems. 

2.2. Loca l  absolute error tolerances 

In many applications, the required error tolerances may not be the same at all locations. 
Moreover,  instead of using the general minimization stated in eq. (1), one may desire to enforce 
absolute local bounds in certain regions of  the domain: 

(~h < CI ~t x ~ ~r~sub ' (2) 

Mesh refinement or coarsening would then take place if the local error indicator exceeds or falls 
below given refinement or coarsening tolerances: 

h > Cr ~ refine, E j' < c, =~ coarsen. 



Mesh adaptation in fluid mechanics 821 

The calculation of skin-friction coefficients of airfoils is a possible application for such a mesh 
optimality criterion. The mesh optimality criterion based on local absolute error tolerance is most 
often used for transient problems. 

3. ERROR INDICATORS/ESTIMATORS 

Consider the task of trying to determine if the solution obtained on the present mesh and 
discretization is accurate. Intuitively, a number of criteria immediately come to mind: variations 
of  key variables within elements, entropy levels, higher-order derivatives of the solutions, etc. All 
of them make the fundamental assumption that the solution on the present mesh is already in some 
form close to the exact solution. This assumption is reasonable for parabolic and elliptic problems, 
where, due to global minimization principles, local deficiences in the mesh only have a local effect. 
For  hyperbolic problems, the assumption u h ~ u may be completely erroneous. Consider an airfoil 
at a high angle of attack. A coarse initial mesh may completely miss local separation bubbles at 
the leading edge that lead to massive separation in the back portion of the airfoil. Although the 
local error in the separation region may be very small, the global error in the field would be very 
large due to different physical behavior. Any error indicator presently in use could miss these 
features for bifurcation point regions, performing adaptation at the wrong places. On the other 
hand, the assumption u h ~ u is a very reasonable one for most initial grids and stable physics. As 
a matter of  fact, it is not so difficult to attain, given that the nature of most engineering applications 
is such that: (a) developments are evolutionary, rather than revolutionary, i.e. a similar problem 
has been solved before (the airfoil being the extreme example), and (b) the controlability 
requirement of reliable products implies operation in a stable regime of the physics. 

3.1. Popular error indicators 

The most popular error indicators presently used in production codes may be grouped into 
the following categories. 

3.1.1. Jumps in indicator variables. The simplest error indicator is obtained by evaluating the 
jump (i.e. the undivided difference) of some indicator variable like the Mach number, density or 
entropy within an element or along an edge. This error indicator implicitly makes the assumption 

h = clhlVul (3) ('el 

i.e. first order accuracy for the underlying scheme. Error indicators of this form have been used 
in industrial applications with success [3-9], even if the underlying numerical discretization was of 
higher than first order. 

3.1.2. Interpolation theory. Making the assumption that the solution is smooth, one may 
approximate the error in the elements by a derivative one order higher than the element shape 
function. For  1D, this would result in the error indicator at the element level of the form 

Opu 
E~t=clh p ~ x  p , (4) 

where the p th  derivative is obtained by some recovery procedure, and for linear elements p = 2. 
The total error in the computational domain is then given by 

I- ~ /'C~Pu\ 2 7 '/2 

This error indicator gives superior results for smooth regions. On the other hand, at discontinuities 
h will stay the same no matter how fine the mesh is made. the local value of ¢e~ 

3.1.3. Comparison of  derivatives. Again making the assumption that the solution is smooth, 
one may compare significant derivatives using schemes of different order. As an example, consider 
the following three approximations to a second derivative: 

1 i h2u u.x.vl4, = ~ ( u i - t - 2 u i - } - u i + l ) - ~  ,iv, (6a) 
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1 
U rx]42 = - ~ ( U i _  2 - -  2., + u,+2) - ~4h2ujv, (6b) 

1 
1 4 U.xxl6=l~5(--Ui 2+ 16Ui_l-  30Ui+ 16U~+1-ui+2)+~h U.vj. (6c) 

The assumption of  smoothness in u would allow a good estimate of the error in the second 
derivatives from the difference of these three expressions [10]. Moreover, comparing eq. (6a) to eqs 
(6b, c) can give an indication as to whether it is more efficient to h-refine the mesh (reduction of 
h), or to increase the order of accuracy for the stencil (p-refinement). For unstructured grids, one 
may recover these derivatives with reconstruction procedures. 

