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.e approaches monitoring fatigue driving are studied because of the fact that traffic accidents caused by fatigue driving often have
fatal consequences. .is paper proposes a new approach to predict driving fatigue using location data of commercial dangerous
goods truck (CDT) and driver’s yawn data. .e proposed location data are from an existing dataset of a transportation company
that was collected from 166 vehicles and drivers in an actual driving environment. Six different categories of the predictor set are
considered as fatigue-related indexes including travel time, day of week, road type, continuous driving time, average velocity, and
overall mileage. .e driver’s yawn data are used as a proxy for ground truth for the classification algorithm. From the six different
categories of the predictor set, we obtain a set of 17 predictor variables to train logistic regression, neural network, and random
forest classifiers..en, we evaluate the predictive performance of the classifiers based on three indexes: accuracy, F1-measure, and
area under the ROC curve (AUROC)..e results show that the random forest is more suitable for predicting fatigue driving using
location data according to its best accuracy (74.18%), F1-measure (62.02%), and AUROC (0.8059). Finally, we analyze the
relationship between fatigue driving and driving environment according to variable importance described by random forest. In
summary, our results obviously exhibit the potential of location data for reducing the accident rate caused by fatigue driving
in practice.

1. Introduction

.e transportation volume of the CDT continues to rise
throughout the world with the rapid development of the
modern manufacturing and logistics industries [1]. Danger-
ous goods transportation has a high potential risk which refers
to the possibility of incurring traffic accidents with disastrous
consequences [2, 3]. For example, explosions in densely
populated areas or the release of toxic chemicals can lead to
casualties directly or indirectly through environmental deg-
radation [4]. Dangerous goods usually have characteristics,
such as flammable, explosive, volatile, easy-corrosive, and so
on. .us, the transportation accidents involving dangerous
goods usually show the following features: unpredictability,
severe losses, and sudden and long-term effects [5]. When the

catastrophic accidents occur, the consequences cannot be
often controlled and lowered [6]. .erefore, the safety of
dangerous goods transportation has caught the attention of
the public, transportation companies of dangerous goods, and
decision makers and researchers within governmental and
nongovernmental safety organization [7, 8].

Fatigue driving is one of the main reasons for fatal traffic
accidents according to the causality analysis of traffic acci-
dents [9, 10]. Up to 20 percent of traffic accidents are caused
by fatigue driving [11–13]. Commercial truck drivers have
relatively long driving time and are more prone to fatigue.
Studies show that fatigue driving has been a major reason for
commercial truck accidents [14–16]. Fatigue driving of
commercial truck drivers increases the accident rate and leads
to severe property loss, injuries, and fatalities [17–20].
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Many previous researches have focused on the fatigue
driving problem of commercial truck drivers [21–25].
Various sources and types of real-time data have been used
in detecting driving fatigue. Physiological signals, being
continuously available, objective, and fairly direct indicators,
were often used to detect fatigue [26]. .e electroenceph-
alogram (EEG) and electrooculogram (EOG) are often used
as a medium for detection [27–29]. However, EEG signals
are very susceptible to noise and movements of the body
[30]. EOG detection removes some problems of EEG; it only
gives reasons for a certain aspect of the degree of human
fatigue [28]. In addition, most physiological signal acqui-
sition devices need to contact the driver’s body, which may
interfere with the normal operation of the driver and affect
the driving safety. .us, the alternative approaches without
contacting the driver’s body were developed using camera
and other driving data. Fatigue may affect driver’s behaviors
including face and body activities [31]. .e ocular and eyelid
movements are often used to detect fatigue [32]. However,
the image acquisition device is expensive and easy to be
affected by the light. So, some other relative detection in-
formation was used to detect driving fatigue. .e standard
deviation of lane position (SDLP) or steering wheel
movements are also often measured to detect the drivers’
fatigue [33–35].

.e above studies mainly focus on real-time detection of
fatigue, which is a good approach to reduce the effects of
fatigue driving. However, it may be not enough. When the
fatigue is detected, the commercial driver is already on a
transport mission and is difficult to abandon the mission or
recover from a short rest [36]. If we can use historical data to
predict the fatigue status of drivers before a new transportation
mission, managers can select the drivers who are not prone to
fatigue to undertake the more heavy transportation task by
adjusting transportation plans. Fatigue driving is not only
related to the driver’s current driving, but also related to the
driver’s previous driving task intensity [37–39]. Long and
hectic work schedules will increase the odds of driver fatigue
[17, 21, 23, 25, 40–42]. Studies showed that the odds of driver
fatigue increased heavily as the continuous days of driving
increased [43, 44]. .is might be a result of “accumulated
fatigue” among the drivers due to long and continuous days of
driving [44, 45]. .e driver’s recent driving tasks and driving
environment can be used to predict the possibility of driver
fatigue. .e results can provide accurate information for
driving tasks arrangement and early driver fatigue
intervention.

