
ELSEVIER Computer Physics Communications 86 (1995) 25-39 

Computer Physics 
Communications 

Finite element simulation of a turbulent MHD system: 
comparison to a pseudo-spectral simulation 

Rosalinda de Fainchtein a, Steven T. Zalesak b, Rainald L6hner c, Daniel S. Spicer b 
a Universities Space Research Association, NASA Goddard SFC, Greenbelt, MD 20771, USA 

b Center for Computational Sciences, NASA Goddard SFC, Greenbelt, MD 20771, USA 
c Institute for Computational Sciences and Informatics, The George Mason University, Farifax, VA 22030, USA 

Received 15 April 1994; revised 12 October 1994 

Abstract 

A finite element MHD algorithm is used to simulate a two-dimensional, viscous and resistive turbulent model, namely 
the Orszag-Tang vortex. The results are compared to a pseudo-spectral simulation of the same system reported by Dahlburg 
and Picone (Phys. Fluids B l (1989) 2153). The agreement of results from both methods supports the contention that the 
finite element method can appropriately simulate systems exhibiting turbulence, thus enabling the use of realistic geometries 
and boundary conditions, as well as adaptive refinement on simulations of turbulent systems. A short discussion on the 
behavior of ~7.B is presented. An inverse correlation between spatial resolution and the magnitude of ~7-B was found. The 
relevance of our findings to Adaptive Mesh Refinement is briefly discussed. 

I.  Introduct ion 

Fourier-based spectral and pseudo-spectral (PS) algorithms have traditionally been the method of  choice to 
simulate turbulent systems [ 1,2]. This is because of the high accuracy of the method over the range of  Fourier 
spatial wavenumbers (k-modes) .  However, the method imposes severe limitations on the kind of systems to be 
modeled. The method requires the use of  a uniform static grid, as well as periodic, or at best semi-periodic 
boundary conditions. Spectral methods based on other than Fourier modes allow more flexibility on the choice 
of  boundary conditions, but retain stiff requirements on the grid layout. Spectral element methods [ 2 ] represent 
a promising attempt to harness the flexibility benefits of  the finite element (FE) method discussed here, while 
keeping the high accuracy of  the spectral methods. It is a complex method that is relatively complicated to 
code, and for which adaptive refinement techniques are not fully developed. 

The FE method offers the flexibility of  unstructured meshes, as well as realistic geometries and boundary 
conditions [6,7].  Moreover, with unstructured meshes, higher spatial resolution can be allocated where it is 
needed, leaving a coarser grid on other regions of  the domain. This allocation can either be done statically, 
or dynamically, by using adaptive mesh refinement (AMR)  [8-10] .  Finite element simulations have proven 
to be efficient and reliable in simulating various types of  hydrodynamic systems, including supersonic shocks, 
and fluid flow around objects [ 11-14] ,  as well as viscous and subsonic flows [ 15]. Lately, FE simulations of  
realistic magnetohydrodynamic (MHD)  systems, such as the magnetosphere, have been reported [ 16]. 

0110-4655/95/$07.00 (~) 1995 Elsevier Science B.V. All rights reserved 
SSDIOI 10-4655(94)00143-X 



26 R. de Fainchtein et al. / Computer Physics Communications 86 (1995) 25-39 

In order to validate the use of the FE method for simulations of MHD turbulent systems, it is useful to 
test it against a PS simulation of a well researched turbulent MHD system. The Orszag-Tang vortex [ 17] is a 
good model for MHD turbulence that has been extensively studied [ 18-25 ]. It offers the advantage of quickly 
evolving turbulence, starting from simple analytical initial conditions. Because no noise is applied to the initial 
conditions, numerical solutions of the Orszag-Tang vortex system are reproducible, making it an excellent test 
problem with which to evaluate a FE turbulent simulation. 

In the rest of this paper we present the results of the comparison of a FE simulation to the PS simulation 
of a compressible version of the Orszag-Tang vortex, reported by Dahlburg and Picone [22]. The next section 
formulates the MHD problem. We then explain the initial conditions. A brief description of the FE algorithm 
is then given, followed by a comparison of results and analysis, and finally some conclusions. 