3.1.4. Residuals of  PDEs on adjacent grids. Assume we have a node-centered scheme to 
discretize the PDEs at hand. At steady state, the residuals at the nodes will vanish. On the other 
hand, if the residuals are evaluated at the element level, non-vanishing residuals are observed in 
the regions that require further refinement. This error indicator has been used extensively in 
France [11]. Another possibility is to check locally the effect of  higher order shape functions 
introduced at the element level or at element boundaries [12]. These so-called p-finement indicators 
have been used extensively for structural FEM applications [1, 13, 14]. 

3.1.5. Energy norms. Assume incompressible creeping flow. For this viscous-dominated flow 
the solution consists of  a velocity field v with zero divergence that minimizes the dissipation energy 
functional 

j(v)=f~(v'.j+vJ.~tv'+vJ,)dn=fa~dn..,,., j (7) 

Here v denotes the velocity field, a the viscous stress tensor and E the strain rate tensor. The 
dissipation energy of the error e = v - vh satisfies the relation 

J(e) = f (ah -- a)  : (c h - E ) dfL (8) 

The unknown exact stresses and strain rates a, ~ can be recovered at nodes through a least-squares 
projection. The final estimator, using recovered stresses ar and the strain rates Er, then becomes 

J(e) = f(ah - at): (Eh- C) dfL (9) 

This error estimator, although derived for creeping flows, has also been shown to be useful for flows 
with moderate Reynolds number [15]. One can also see that this error indicator is closely related 
to the Zienkiewicz-Zhu error indicator [16-18]. 

3.1.6. Energy of  spatial modes. For higher-order methods, such as spectral element methods, 
a very elegant way to measure errors and convergence is to separate the energy contents associated 
with the different shape functions. The decrease of  energy contained in the higher-order shape 
functions gives a reliable measure of  convergence [! 9, 20]. At the same time, this way of  measuring 
errors provides an immediate strategy as to when to perform h-refinement (slow decrease of  energy 
content with increasing shape function polynomial) or p-refinement (rapid decrease of  energy 
content with increasing shape function polynomial). 

3.1.7. Other error indicators~estimators. In a field that is developing so rapidly, it is not 
surprising that a variety of  other error indicators and estimators have been proposed. The more 
theoretically inclined reader may wish to consult refs [21-23]. 

3.2. Problems with multiple scales 

All of these error indicators have been used in practice to guide mesh adaptation procedures. 
They all work well for their respective area of application. However, they cannot be considered 
as generally applicable for problems with multiple intensity and/or length scales. None of them are 
dimensionless, implying that strong features (e.g. strong shocks) produce large error indicator 
values, whereas weak features (secondary shocks, contact discontinuities, shear layers) produce 
small ones. Thus, in the end, only the strong features of the flow would be refined, losing the weak 
ones. A number of  ways have been proposed to circumvent this shortcoming. 
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3.2.1. Stopping criteria. The most common way to alleviate the problems encountered with 
multiple intensity/length scales is to introduce a stopping criterion for refinement. This can be a 
minimum element size or, for the case of h-refinement, a maximum level of subdivision. After the 
discretization is sufficiently fine enough to activate the stopping criterion, the remainder of the 
added degrees of freedom are introduced in regions with weaker features. 

3.2.2. Two-pass strategy. A second option, proposed by Aftosmis [8, 24], is to separate the 
disparate intensity or length scales into two (or possibly several) passes over the mesh. In the first 
pass, the strong features of the flow are considered, and appropriate action is taken. A second pass 
is performed for the elements not marked in the first pass, identifying weak features of the flow, 
and appropriate action is taken. This procedure has worked well for viscous flows with 
shocks [8, 24], and can be combined with any of the error indicators described above. 