.e primary objective of this study is to propose an
approach for predicting driver fatigue using character-
istics of driver’s recent driving task and driving envi-
ronment extracted from location data and then use these
characteristics to predict the possibility of driver fatigue.
At present, studies focused on prediction of fatigue
driving have emerged [26, 46, 47]. However, to the best
knowledge of the authors, the approaches to predict fa-
tigue using drivers’ recent driving task and driving en-
vironment characteristics extracted from location data are
yet to come. .e contributions of this paper can be
summarized as follows:

(1) Previous studies mainly used real-time data from
drivers or vehicles to detect fatigue, but few studies
used the historical data. In addition, previous studies
have suggested that fatigue driving is intimately
related to the driver’s previous driving task intensity
[37–39]. .e proposed approach predicts fatigue
driving using the drivers’ recent driving task and
driving environment characteristics

(2) .ere have been studies on the prediction of fatigue
driving [26, 46, 47]; however, most studies focus on
short-time forecasting. Few studies research on long-
term prediction methods, specifically on commercial
dangerous goods truck (CDT). At present, there is no
research on prediction of fatigue driving of CDT
within the scope of our literature review. .e pro-
posed approach can use the location data of CDT to
predict fatigue driving of CDT

(3) At present, most studies on the prediction of fatigue
driving mainly use physiological and behavioral in-
dicators. However, physiological and behavioral
measurements may interfere with the driver’s normal
driving, and the corresponding detection devices are
relatively expensive and inconvenient to carry, which
brings some difficulties to the future popularization
and application of real driving conditions. To the best
of our knowledge, there has not been a solution that is
noninvasive and accurate. .e proposed approach
uses the location data of CDT to predict fatigue. .e
location data of CDTare available in many countries,
so using location data makes the approach very
scalable. In China, all CDTs are equipped with satellite
positioning system and the data are uploaded to the
national management system. However, we have not
found any research on predicting fatigue driving using
location data. .e proposed approach is established
based on six different categories of the predictor set
only using raw location data

.e paper is organized as follows. Section 2 details the study
dataset..eoverview for themethodology is described in Section
3..e obtained results are presented and discussed in Sections 4
and 5. Finally, conclusions to the paper are provided in Section 6.

2. Data

2.1. DataDescription. We obtained data from the database of
a transportation company in the south of China that currently
comprises more than 200 CDTs. It has more than 580 drivers
and more than 250 managers. .e registered capital of the
company is about 8 million dollars, with total assets of 32
million dollars. Each vehicle was equipped with devices which
contains a GPS sensor, yawn detecting camera, and wireless
transmission system. Because of the privacy restrictions of the
database, we only took the location data and yawn data from
the company’s 166 CDT for 11 months in 2017. .e location
data were updated every 10 seconds, containing vehicle’s plate
number, speed, latitude, longitude, direction and location
address, and time stamp..e yawn data included the vehicle’s
plate number and the specific time of yawning.
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.e mileage can be calculated from latitude and longitude
data. Continuous driving time can be obtained using the time
stamp and speed which is used to judge whether the vehicle is
driving or not. .e road type containing urban roads, highway
except freeway, and freeway can be obtained usingGIS systems.
Some data were rejected due to the following reasons:

(i) .e error in the data (e.g., the error in time or speed
makes it impossible to accurately determine
whether the vehicle is driving.)

(ii) Failure of the GPS sensor for a long time, so that the
location data were not available

(iii) Failure of the yawn detecting device for a long time,
so that the yawn data were not available

(iv) Too much location data were interrupted due to
signal blocking (e.g., too much data of the latitude
and longitude are interrupted, so that excessive
mileage cannot be accurately calculated)

.ese cases finally led to a reduction of the location data
by 5 vehicles to 161. .e outliers were not further eliminated
because we believed that their impact on the prediction
results was insignificant due to the large data size.

2.2. Predictor Variables. .e predictor variables are derived
from raw location data. Traffic safety researchers have inferred
some risk factors related to fatigue from observed-accident
statistics, such as travel time, average velocity, mileage, road
type, and so on [48, 49]. In addition, studies have shown that
the risk factors such as travel time, average velocity, road type,
and driving environment have significant impact on truck
safety [50–52]. According to these risk factors, we designed six
different categories of the predictor set including travel time,
day of week, road type, continuous driving time, average
velocity, and overall mileage. By accumulating mileage be-
tween every adjacent two data points of CDT, overall mileage
M of each CDTcan be calculated using latitude and longitude.
Continuous driving time is an important index for predicting
driver fatigue, so we take the average continuous driving time
and the longest continuous driving time (C1-2) to measure
driving time. Except for overall mileage and continuous
driving time, we discretize the four other categories of the
predictor set into a fixed number of intervals, where each
interval corresponds to a predictor variable. Travel time is
divided into five variables T1-5 that catch vehicle traveling at
different times. Two other predictor variables catch vehicle
traveling on weekdays and weekends (W1-2), while another
variable triplet differentiates the three road types (R1-3). We
separate average velocity into four variables V1-4, where the
fourth interval includes mileage accumulated at velocities
larger than 80 km/h (i.e., 80 km/h is the maximum speed limit
for the CDT in China). .e overview of predictor variables is
shown in Table 1.

We assume that cumulative fatigue driving on the target
day is strongly related to the task of the previous week. .e
predictor variables for specific target day were calculated
using data from the previous week. We define the accu-
mulated mileage of the previous week as the mileage

accumulated from day t− 1 to day t− 7 on day t. .e ac-
cumulated mileage of day t is described as

PAMt � 􏽘
t−1

i�t−7
Pi, (1)

where PAMt represents the accumulated mileage of the day
t, Pi represents the mileage of the ith day, and t is an integer
greater than 7.