2. Formulation 

The magnetohydrodynamic (MHD) equations of motion for a two-dimensional viscous and resistive mag- 
netofluid are 

a__p_p = - v  . ( p v ) ,  ( 1 )  
at 

apv - - V .  p v v +  p + ~  1 -  B B  + V . r ,  (2) 
at 

a B  
- -  = V  x [ (v  x B) - r / V x B ] ,  (3) 
at 

0U -xT .  U -  + p  v -  ( v × B )  × B  
a T  = 

+ ~7.[ (v.~" + (3//x/Pr)•e) - (7//87r) ( V ( B -  B) - 2 (B .  ~7)B)]. (4) 

Supplemented by the equation of state 

p = ( 3 / -  1)pe. (5) 

The dynamical variables p, v, B, U are the mass density, velocity, magnetic induction field, and total energy, 
respectively. The rest of the notation is as follows: p is the mechanical pressure, e is the internal energy per 
unit mass, I is the unit dyad, ~" is the viscous stress tensor 

7" = ]Z[ (~gjU i -~ OiUj) -- 2 ~ .  I )~ i j ]e ie j  ' (6) 

/z is the viscosity, ei and ej are standard unit vectors, 3/= 5/3 is the ratio of specific heats, r/ is the magnetic 
diffusivity, Pr is the Prandtl number Pr = Cp/Z/k, Cp is the specific heat at constant pressure, and k is the thermal 
conductivity. Dahlburg and Picone use reduced units in their simulation. The correspondence to cgs units is as 
follows, with the starred variables corresponding to dimensionless units. Length, time and mass are equivalent: 
L = L*, t = t*, p = p*, t, = v*. The rest of the variable correspondence is: B = ~ B *  p = p* /2 ,  U = U*/2, 
kT -- (3//x/Pr)e = [ /z/( /z  - 1) ] ( /z /Pr)T*/2 ,  J = v / ~ J  *. The dimensionless Lundquist resistive and viscous 
numbers, Sr and Sv correspond to inverse magnetic diffusivity and viscosity, respectively, on this particular 
problem. 

The finite element code is capable of running on an arbitrary grid, and can handle realistic boundary 
conditions. However, for comparison purposes, we used the same regular 128 x 128 grid on a square domain 
of side length of 2~- and periodic boundary conditions used by Dahlburg and Picone on their pseudo-spectral 
simulations. We report on comparison results Sr = Sv = 100 and Pr = 1. 
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(a) (b) 
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(c) (d) 
Fig. I. Initial Conditions: (a) velocity field; (b) magnetic field; initial conditions specific to the M --- 0.6 case: (c) thermal pressure field; 
(d) local Mach number. Minimum and maximum values are 0.73 and 7.9 for thermal pressure and 0.0 and 0.97 for local Mach number 
I221. 

3. Initial conditions 

T h e  in i t ia l  c o n d i t i o n s  c o r r e s p o n d i n g  to  t h e  O r s z a g - T a n g  vo r t ex  are  as f o l l o w s ,  

p ( x , y , t  = O) = 1, ( 7 )  
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v(x, y, t = 0) = - s in(y)~ + sin(x).~, (8) 

B(x, y, t = 0) = -x /4-~s in(y)~  + x/4-~sin(2x)), (9) 

After accounting for the difference in normalization the initial pressure field is identical on both simulations; 

1 
p(x,  y, t = 0) = ~ + ¼ cos 4x + ¼ cos 2y + 4 cos 2x cos y - cos x cos y, (10) 

The "characteristic" Math number M is obtained using domain averages of the initial density and pressure, 

M2 = (p(t  = 0)) (11) 
y(p( t  =0) ) "  

Dahlburg and Picone chose to use this initial pressure field to be consistent with the corresponding incom- 
pressible system. This allowed them to compare the compressible and incompressible behavior of the system. 

Results with initial Mach numbers M = 0.2 and M = 0.6 are reported. They correspond to (/3) = 
87r(p)/(B) 2 = 30.0 and 3.3, respectively. 

4. The numerical  method  

The finite element algorithm is based on a two-dimensional, two-step Taylor-Galerkin Method. The Taylor- 
Galerkin method is explained in detail by Donea [26] and L6hner et al. [27]. The use of two steps is described 
by L6hner et al. [28]. A viscous gas dynamics version of this code, due to L/Shner [ 15] has been extensively 
tested [ 15,29] 

Since this resistive MHD algorithm follows the same formalism described in the above named references, 
we limit ourselves to give only a brief description of the method. We begin by schematically representing the 
MHD equations in flux form. This simplifies the notation and provides consistency with the literature. It is also 
representative of the "strategy" of the method. Thus, we rewrite Eqs. ( l ) - (4 )  as 