3.2.3. Non -dimensional error indicators. An error indicator that allows even refinement across 
a variety of intensity and length scales was proposed in ref. [25]. In general terms, it is of the form 

h 21 second derivatives I 
error - h L first derivatives l + c, I mean value l ' (10) 

By dividing the second derivatives by the absolute value of the first derivatives, the error indicator 
becomes bounded, dimensionless and the "eating up" effect of strong features is avoided. The terms 
following c are added as a noise filter in order not to refine wiggles or ripples which may appear 
due to loss of monotonicity. The value for E thus depends on the algorithm chosen to solve the 
PDEs describing the physical process at hand. The multidimensional form of this error indicator 
is given by 

[ (;o 1 2 N~k N~ dn.  Ug 
E I =  kg (11) 

(;o . . . . . .  INf~l[IX~ Sjl + c,(INJllSjI)]df~ 

where N / denotes the shape function of node L The fact that this error indicator is dimensionless 
allows the simultaneous use of several indicator variables. Because the error indicator is bounded 
(0 ~< E / ~< 1), it can be used for whole classes of  problems without having to be scaled to the problem 
at hand. This results in an important increase in user-friendliness, allowing non-expert users access 
to automatic self-adaptive procedures. This error indicator has been used successfully for many 
years on a variety of applications [25-38]. 

3.3. Determination of element size and shape 

Having measured the error in the present solution, or at least having identified the regions of 
the computational domain that require further refinement or coarsening, the next question to be 
answered is the magnitude of mesh change required. This question is of  minor importance for 
h-refinement or p-refinement, where the grid is simply subdivided further by factors of two in space 
or by adding the next higher degree polynomial to the space of available shape functions. On the 
other hand, for adaptive mesh movement or adaptive remeshing, where the element size and shape 
vary smoothly, it is necessary to obtain a more precise estimation of  the required element size and 
shape. How to achieve this will be exemplified for the non-dimensional error indicator given by 
eq. (11). It is a simple matter to perform a similar analysis for all the other error indicators 
described. Defining the derivatives according to order as: 

D°=c,(EUi+,l+ ZlUil+lUi ,I) (12a) 

D)=IUi+, -UiI+IUe-Ui  ~l (12b) 

O~ = [U~+~ - 2U~+ U~_I[, (12c) 

the error indicator on the present (old) grid E TM is given by: 

Eold _ D~ 
DI + D O. (13) 
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The reduction of the current element size h TM by a fraction ~ to h "~ = ~h °~d will yield a new error 
indicator of  the form 

D ~  2 
Enew - -  D~ ~ + D o. (14) 

Given the desired error indicator value E "ew for the improved mesh, the reduction factor ~ is given 
by: j{ } En~Wl[ D]+ (DI)2+4D°~i~[Di+D~] 1 

¢ - E TM 2 [DI + D °] ' (15) 

Observe that for a smooth solution with D ~ <~ D °, this results in ~ = (E°¢W/E°~d)°5, consistent with 
the second order accuracy of linear elements. Closer to discontinuities D ~ >> D °, and one obtains 

= EnCW/E°td, consistent with the first order error obtained in these regions. 
This error indicator can be generalized to multidimensional situations 

following tensors: 
t ~  

(O°)~z = h2c~ tIN(~II N~ll UjI HfL 

which yield an error matrix E of the form: ") 00) 
E =  Eli. E).I, E~), = X -  E22 0 "X -1. 

by defining the 

(16) 

(17) 

08) 

The principle eigenvalues of this matrix are then used to obtain reduction parameters l/j, in the 
three associated eigenvector directions. Due to the symmetry of E, this is an orthogonal system 
of eigenvectors that defines a local coordinate system. 

We remark that the variation in element size required to meet a certain tolerance can be 
determined with any of  the error indicators enumerated in Section 3.1. However, the variation in 
stretching, i.e. the shape of  the elements for the adapted 3D mesh, requires an error indicator that 
is based on a tensor of second derivatives. 

4. R E F I N E M E N T  STRATEGIES 

Besides the mesh optimality criterion and the error indicator/estimator, the third ingredient 
of  any adaptive refinement method is the refinement strategy, i.e. how to refine a given mesh. Three 
different families of refinement strategies have been considered to date. 

4.1. Mesh movement or repositioning (r-methods) 
The aim is to reposition the points in the field in order to obtain a better discretization for 

the problem at hand. The regions that require more elements tend to draw points and elements 
from regions where a coarser mesh can be tolerated. Three basic approaches have been used to 
date: 

(a) The Moving Finite Element Method, where the position of points is viewed as a further 
unknown in a general functional to be minimized [39]. 

(b) Spring Systems, whereby the mesh is viewed as a system of springs whose stiffness is 
proportional to the error indicators [3, 11, 40-43]. 

(c) Optimization Methods, whereby the position of points is changed in order to minimize a 
functional [44, 45]. 