We use the location data of the 161 vehicles to calculate
predictor variables of each day which was described in
Table 1. Except for continuous driving time, values of the 15
predictor variables are the mileage accumulated in a week
before target day (i.e., the predictor variables of day t are
accumulated for day t− 1 to day t− 7 on the dependent
variable). .e predictor variables, which have different di-
mensions and change intervals, may result in some indi-
cators to be ignored and affect the results of data analysis.
.erefore, we normalize all predictor variables, where the
normalized equation for all predictor variables except for
overall mileage and continuous driving time is

X
∗

�
X

M
, (2)

where X is the values of all predictor variables except for
overall mileage and continuous driving time and M is the
values of overall mileage.

.e normalized equation for continuous driving time C
is

C
∗

�
C − Cmin

Cmax − Cmin
, (3)

whereCmax is the values of themaximum continuous driving
time, Cmin is the values of the minimum continuous driving
time, and their values are obtained across 161 vehicles in 11
months. And we furthermore normalize overall mileage M
by taking the logarithm ofM and dividing it by the logarithm
of the M maximum:

M
∗

�
log10(M)

log10 Mmax( 􏼁
, (4)

where the maximum of M is also obtained across 161 ve-
hicles in 11 months. .e descriptive statistics of all predictor
variables are shown in Table 2.

Except for continuous driving time, values of the 15
predictor variables are the mileage accumulated in a week. It
may cause the collinearity problem of the generated pre-
dictor variables at the same time. .is problem is an un-
wanted property for most classifiers and is especially
troublesome for logistic regression [53, 54].

.erefore, we select the method of factor analysis to solve
the collinearity problem of logistic regression. Factor analysis is
a multivariate analysis method that converts multiple variables
into several integrated variables (or latent variables), which are
mainly used to reduce the number of variables and classify
variables with high correlation, using common factors instead.
In this study, principal component analysis is used to extract
factors with eigenvalues greater than 1 as common factor.
Table 3 presents the eigenvalues, the percentage of variance, the
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cumulative eigenvalue, and the cumulative percentage of
variance associated with each factor. It reveals that the first four
factors explain approximately 76.9% of total variance. Finally,
the number of common factors is determined to be 4.

Fatigue may be determined according to the physical ac-
tivities and human behavior [55]. .e driver’s yawn data are
used as a proxy for ground truth for the classification algo-
rithm. If the driver yawns in target day, the driver is considered
to be fatigued in this day. In this paper, fatigue, indicated by
yawning, is predicted by our approach using location data of
CDT. According to Kiang’s suggestions on classifier selection
[56], our approach considers three types of classifiers, namely,
logistic regression, neural networks, and random forest.

In a supervised classification problem, a training set is
usually used to construct classification models and the
independent testing set is used to testify the predictive
performance of these models [57]. .erefore, for logistic
regression, we randomly divided the dataset with 4
common factors into two subsets, in which 70% of the

whole dataset were included in the training set and the
remaining 30% were included in the testing set. For neural
network, we randomly divided the normalized dataset
with 17 predictor variables in Table 1 into two subsets, in
which 70% of the whole dataset were used for training and
30% were used for testing. Cutler et al. suggested that the
random forest algorithm included the interactions among
the variables, so there was no collinearity problem faced
by other models [58]. .erefore, for random forest, we
randomly divided the unnormalized dataset with 17
predictor variables in Table 1 into two subsets, in which
70% of the whole dataset were used for training and 30%
were used for testing.

3. Research Approach

3.1. Logistic Regression. .is paper judges whether the driver
is fatigued by whether the driver is yawning. Since the de-
pendent variable is binary, we establish a binary logistic model:

Table 1: Predictor variables.

Group Variable description

Travel time (T)

T1: 0 am and 5 am
T2: 5 am and 9 am
T3: 9 am and 5 pm
T4: 5 pm and 10 pm
T5: 10 pm and 12 pm

Day of week (W) W1: weekdays except Friday
W2: weekends with Friday

Road type (R)
R1: urban roads

R2: highway except the freeway
R3: freeway

Continuous driving time (C) C1: average continuous driving time
C2: longest continuous driving time

Average velocity (V)

V1: 0 km/h–40 km/h
V2: 40 km/h–60 km/h
V3: 60 km/h–80 km/h

V4: over 80 km/h (has only a lower bound)
Overall mileage (M) M: mileage traveled per day

Table 2: Descriptive statistics of all predictor variables.

Variable Mean 1st Q 2nd Q (median) 3rd Q
T1 0.076 0.000 0.034 0.123
T2 0.168 0.078 0.159 0.243
T3 0.496 0.395 0.484 0.604
T4 0.208 0.124 0.221 0.285
T5 0.052 0.000 0.040 0.092
W1 0.592 0.497 0.577 0.678
W2 0.408 0.321 0.423 0.503
R1 0.263 0.130 0.238 0.345
R2 0.227 0.072 0.136 0.355
R3 0.510 0.265 0.566 0.774
C1 0.501 0.333 0.487 0.669
C2 0.314 0.178 0.273 0.413
V1 0.213 0.084 0.153 0.260
V2 0.285 0.151 0.245 0.375
V3 0.497 0.292 0.538 0.699
V4 0.005 0.000 0.000 0.000
M 0.717 0.695 0.742 0.775
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Logit(P) � ln
P

1 − P
􏼒 􏼓 � α + 􏽘 βjXj + ε, (5)

where P is the probability of the dependent variable Y� 1
(i.e., the probability of the driver yawning), the independent
variable Xj is the various factors affecting the driver’s fatigue
(i.e., the common factor extracted by the factor analysis
method), βj is the regression coefficients of the independent
variable Xj, α is a constant term, and ε is an error term.