Ow 
- -  = - - V .  F a - ~ 7 .  F ~v, ( 1 2 )  
at 

where 

(13) 

•'Fa= { 

V .  

w. (pv) } 
B 2 1 

-Vx(v  x B) 
B 2 1 

(14) 

and 
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(15) 

Notice that the inviscid ideal MHD terms are grouped together unto V .F  a and the resistive and viscous 
terms unto V-F TM. It is also important to note that this code advances the magnetic induction field B, and that 
the condition XT.B = 0 is not strictly guaranteed. (We chose not to implement any of the available numerical 
techniques to "fix" this problem [3-5] ,  in order to monitor the behavior of V.B.) 

The solution is advanced from t n to t n+l = t + A t  in two steps. In the first step: 

At 
W n + l / 2 =  W n -- -~-( x~'Fa [n). (16) 

In the second step 

wn+J = wn - At( V'Fa In+l/2) - A t (  xT"Frv In). (17) 

By using a classical Galerkin weighted residual method on a triangular mesh, [6,7] a spatial discretization 
of equations (16)and (17) above is obtained. Stability of the method is maintained much in the manner of 
the two-step Richtmyer variant of the Lax-Wendroff method [30]. This is achieved by choosing a basis of 
piecewise constant functions to interpolate half-step variables (e.g. wn+U2), and a basis of piecewise linear 
functions to interpolate full step variables (e.g. wn). In the resulting weak form of Eq. (16), a local spatial 
average of w n takes the place of w n (this is analogous to the half grid point spatial staggering of the two-step 
Richtmyer algorithm), thus providing the necesary numerical diffusion to maintain stability. Our choice of basis 
functions eliminates the need for matrix operations on the first step, and yields the following matrix equation 
to be solved on the second step, 

M c A w  = f .  (18) 

Here Mc is the consistent mass matrix [6,7], and f represents the summed element contributions to each node 
arising from the flux terms [28]. The mass matrix equation (Eq. (18))  is solved explicitly by an iterative 
method [26,27]. 

For comparison purposes, the simulations are made on a uniform triangular mesh with periodic boundary 
conditions. The element nodes are positioned to correspond exactly to the uniform 128 x 128 mesh used by 
Dahlburg and Picone. We use a variable time step determined dynamically by a Courant condition 

At =min { N h  ) 
( l  + 2 g / h R ) (  ~ + lvl ' 

(19) 

where h is the nearest node distance, N = 0.25, Cs is the speed of sound, and VA is the Alfv~n speed. 
The Courant condition is somewhat different from the one used in the PS simulation. However, the resulting 
time steps on both simulations are comparable. The FE simulation was performed on the NCCS Cray-YMP 
Supercomputer. The approximate CPU usage per node per time step was 36/zs. 

Dahlburg and Picone chose to advance the vector potential A in their PS simulation, thus insuring that 
~7 • B = 0 throughout the domain. Since we are comparing to a simulation where XT.B = 0 is strictly enforced, 
any errors caused by a nonzero divergence of B in the FE simulation will be bound by the difference between 
the results of the two simulations. In this context, it becomes useful to contrast the behavior of x7 • B in 
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(o) 

(c) (d) 
Fig. 2. Comparison of  PS and FE contour plots of  mass density, S = 100: (a )  PS, M = 0.2, t = 2; (b)  FE, M = 0.2, t = 2; (c )  PS, 
M = 0.6, t = 2; (d )  FE, M = 0.6, t = 2; (e)  PS, M = 0.6, t = 8; ( f )  FE, M = 0.6, t = 8. (PS plots reproduced from Dahlburg and Picone 

[22] .) 

the FE simulation with the level of agreement between the two simulations. We report on the behavior of 
e =_ [ v . n [ / m e d i a n ( l B I )  1 

I Schmidt-Voigt  [31,32] suggests  using the parameter Brel -- hIV'BI/IB] as a diagnostic parameter for the error. However, since the 

Orszag-Tang Vortex solutions include points where IBI ~ 0, Brel is not an appropriate parameter for this problem. 
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(e) (f) 
Fig. 2. Continued. 

Resu l t s  

31 

In an attempt to make a thorough evaluation of the accuracy of our FE-MHD method against a pseudo- 
spectral method we compare contour plots, time evolution of global quantity plots, as well as k-spectra from 
both simulations. (In order to be consistent with the reported PS results, the plots are reported in reduced units 
(c.f. Formulation Section above).) 