Mesh movement schemes arc relatively simple to code, as the mesh topology is not allowed to 
change. They have the desirable property of aligning elements with features of  lower dimensionality 
than the problem at hand. This stretching of  elements can lead to considerable savings as compared 
to other methods. On the other hand, they are not flexible and general enough for production runs 
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that may exhibit complex physics. They are presently used mainly in conjunction with Finite 
Difference codes [41-43, 45, 46], where by the very nature of the method no topology changes are 
allowed. For unstructured grid codes, mesh movement has only been tried in academia or in 
conjunction with other methods [3] (see Section 4.4). 

4.2. Mesh enrichment (h/p-methods) 
In this case, degrees of freedom are added or taken from a mesh according to some rule. One 

may either split elements into new ones (h-refinement), or add further degrees of freedom with 
hierarchical shape functions (Fig. 2). The same may be accomplished with the addition of higher 
order shape functions (p-refinement), again either conventional polynomials [2], spectral [19, 20] 
functions, or hierarchical shape-functions [13]. For elliptic systems of PDEs, the combination of 
h- and p-refinement leads to exponential convergence rates [2, 47]. p-Refinement methods have so 
far not been used extensively in fluid mechanics. The author is not aware of any production or 
commercial CFD code that has a built-in p-refinement capability. Possible reasons for this lack 
of success, which stands in contrast to CSM applications [2, 14, 48, 49], are the following. 

(a) The limited accuracy that is achievable for CFD applications due to monotonicity 
enforcement close to discontinuities [50], and the lack of accurate turbulence models [51, 52]. 
Indeed, a CFD solution that claims an accuracy better than 1% for a complex flow problem has 
to be considered with great scepticism. On the other hand, the major gains of high-order methods 
as compared to h-refinement in combination with low-order methods are in the range below 1% 
relative error. 

(b) The desired accuracy of engineering applications, which seldom fall below 1% relative 
error. Given the uncertainties in boundary conditions, material parameters and source terms of 
typical engineering applications, 1% relative error can already be considered unnecessarily 
accurate. 

(c) The much higher coding complexity of p-methods or h/p-methods as compared to 
straightforward h-methods. The only possible difficulty of h-methods is given by hanging nodes 
for quad- or brick-type elements (for triangles and tetrahedra even this problem disappears). Apart 
from this relatively small modification, the original one element-type flow solver can remain 
unchanged. On the other hand, any p-method requires the development and maintenance of a 
complete library for all the different types of elements. Further complications arise from the 
adaptation logic when h/p-type refinements are considered. 

This is not to say that we may not see much activity in this area: boundary layers, shear layers, 
flames and other features that are currently being computed using under-resolved Navier-Stokes 

a) 

1 

Level 0 

b) 

a) 

3 

Level 1 

1 N3 

1 3 2 

Fig. 2. h-Refinement using usual polynomials or hierarchical shape functions. 
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runs are, when properly resolved, smooth features that should be ideally suited to high-order 
discretizations. 

4.2.1. h-Enrichment. By far the most successful mesh enrichment strategy has been h- 
enrichment. There are several reasons that can be given for this success: 

• Conservation is maintained naturally with h-refinement. 
• No interpolations other than the ones naturally given by the element shape functions are 

required. Therefore, no numerical diffusion is introduced by the adaptive refinement 
procedure. This is in contrast to adaptive remeshing, where the grids before and after a mesh 
change may not have the same points in common. The required interpolations of the 
unknowns will result in an increased amount of numerical diffusion (see refs [28, 30]). 

• h-Refinement is very well suited to vector and parallel processors. This is of particular 
importance for transient problems, where a mesh change is performed every 5-10 timesteps, 
and a large percentage of mesh points is affected in each mesh change [25, 30]. 

The three main variants used to date achieve mesh enrichment/coarsening through (see Fig. 3): 

(a) classic subdivision of elements into four (2D) or eight (3D) after compatibility tests; 
(b) recursive subdivision of the largest edge side with subsequent compatibility tests; 
(c) agglomeration of cells with blocked subdivisions after compatibility tests. 

The compatibility tests are necessary to ensure that an orderly transition occurs between fine and 
coarse mesh regions, and to avoid hanging nodes for triangular and tetrahedral elements. 