3.2. Neural Network. In this paper, the multilayer perceptual
neural network algorithm is used to train data samples. .e
multilayer perceptual neural network is a forward-structured
artificial neural network that uses a backpropagation algo-
rithm for training. .e network consists of an input layer,
hidden layers, and an output layer. .e input layer corre-
sponds generally to features to classify and is used to receive
input data. .e hidden layer may have multiple layers for
learning data and storing training results. .e output layer
corresponds to the defined classes and each class corresponds
to a node in the output layer. It is used to output results. Each
layer consists of multiple nodes, each of which can be passed
to the next layer up to the output layer. Excluding the input
node, all other nodes multiply the input by its own weighting
factorω, plus the offset b, and then combine its own nonlinear
activation function to produce the output [59].

.e optimization algorithm of multilayer perceptual
neural network adopts the adjusted conjugate gradient al-
gorithm and the activation function of each layer is different.
.e middle layer node uses the hyperbolic tangent function
as the activation function:

tanhx �
ex − e− x

ex + e−x
. (6)

.e output layer node uses the Softmax function as the
activation function:

f xi( 􏼁 �
exi

􏽐
N
n�1 exn

, (7)

where xi represents the input from the previous layer and N
represents the total number of nodes in the previous layer.

We use the 17 predictor variables normalized in Table 1 as
the network input and choose to use a layer of hidden neurons
based on the data characteristics. In order to determine the
optimal number of nodes in the hidden layer, we first make
the number of nodes in the hidden layer equal to the number
of nodes in the input layer. .en, we gradually reduce the
number of nodes and simultaneously calculate generalization
errors, training errors, deviations, and variances. .e number
of nodes at this point is our choice when the generalization
error has dropped and before it begins to increase again. We
finally determined that the optimal number of nodes in the
hidden layer is 13. Figure 1 shows the structure of the
established neural network model. .e comparison between
neural network and logistic regression is common, and related
studies have found that neural network is superior to logistic
regression due to its complex model structure [60, 61].

3.3. Random Forest. Random forest proposed by Breiman is
an ensemble learning algorithm which constructs multiple
decision trees through bootstrap aggregation [62]. Each tree
is a standard Classification or Regression Tree (CART) that
uses the so-called Decrease of Gini Impurity (DGI) as a
splitting standard of the node [63]. Instead of using all input
variables, random forest selects at random a subset of the
input variables to split each node when growing a CART
[64]. Each tree predicts a classification independently and
“votes” for the corresponding class..emajority of the votes
determine the optimal result of the random forest model
[65]. .e operating principle of random forest is summa-
rized as follows and shown in Figure 2.

(i) k subsets of the sample D1, D2 ,. . ., Dk are drawn
from the total sample set D using the bagging
technique. .e sample size of subsets Dk is the same
as the total sample set D.

(ii) k decision trees are constructed according to the k
subsets and obtain k classification results.

Table 3: Eigenvalues, percent of variance, cumulative eigenvalue, and cumulative percent of variance for factor analysis.

Factor Eigenvalue Percentage of variance Cumulative eigenvalue Cumulative percentage of variance
1 6.343 37.313 6.343 37.313
2 2.860 16.826 9.203 54.139
3 2.413 14.192 11.616 68.331
4 1.458 8.574 13.074 76.905
5 0.931 5.479 14.005 82.384
6 0.658 4.028 14.663 86.412
7 0.519 3.052 15.182 89.465
8 0.445 2.616 15.627 92.080
9 0.392 2.307 16.019 94.387
10 0.345 2.029 16.364 96.416
11 0.259 1.523 16.623 97.939
12 0.245 1.443 16.868 99.382
13 0.104 0.610 16.972 99.992
14 0.001 0.006 16.973 99.998
15 0.000 0.002 17 100.000
16 1.022E− 13 6.010E− 13 17 100.000
17 7.399E− 14 4.317E− 13 17 100.000
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(iii) Optimal results are obtained by voting.

To execute the random forest algorithm, the open source
software, Python, which provides a language and environment
for statistical calculation, was used. Before training the random
forest model, tuning its hyperparameter is necessary to obtain
random forest model with the best predictive performance.
Two important hyperparameters, namely, the number of
classification trees (ntree) and the number of variables tried at
each split (mtry), have a significant effect on the performance
of the model. Regarding the hyperparameters mtry, many
studies use the value recommended by Breiman mtry� sqrt
(M), where M is the number of predictor variables [66]. In this
study, mtry� 4..erefore, we only tuned the hyperparameters
ntree and its tuning range was 10–4000. We compared the
random forest models with different hyperparameters ntree
using the average error rate from 5-fold cross-validation. As
shown in Figure 3, the average error rate decreased sharply
when ntree increased from 10 to 60. When ntree increased
from 60 to 2200, the average error rate had slightly different
trends; however, generally, the average error rate decreased
slightly. When increased from 2200 to 4000, the average error
rate almost remained stable. .erefore, ntree� 2200 was de-
termined as the optimal value. Finally, the optimum hyper-
parameters were determined to be 2200 trees with the number
of variables tried at each split being 4.

3.4. Model Evaluation. For the training results, three indexes
including accuracy, F1-measure, and area under the ROC
curve (AUROC) are used to evaluate the predictive perfor-
mance of the classifiers. Althoughmore indexes can be used to
evaluate the predictive performance of the classifiers, we
believe that these three indexes can complete the comparison
between logistic regression and neural network classifiers..e
numbers of true negatives (TN), true positives (TP), false
positives (FP), and false negatives (FN) are used as a

measurement to assess the performance of classifiers. Dif-
ferent terms are used in different domains. Accuracy is the
most basic index for assessing the performance of classifiers. It
is used as an overall measure and calculated as

accuracy �
TP + TN

TP + TN + FP + FN
, (8)

where TP and TN indicate correctly classified cases and FP and
FN indicate the incorrectly classified cases. However, the skewed
class distribution of samples, in reality, makes traditional metrics
such as accuracy unable to properly reflect the performance of
the classifiers [67]. .erefore, another index, F1-measure, is
proposed to evaluate performance and calculated as

F1 − measure �
2TP

2TP + FP + FN
. (9)

Accuracy and F1-measure evaluate the performance of
the classifiers by comparing predicted class labels. In this
sense, they can actually be thought to measure different
aspects of the same coin, and show recognized disadvantages
[68]. .erefore, the receiver operating characteristic (ROC)
curve is used to measure the performance of classifiers. .e
curve is generated by plotting true positives as the per-
centage of all positives and negative ones in the sample [69].
We hope to reduce ROC performance to a single scalar value
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representing expected performance to evaluate the perfor-
mance of classifiers, so the AUROC is considered as an
additional index. AUROC gives a single measure of overall
accuracy that is independent of any particular threshold
[70, 71]. Larger AUROC value indicates that better pre-
dictive model is a generally accepted rule for determining a
model’s performance when comparing various models.

4. Results

4.1. Model Comparison and Selection. We trained logistic
regression, neural network, and random forest using the
training set and calculated accuracy, F1-measure, and
AUROC value of every model based on the testing set.

Figure 4 depicts the results for classification performance
of logistic regression, neural network, and random forest
models. Obviously, the accuracy, F1-measure, and AUROC of
the random forest are higher than the logistic regression and
neural network (i.e., the predictive performance of the ran-
dom forest is better). .erefore, the random forest is more
suitable to use location data to predict fatigue driving than
logistic regression and neural network. It can be seen from
Figure 4 that the accuracy of the random forest is 74.18%.
Although this accuracy is not too high, it can be accepted
compared to other fatigue driving detection methods based
on vehicle information. In addition, more than 60% of F1-
measure reveals its ability to detect real yawn, which means
the number of a missed yawn is reduced using the random
forest classification..e random forest was selected to predict
fatigue driving using predictor variables.

4.2. Variable Importance Analysis. After determining the
random forest model as the optimal prediction model, we
analyzed the relationship between fatigue driving and
driving task of last week according to variable importance
described by random forest.

Variable importance (called “variable importance score”
in this study) reflects every predictor variable’s contribution
to the total risk. .e random forest model computes variable
importance scores by assessing the importance of every
predictor variable using the Gini decrease index [72]. .e
computation was implemented based on the “featur-
e_importances_” in the random forest package of open
source software, Python. Figure 5 provides the normalized
variable importance scores (i.e., the sum of the importance
scores for all variables is one).

Fatigue driving has a close relationship with the driving
task of last week. By comparing the variable importance in
Figure 5, the paper draws the following conclusions:

(1) It is not difficult to see from Figure 5 that the im-
portance scores of average continuous driving time
(C1) and longest continuous driving time (C2) are the
highest among all the predictor variables. .is shows
that continuous driving time is closely related to fatigue
driving. Fatigue driving refers to the phenomenon that
the driver produces dysfunction of physiology and
mental function after driving for a long time so that
driving skills decline objectively. Prolonged driving will

make driver mental overload and cause task-related
fatigue [45]. .erefore, the continuous driving time of
the driver must be strictly controlled to avoid accidents
caused by prolonged driving.

(2) During the predictor variables of travel time group,
the importance scores of travel time between 5 am
and 9 am (T2) and travel time between 5 pm and 10
pm (T4) are the highest. .is shows that the driver is
more likely to be fatigued when driving in these two
time periods for a long time, which is basically
consistent with the previous research results [73, 74].
In addition, it has been extensively proven that the
number of accidents related to fatigue driving in-
crease in the early morning and late evening [45, 75].
.e time period indicated by T4 is extremely fragile.
.is is because, after a day of hard work, the driver
will have a series of tired symptoms such as dry eyes,
dry throat, and yawning. .e time period indicated
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by T2 is early morning, which is the time period
when fatigue driving and traffic accidents are most
likely to occur. During this time, the human circa-
dian rhythm is in a state of slow brain reaction, lower
blood pressure, and stiff and paralyzed blood vessels
in the hands and feet. .erefore, in order to avoid
fatigue driving, the driver’s driving time should be
reasonably arranged and the driver should try to
avoid driving in these two periods. .e importance
scores of travel time between 10 pm and 12 pm (T5)
and travel time between 0 am and 5 am (T1), in
contrast, were found to be lower than all other
variables of travel time (T). Apparently it seems
surprising. But we can see from Table 2 that themean
of these two time periods is relatively small, which
indicates that the driver rarely travels during these
two time periods. One reason for this may be due to
the relatively higher accident rate compared to other
time periods; the company deliberately controls the
driver not to drive during this time period.