4.2.1.1. Classic h-refinement. This simplest form of mesh refinement/coarsening seeks to achieve 
higher mesh densities by subdividing elements by four (2D) or eight (3D). In order to have a smooth 
transition between refined and unrefined mesh regions, compatibility tests are required. For 

I dent i fy 

Make Compatible 

Refine 

a) Classic H-Refinement 

Fig. 3(a) 
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Identify Refine 

Identify Refine 

b) Subdivision of Largest Edge 

I dent i fy Agglomerate 

ii 
Refine 

E l  
HI 
E l  
E l  

c) H-Refinement by Grouping 

Fig. 3 (b and c) 

Fig. 3. Possible h-refinement strategies. 

triangles and tetrahedra, badly formed elements due to refinement are avoided by restricting the 
possible refinement patterns. For  tetrahedra, subdivision is only allowed into two (along a side), 
four (along a face) or eight. These cases are denoted as 1 : 2, 1 : 4 and 1 : 8, respectively. At the same 
time, a 1:2 or 1:4 tetrahedron can only be refined further to a 1:4 tetrahedron, or by first going 
back to a 1 : 8 tetrahedron with subsequent further refinement of the eight sub-elements. We call 
these the 2:4, 2:8 + and 4 : 8 +  refinement cases. The refinement cases are summarized in Fig. 4. 
This restrictive set of  refinement rules avoids the appearance of ill-deformed elements. At the same 
time, it considerably simplifies the refinement/coarsening logic. An interesting phenomenon that 
does not appear in 2D is the apparently free choice of the inner diagonal for the 1 : 8 refinement 
case. As shown in Fig. 5, one can place the inner four elements around the inner diagonals 5-10, 
6-8 or 7-9. Choosing the shortest inner diagonal produces the smallest amount of distorted 
tetrahedra in the refined grid. When coarsening, again only a limited number of cases that are 
compatible with refinement is allowed. The coarsening cases become 8 : 4; 8 : 2, 8 : 1, 4: 2, 4: 1, 2: 1 
(Fig. 6). Similar possible refinement patterns have been devised for triangles[25,53], 
quads [4, 5, 8, 54-56] and bricks [24, 55, 57, 58]. 

A considerable simplification in logic can be achieved by limiting the number of refine- 
ment/coarsening levels per mesh change to one [25, 33]. The main algorithmic steps then become: 

• identify the elements to be refined/coarsened; 
• make elements to be refined compatible by expanding the refinement region; 
• make elements to be coarsened compatible by shrinking the coarsening region; 
• refine/coarsen the mesh; 
• correct the location of new boundary points according to the surface definition data available; 
• interpolate the unknowns and boundary conditions. 

Most of the steps listed above are easily vectorizable and parallelizable, leading to an extremely 
fast adaptation procedure. This makes h-refinement one of the few adaptation procedures suitable 
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(a) 7-9 

5 6 

5-10 

8 

1 

4 

10 

3 

2 

6-8 4 

1 ~  3 

Fig. 5. (a) (See caption on page 831). 

for strongly unsteady flows[34-36, 38]. h-Refinement has had the biggest impact in the field, 
leading to saving ratios in CPU and memory requirements in excess of 1 : 100 [34], the equivalent 
of two supercomputer generations. It has allowed the routine simulation of problems that had been 
intractable to date, opening new areas of applications in CFD [31, 33, 35, 36, 38]. 
4.2.1.2. Recursive subdivision of the largest edge. The separate coding and maintenance of 
allowable refinement and coarsening patterns observed for classic h-refinement in conjunction with 
triangles and tetrahedra can be avoided by using a recursive subdivision algorithm proposed by 
Rivara [59-61]. Whenever an element has been marked for refinement, the largest edge of the 
element is subdivided, producing the 1:2 refinement pattern in Fig. 4. Hanging nodes are then 
reconnected to produce a mesh without hanging nodes. The elements are checked again for 
refinement, and the procedure is repeated until a fine enough mesh has been obtained. This 
algorithm may be summarized as follows: 

• Until the expected error is decreased sufficiently: 
• identify the elements to be refined/coarsened; 
• subdivide the largest edge of all elements marked for refinement; 
• subdivide further elements with hanging nodes until no hanging nodes are present. 