(3) It is not surprising to observe that the importance
scores of the average velocity (V) consistently decrease
from average velocity over 80 km/h (V4) to average
velocity between 0 and 40 km/h (V1). .erefore, the
importance scores for V4 (0.104)>V3 (0.040)>V2
(0.036)>V1 (0.035)..is shows that the driver is more
likely to be fatigued when driving at a high speed for a
long time. It has been extensively proven that the
higher the driving speed is, the easier the driver is to be
fatigued [76]..e higher the driving speed, the greater
the degree of tension or concentration of the driver’s
central nervous system and the greater the mental and
physical energy consumed. At the same time, the
driver’s field of vision narrows as the speed of the
vehicle increases, and the information that is missed
increases, making the driver more nervous. It is worth
mentioning that the importance scores of average
velocity between 40 and 60km/h (V2) and average
velocity between 0 and 40 km/h (V1) are relatively
lower than other predictor variables and the impor-
tance of average velocity over 80 km/h (V4) is relatively
higher. .is shows that when the driver drives in the
environment in which the speed is lower than 60 km/h
for a long time, the driver is not prone to fatigue, but
once the driver drives in the environment where the
speed exceeds 80 km/h for a long time, the driver is
more likely to be fatigued..erefore, the driving speed
of the vehicle should be reasonably controlled to avoid
the driver driving at a high speed for a long time.

(4) It can be seen from Figure 5 that the importance scores
of the road type (R) consistently increase from urban
roads (R1) to freeway (R3)..is shows that the driver is
more likely to be fatigued when driving on the freeway
for a long time, which is consistent with previous
research [74, 76, 77]. In addition, it has been reported
that 40 percent of the accidents caused by fatigue
driving occur on freeways [78]..e freeway has neither
traffic signal control nor pedestrians, nonmotor

vehicles, and other low-speed motor vehicles. Driving
on this road for a long time is easy to cause the driver to
sleep. In addition, when driving on the freeway, the
driver’s energy is always in a state of high tension, and
the physical exertion is increased, and the speed of the
vehicle will be unconsciously increased, and even the
brake deceleration consciousness will be lost. Driving
in such an environment for a long time can also make
the driver feel tired. .erefore, it is necessary to adopt
the fatigue warning device when the driver is driving
on the freeway.

(5) We can also find that the importance score of weekends
with Friday (W2) is higher than the importance score of
weekdays except Friday (W1) from Figure 5. .is in-
dicates that the driver is more likely to be fatigued when
driving on weekends for a long time..is is because the
driver will continue to accumulate fatigue as he drives
on weekdays, which makes the driver’s fatigue index
relatively higher on weekends. .is provides a basis for
a reasonable arrangement of driver travel time.

5. Discussion

.is paper has offered a brand new approach to predict driving
fatigue using location data of CDT. .e existing approach to
predict driving fatigue mainly uses physiological and behav-
ioral indicators. However, physiological and behavioral mea-
surements may interfere with the driver’s normal driving, and
the corresponding detection devices are relatively expensive.
Our approach predicts fatigue using the location data of CDT
which are collected without interfering with the driver’s normal
driving. Location data acquisition equipment is relatively in-
expensive and is generally installed in commercial trucks..ese
are beneficial to the future popularization and application of
real driving conditions. In addition, most studies on the
prediction of fatigue driving focus on short-time forecasting.
Few studies research on long-term prediction methods, spe-
cifically on commercial trucks. Our approach addresses the
long-term prediction of fatigue driving in commercial trucks.

5.1. Model Application Illustration. .e proposed approach
can be used not only for driving fatigue prediction of
commercial dangerous goods transport vehicles but also for
other transport vehicles. In addition, our approach can
directly use the location data of the vehicle to predict fatigue,
which not only solves the problem that most domestic
commercial transport vehicles do not have the image ac-
quisition device installed, but also has no disadvantages of
other detection approaches that interfere with the driver.
Our approach can also aid decision making and is a useful
complement to real-time monitoring. Even if the transport
vehicles are equipped with the image acquisition device, our
approach is also necessary to help prevent fatigue. What is
also worth noting about our approach is that it can not only
be used to predict fatigue, but also provide a basis for
transportation companies to arrange transportation mission
reasonably. Figure 6 depicts the application of the prediction
approach.
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.e proposed approach can be used to optimize the daily
task arrangement of the transportation company. In the first
phase, the transportation company will complete a long-
term transportation task schedule, which may be used for a
week or a month, based on the contracts signed and the
number of drivers. At the same time, the location data of the
driver during the transportation task are automatically
collected.

In the second phase, 17 indicators can be calculated
automatically and each driver’s likelihood of fatigue in the
next day was dynamically predicted. .e prediction re-
sults can help optimize the daily schedule of trans-
portation tasks.

In the third phase, the importance of each factor in the
past short term can help the transportation company
managers to formulate the long-term task schedule. Do your
best to avoid long hours in which drivers are prone to
fatigue.

5.2. Research Limitations and Future Research Needs.
Some methodological and conceptual limitations should be
considered in the interpretation of our results. .ese limi-
tations make us consider using other models to further
improve prediction accuracy in future research. .is would
involve the combination of different classifiers [79]. We
should also use the data from other dangerous goods
transportation companies to verify our results. Due to the
limited data acquisition properties, our approach only an-
alyzes the influence of six predictor sets. In the future, other
available related variables should also be considered to
extend the set of predictor variables and yield further

improvements to predictive performance and the guidance
of analysis results. Driver’s physique, lifestyle, stress, and
other factors have a certain impact on the predictive per-
formance of our model. .erefore, if the driver’s relevant
information can be obtained and used as predictor variables,
the accuracy of the model will be further improved. In
addition, seasonal changes have a significant impact on our
approach; future efforts should be made to eliminate the
effects of the seasons, thus making our approach more
complete.

6. Conclusion

In order to solve the fatigue driving problem of dangerous
goods transportation, this paper proposed an approach that
used location data obtained from a transportation company
to predict fatigue driving and further analyzed the rela-
tionship between fatigue driving and driving environment.
.e proposed approach can be used to predict fatigue
driving using the location data of CDTwhich were collected
without interfering with the driver’s normal driving and
provide a basis for transportation companies to arrange
transportation mission reasonably. .e main findings were
concluded as follows:

(1) We used logistic regression, neural network, and
random forest techniques to predict fatigue driving
from the location data. To choose a more suitable
classifier as a predictive model, we obtained a set of 17
predictor variables from the six different categories of
the predictor set related to fatigue to train and compare
logistic regression, neural network, and random forest

The contracts The drivers Location data

Long-term transportation
task schedule

Predictive variables are
calculated automatically

Each driver’s likelihood of
fatigue in the next day

Daily transportation task
schedule

The importance of factors in the past short term calculated automatically

The first phase

The second phase

The third phase

Figure 6: Application of the prediction approach.
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classifiers. By analyzing and comparing the classifica-
tion performance results of logistic regression, neural
networks, and random forest models, we found that
accuracy (74.18%), F1-measure (62.02%), and AUROC
(0.8059) of random forest were separately best, so
random forest was more suitable for predicting fatigue
driving using location data

(2) To provide a basis for the transportation company to
arrange transportation reasonably, after determining
the random forest model as the optimal prediction
model, we analyzed the relationship between fatigue
driving and driving environment according to var-
iable importance described by random forest. We
found that fatigue driving was closely related to
driving conditions such as travel time, continuous
driving time, driving speed, road type, and so on..e
period extremely prone to fatigue driving is early
morning and the evening, and the driver is more
prone to fatigue on weekdays than on weekends. .e
higher the driving speed is, the easier the driver is to
be fatigued. .e probability of fatigue driving on the
freeway is higher than that of highway and urban
road. .ese conditions can provide a basis for the
company to avoid driver fatigue driving, thereby
reducing traffic accidents.
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École Nationale Supérieure des Mines de Paris, Paris, France,
2010.

[7] G. Landucci, G. Antonioni, A. Tugnoli, S. Bonvicini, M. Molag,
and V. Cozzani, “HazMat transportation risk assessment: a
revisitation in the perspective of the Viareggio LPG accident,”
Journal of Loss Prevention in the Process Industries, vol. 49,
no. SI, pp. 36–46, 2017.

[8] R. Bubbico, G. Maschio, B. Mazzarotta, M. F. Milazzo, and
E. Parisi, “Risk management of road and rail transport of
hazardous materials in Sicily,” Journal of Loss Prevention in
the Process Industries, vol. 19, no. 1, pp. 32–38, 2006.

[9] R. Fu, H. Wang, and W. Zhao, “Dynamic driver fatigue
detection using hidden Markov model in real driving con-
dition,” Expert Systems with Applications, vol. 63, pp. 397–411,
2016.

[10] A. Williamson and R. Friswell, “.e effect of external non-
driving factors, payment type and waiting and queuing on
fatigue in long distance trucking,” Accident Analysis & Pre-
vention, vol. 58, no. 3, pp. 26–34, 2013.

[11] I. D. Brown, “Prospects for technological countermeasures
against driver fatigue,” Accident Analysis & Prevention,
vol. 29, no. 4, pp. 525–531, 1997.

[12] G. Maycock, “Driver sleepiness as a factor in car and HGV
accidents,” Trl Report, .e Royal Society for the Prevention of
Accidents, Birmingham, UK, 1995.

[13] G. Zhang, K. K.W. Yau, X. Zhang, and Y. Li, “Traffic accidents
involving fatigue driving and their extent of casualties,” Ac-
cident Analysis & Prevention, vol. 87, pp. 34–42, 2016.

[14] America USO, Safety Study: Fatigue, Alcohol, Other Drugs,
and Medical Factors in Fatal-to-the-Driver Heavy Truck
Crashes, Vol. 1, Bureau of Justice Statistics, Washington, DC,
USA, 1990.

[15] P. C. Morrow and M. R. Crum, “Antecedents of fatigue, close
calls, and crashes among commercial motor-vehicle drivers,”
Journal of Safety Research, vol. 35, no. 1, pp. 59–69, 2004.