4.2.1.3. Agglomeration of cells with blocked subdivisions. The main aim of this type of refinement, 
which so far has been used only with quad and brick elements, is to achieve locally ordered blocks 
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of  data, so that the amount of (expensive) indirect addressing operations required by the flow solver 
can be minimized. The main algorithmic steps can be summarized as follows: 

• identify the elements to be refined/coarsened; 
• identify possible blocking patterns; 
• make blocking patterns compatible; 
• refine/coarsen the mesh; 
• correct the location of new boundary points according to the surface definition data 

available; 
• interpolate the unknowns and boundary conditions. 

As one can see, the main difference between this algorithm and the classic h-refinement is the 
pattern recognition phase and the compatibility checking phase that is now operating on blocks 
instead of  individual elements. In particular, the pattern recognition phase has been the subject of 
considerable research [62], producing impressive results [58, 63]. 

4.3. Remeshing (m-methods) 
The third family of refinement strategies is based on the existence of  automatic grid generators. 

The grid generator is used in combination with an error indicator based on the present 
discretization and solution to remesh the computational clomain either globally or locally, in order 
to produce a more suitable discretization. The main advantages offered by adaptive remeshing 
methods are the following. 

(a) The possibility of  stretching elements when adapting features that are of lower dimension- 
ality than the problem at hand (e.g. shock surfaces in 3D), which leads to considerable savings as 
compared to h-refinement. 

(b) The ability to accommodate in a straightforward manner problems with moving bodies 
or free surfaces. For this class of problems a fixed mesh structure will, in most cases, lead to badly 
distorted elements. This implies that at least a partial regeneration of the computational domain 
is required. An observation made from practical runs is that as the bodies move through the flow 
field, the positions of relevant flow features will change. Therefore, in most of the computational 
domain, a new mesh distribution will be required. 

8:2 4:2 

Fig. 6(e) 
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Fig. 5. Choice of inner diagonal for h-refinement on tetrahedra. 

Fig. 6. Coarsening cases for tetrahedra. 

Fig. 7. Convection between concentric cylinders. 

Fig. 8. Shock-object interaction in 2D. 
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MESH TEMPER. DUC= 5 . 0 0 E - e 2  ABS(VELI, OUC= 1.0eE*B1 

PARTICLE TRACES 

Fig. 7(a) (see caption on page 831) 

Any of the automatic grid generation techniques currently available--advancing 
front [26, 27, 64 66], Delaunay triangulations [6, 7, 67] and modified quadtree/octree [68, 69J---may 
be employed to regenerate the mesh. The basic algorithmic steps are outlined below for the 
advancing front method, but any other automatic grid generation technique can be employed 
instead. The steps required for one adaptiL'e remeshing are as follows: 

• obtain the error indicator matrix for the gridpoints of the present grid; 
• given the error indicator matrix, get the element size, element stretching and stretching 

direction for the new grid: 
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• using the old grid as the background grid, remesh the computational domain using the 
advancing front technique; 

• if further levels of gobal h-refinement are desired, refine the new grid globally; 
• interpolate the solution from the old grid to the new one. 

For adaptive remeshing using the advancing front method, see refs I15, 28, 30, 32, 37, 64, 65, 70-74]; 
using Delaunay triangulations, see refs [6, 7]; and using the modified quad/octree approach, see 
ref. [12]. 

4.3.1. Local remeshing. For some classes of problems, e.g. subsonic store separation, the mesh 
may become distorted at a rate that is higher than the movement of physically relevant features. 
Another observation made from practical simulations is that the appearance of badly distorted 
elements occurs at a frequency that is much higher than expected from the element size pre- 
scribed. Given the relatively high cost of global remeshing, local remeshing in the vicinity of the 
distorted elements becomes an attractive option for these situations, The steps required are as 
follows: 

• Identify the badly distorted elements in the layers that move, writing them into a list 
LEREM (1 :NEREM).  

• Add to this list the elements surrounding these badly distorted elements. 
• Form holes in the present mesh by: 

forming a new background mesh with the elements stored in the list LEREM: 
deleting the elements stored in LEREM from the current mesh; 
removing all unused points from the grid thus obtained. 

t Recompute the error indicators and new element distribution for the background grid. 
• Regrid the holes using the advancing front method. 

Typically, only a very small number of elements (<  10) becomes so distorted that a remeshing is 
required. Thus, local remeshing is a very economical tool that allows reductions in CPU 
requirements by more than 60% for typical runs [32, 74]. 