[16] Federal Motor Carrier Safety Administration, Report to
Congress on the Large Truck Crash Causation Study, U.S.
Department of Transportation, Washington, DC, USA, 2006.

[17] M. J. M. Sullman, M. L. Meadows, and K. B. Pajo, “Aberrant
driving behaviours amongst New Zealand truck drivers,”
Transportation Research. Part F: Traffic Psychology and Be-
haviour, vol. 5, no. 3, pp. 1–232, 2002.

[18] D. Blower, P. E. Green, and A. Matteson, “Condition of trucks
and truck crash involvement,” Transportation Research Re-
cord: Journal of the Transportation Research Board, vol. 2194,
no. 1, pp. 21–28, 2010.

[19] F. Sagberg, “Road accidents caused by drivers falling asleep,”
Accident Analysis & Prevention, vol. 31, no. 6, pp. 639–649,
1999.

[20] B. C. Tefft, “Prevalence of motor vehicle crashes involving
drowsy drivers, United States, 1999–2008,” Accident Analysis
& Prevention, vol. 45, no. 45, pp. 180–186, 2012.

[21] G. Tzamalouka, M. Papadakaki, and J. E. Chliaoutakis,
“Freight transport and non-driving work duties as predictors
of falling asleep at the wheel in urban areas of Crete,” Journal
of Safety Research, vol. 36, no. 1, pp. 75–84, 2005.

10 Journal of Advanced Transportation



[22] H. M. Kanazawa, T. Onoda, and N. Yokozawa, “Excess
workload and sleep-related symptoms among commercial
long-haul truck drivers,” Sleep and Biological Rhythms, vol. 4,
no. 2, pp. 121–128, 2006.

[23] M. Suzuki, T. Kontogiannis, G. Tzamalouka, C. Darviri, and
J. Chliaoutakis, “Exploring the effects of lifestyle, sleep factors
and driving behaviors on sleep-related road risk: a study of
Greek drivers,” Accident Analysis & Prevention, vol. 40, no. 6,
pp. 2029–2036, 2008.

[24] J. Duke, M. Guest, and M. Boggess, “Age-related safety in
professional heavy vehicle drivers: a literature review,” Ac-
cident Analysis & Prevention, vol. 42, no. 2, pp. 364–371, 2010.

[25] F. Meng, S. Li, L. Cao et al., “Driving fatigue in professional
drivers: a survey of truck and taxi drivers,” Journal of Crash
Prevention and Injury Control, vol. 16, no. 5, p. 10, 2015.

[26] C. J. de Naurois, C. Bourdin, C. Bougard et al., “Adapting
artificial neural networks to a specific driver enhances de-
tection and prediction of drowsiness,” Accident Analysis &
Prevention, vol. 121, pp. 118–128, 2018.

[27] Y. Wang, Y. Zhang, D. Liu et al., “Driving fatigue detection
based on EEG signal,” in Proceedings of the Fifth International
Conference on Instrumentation & Measurement, Computer,
Communication, and Control (IMCCC), IEEE, Qinhuangdao,
China, pp. 714–717, September 2015.

[28] X. Q. Huo, W. L. Zheng, and B. L. Lu, “Driving fatigue de-
tection with fusion of EEG and forehead EOG,” in Proceedings
of the International Joint Conference on Neural Networks
(IJCNN), IEEE, Vancouver, Canada, pp. 897–904, July 2016.

[29] Z. Li, J. Peng, L. Chen et al., “Fatigue driving detectingmethod
based on time-space features in real driving conditions,” in
Proceedings of the 10th IEEE Conference on Industrial Elec-
tronics and Applications Industrial Electronics and Applica-
tions, IEEE, Auckland, New Zealand, pp. 183–187, June 2015.

[30] Y.Wang, X. Liu, Y. Zhang et al., “Driving fatigue detection based
on EEG signal,” in Proceedings of the Fifth International Con-
ference on Instrumentation & Measurement, IEEE, Shenzhen,
China, September 2016.

[31] Y. Dong, Z. Hu, K. Uchimura et al., “Driver inattention
monitoring system for intelligent vehicles: a review,” in
Proceedings of the IEEE Intelligent Vehicles Symposium, IEEE,
Xi’an, China, 2009.

[32] J. Chen and Q. Ji, “Drowsy driver posture, facial, and eye
monitoring methods,” in Handbook of Intelligent Vehicles,
A. Eskandarian, Ed., pp. 913–940, Springer, London, UK,
2012.

[33] C. C. Liu, S. G. Hosking, and M. G. Lenné, “Predicting driver
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[44] T. Åkerstedt, A. Knutsson, P. Westerholm, T. .eorell,
L. Alfredsson, and G. Kecklund, “Sleep disturbances, work
stress and work hours,” Journal of Psychosomatic Research,
vol. 53, no. 3, pp. 741–748, 2002.

[45] J. F. May and C. L. Baldwin, “Driver fatigue: the importance of
identifying causal factors of fatigue when considering de-
tection and countermeasure technologies,” Transportation
Research Part F: Traffic Psychology and Behaviour, vol. 12,
no. 3, pp. 1–224, 2009.

[46] A. Watson and G. Zhou, “Microsleep prediction using an
EKG capable heart rate monitor,” in Proceedings of the 2016
IEEE First International Conference on Connected Health:
Applications, Systems and Engineering Technologies (CHASE),
2016.
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