4.4. Combinations 

From the characteristics listed above, it is clear that all of  the possible mesh refinement 
strategies exhibit weaknesses. Not surprisingly, some hybrid methods have been pursued that seek 
to compensate the weaknesses of the individual methods with their respective strengths. The most 
common are the following. 

4.4.1. Mesh enrichment followed by mesh movement. In this approach, which has been used 
mainly for steady-state applications [3], the physical complexity is first accounted for by classic 
h-enrichment. The mesh is then further improved by moving the points. In this way, the flexibility 
of the h-enrichment technique is combined with the points. In this way, the flexibility of the 
h-enrichment technique is combined with the directionality feature of mesh movement. 

4.4.2. Mesh regeneration and mesh enrichment. In this approach, which has been used for 
strong unsteady problems with moving bodies [75], the physical complexity is treated by classic 
h-enrichment. Moving bodies and/or changing topologies are treated by remeshing. 

5. E X A M P L E S  

A number of examples, computed with some of the author's codes [76], are given to 
demonstrate some of the possible applications of adaptive mesh procedures. 

5.1. Convection between concentric cylinders 

This case, taken from van Dyke [77], shows the use of h-refinement for buoyancy driven flows. 
The ratio of diameters is d,,/di= 3.14, and the Grashof number based on the gap width is 
Gr = 122,000. The Reynolds and Prandtl numbers were Re = 1.0 and Pr = 0.71, respectively. After 
obtaining a first solution, mesh adaptation was invoked to resolve in more detail the temperature 
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gradients. The resulting flow and temperature fields are displayed in Fig. 7. The comparison with 
the results presented in van Dyke [77] is very good. It is noteworthy to remark that the plates where 
refinement took place are rather non-intuitive. On the other hand, the results obtained on the 
original, unrefined mesh did not exhibit a good comparison to the experiment. 

5.2. Shock-object interaction in 2D 

Figure 8a-e shows a case taken from Baum and L6hner [36]. They show classic h-refinement 
for strongly unsteady flows at its best. For this class of problems a new mesh is required every 5-7 
timesteps, strict conservation of mass, momentum and energy during refinement is critical, and the 
introduction of dissipation due to information loss during interpolation when remeshing would be 

MESH , NELEM= 4 b 1 2  . N P O I N =  2 4 8 8  

OENSlTY , MIN= 1 .00E-03  . MAX= 3.qOE-03 , DUC= 1 .00E-04 

_ _ j  

P R E S S U R E ,  M I N =  1 . 0 0 E ÷ 0 6  . MAX-  4 . 9 0 E + O b  , OUC= 1 0 0 E + 0 5  

_ _ f  

Fig .  9 (a)  

EFM 50,'5 6--P 
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disastrous for the accuracy. A maximum of six levels of refinement were specified for this case, 
yielding meshes that on average have 300 Ktria and 150 Kpoints. Observe the detail in the physics 
that is achievable through adaptation. Notice, furthermore, the small extent of  the regions that 
require refinement as compared to the overall domain. The equivalent uniform mesh run would 
have required more than two orders of magnitude more elements, CPU time and memory,  pushing 
the limits of  available supercomputers. 

5.3. Pr(~jectile exiting muzzle 

The problem definition, as well as the resulting flow fields and grids, are shown in Fig. 9a f. 
The gas was modeled as ideal, and the density and pressure ratios were set to 1:40 and 1:2000, 

DENSITY , MIN= 2 . 5 0 E - 0 4  . MAX= 3 . 1 5 E - 0 3  . OUC= 1 . 0 0 E - 0 4  

PRESSURE, H I N =  2 . 5 0 E * 0 5  . MAX= 4 . 1 5 E ÷ O b  . DUC= 1 . 0 0 E + 0 5  

Fig. 9(b) 
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respectively. The Euler equations were solved in cylindrical coordinates.  This particular flow 
problem exhibits considerable mesh movement  and topology changes. It demonstrates  the use o f  
classic h-refinement in combinat ion  with remeshing. The flow through the pressure vents can be 
discerned clearly from Fig. 9e, f. For  more details, see ref. [75]. 

5.4. Shock-object interaction in 31) 

Figure 10a-c shows a case taken from refs [33, 35]. The object under consideration is a 
c o m m o n  main battlefield tank. A maximum of  two layers o f  refinement were specified close to the 

ABS(VELI, MIN= 5.52E+~I . HAX= 6.85E+e5 . OUC= I 71E*~4 

OENSITY , MIN= b . b 7 E - e 5  . MAX= 1 . 5 4 E - ~ 2  . OUC= 3 . B S E - ~ 4  

PRESSURE, M [N=  1 . g ~ E - 1 0  , MAX= 7 . 9 1 E + e 8  . OUC= 1 . g B E * ~ 7  

Fig. 9(c) 

Fig. 9. Projectile exiting muzzle. 
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tank, whereas only one level of refinement was employed further away. The original, unrefined, 
but strongly graded mesh consisted of approximately 100 Ktetra and 20 Kpoints. During the run, 
the mesh size increased to approximately 1.6 Mtetra and 280 Kpoints. This represents an in- 
crease factor of 1:16. Although seemingly high, the corresponding global h-refinement would 
have resulted in a ! :64 size increase. A second important  factor is that most of the elements 
of  the original mesh are close to the body, where most of the refinement is going to take 
place. Figure 10a-c shows surface gridding and pressure contours at selected times during the run. 
The extent of  mesh refinement is clearly discernible, as well as the location and interaction of 
shocks. 

A complete run like the one shown here takes approximately 35 h of  single-processor 
C R A Y - Y M P  time, and 110 Mwords of memory.  Given that it takes 3-5 days to grid up a 
configuration like the one shown, and another 3-5 days to plot and understand the data, these CPU 
and memory requirements are not deemed excessive. Moreover, given the DO-loop lengths 
encountered in a run like the one shown, microtasking works very well. On an eight-processor 
CRAY-YMP,  speed-ups in excess of 1:6 have been obtained. This reduces run times to 6 h, an 
overnight run. From these figures, it also becomes apparent that without adaptive mesh refinement, 
a run like this would be impossible on today's  hardware. 

5.5. Object Jalling into supersonic free stream (2D) 

The problem statement is as follows: an object is placed in a cavity surrounded by a free stream 
at M s  = 1.5. After the steady-state solution is reached (time T = 0.0), a body motion is prescribed, 
and the resulting flow field disturbance is computed. Adaptive remeshing was performed every 100 
timesteps initially, while at later times the grid was modified every 50 timesteps. One level of  
global h-refinement was used to accelerate the grid regeneration. The maximum stretching 
ratio specified was S = 5.0. Figure 1 la, b shows different stages during the computation at times 
T = 60 and T = 160. One can clearly see how the location and strength of the shocks change due 
to the motion of the object. Notice how the directionality of the flow features is reflected in the 
mesh. 

5.6. Object .falling into supersonic free stream (3D) 

The computational domain is shown in Figure 12a, b. The store is a slender object, resem- 
bling a missile. Figure 12a, b shows the mesh on the surface of the computational domain at time 
T = 0.0. The corresponding pressure contours (30) are shown in Fig. 12c. Figure 12e-f shows the 
surface mesh and the pressure contours (60) at time T = 8.5. One can clearly discern the extent 
of  mesh adaptation, as well as the considerable change in shock strengths and shock positions that 
occurred due to body motion. The meshes shown here have approximately 300 Ktetra and 
55 Kpoints. A run like the one shown takes about 6 h of Cray-2 time. For more details, see 
ref. [32]. 

6. C O N C L U S I O N S  

Adaptive mesh refinement has progressed rapidly over the last decade. The main types of 
optimal mesh criteria, error indicators/estimators and refinement strategies have been reviewed and 
compared. Although the advances have been impressive, major areas require significant further 
development before adaptivity will become commonplace in computational  mechanics. Among the 
most obvious, we mention: 

• reliable quantitative error estimators for high Re Navier-Stokes equations; 
• reliable quantitative error estimators for transient problems; 
• adaptive refinement procedures capable of  automatically producing elements with very high 

aspect ratio ( >  1:1000) cells in arbitrary directions; 
• porting of adaptive refinement procedures to parallel computers. 
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Fig. 10 (a, b and c) 
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Fig. 10 (d, e and f) 

Fig. I0. Shock object interaction in 3D. 
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Fig. 12 (a and b) 
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Fig. 12 (c and d) 

Fig. 12. Object falling into supersonic free stream (3D). 
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