On Figs. 2 through 5 we show side by side FE versus PS contour plots of density, local rate of dilatation, 
vorticity, and current density at t = 2. The contour levels on the FE plots were chosen to match the values on 
the corresponding PS contour plots. The agreement of the results is immediately apparent. Even at t = 8, where 
both simulations have had more time to evolve, the density contours from both simulations, shown on Figs. 2e 
and 2f, show that the two methods demonstrate remarkable agreement. 

The global quantities are averages of various physical variables over the whole domain at a fixed time. They 
are computed at regular time intervals. Fig. 6 shows comparisons of the time evolution of the various global 
quantities. The diamonds correspond to PS results. The continuous lines are computed using data at ~ 200 
different times from the FE simulation. Fig. 6a is the cross helicity: He = {v. B),  Fig. 6b is the averaged 
kinetic plus magnetic energy, Fig. 6c is the correlation coefficient: ~: _= 2(v .  B ) / [  (e z) + (B2)], Fig. 6d is the 
alignment factor et -- (v • B ) / X / ~ ( B 2 ) ,  Fig. 6e is the kinetic energy, Fig. 6f is the magnetic energy, Fig. 6g 
is the kinetic enstrophy: (w2); to = x7 × v, and Fig. 6h is the magnetic enstrophy: (j2), where j is the current 
density. The Ll-norm of the difference between PS and FE results for each global quantity was computed as 
L l ( f )  = ~ ] f F e  _ UPS i~ ~ [ f P S ] ,  with the sums being over all the times reported on the PS simulation (at the 
diamonds). Note that except for the kinetic and magnetic enstrophy, the agreement between FE and PS time 
evolution plots is nearly perfect. The small discrepancies on the kinetic and magnetic enstrophy (Figs. 6g and 
6h) is probably due to the larger weight with which the higher k-modes contribute to these quantities [ 33]. 

The k-spectra from FE and PS simulations are presented side by side on Figs. 7 through 9. A line derived 
by tracing through the center of the corresponding PS spectrum is overlayed on each FE spectrum in order to 
aid the comparison. Fig. 7 shows the mass density spectra, Fig. 8 the magnetic energy spectra, and Fig. 9 the 
solenoidal and non-solenoidal energy spectra. The main feature on these plots is that the FE spectra follow very 
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(c) (d) 
Fig. 3. Comparison of PS and FE contour plots of the local rate of dilatation (S = 100): (a) PS, M = 0.2, t = 2; (b) FE, M = 0.2, t = 2; 
(c) PS, M = 0.6, t = 2; (d) FE, M = 0.6, t = 2. Minimum and maximum contour values are (a) -0.107 and 0.104, (b) -0.132 and 
0.250, (c) -4.01 and 2.58 and (d) -2.64 and 2.04. (PS plots reproduced from Dahlburg and Picone [22].) 

c lose ly  the PS spectra. Signif icant  discrepancies  appear only  at the large-k end o f  the spectra (k  2 > 1000).  

The  sharp f lat tening at the " ta i ls"  o f  some  o f  the FE spectra, part icularly on the magnet ic  energy spec t rum at 

t = 8 on Fig.  8f, sugges t  the presence  o f  al iasing at k 2 > 1000. The  PS spectra do not exhibi t  this flattening, 

p resumably  because  al iasing is avoided on the PS s imulat ion by isotropic t runcat ion in Four ier  space at each 
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Fig. 4. Comparison of PS and FE contour plots of vorticity (S = 100): (a) PS, M = 0.6, t = 2; (b) FE, M = 0.6, t = 2; . Minimum a d 
maximum contour values are (a) -8.10 and 6.45, and (b) -7.14 and 5.74. (PS plots reproduced from Dahlburg and Picone [221 .) 
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(o) (b) 
Fig. 5. Comparison of PS and FE contour plots of current density (S = 100): (a) PS, M = 0.6, t = 2; (b) FE, M = 0.6, t = 2; . Minimum 
and maximum contour values are (a) -13.1 and 20.4, and (b) -12 .9  and 17.2. (PS plots reproduced from Dahlburg and Picone 1221 .) 

t i m e  level .  T h e  f in i t e  e l e m e n t  s p e c t r a  a re  s o m e w h a t  no is ie r .  T h e  n o i s e  is p r o b a b l y  h i g h l i g h t e d  by  p l o t t i n g  a g a i n s t  

k 2, i n s t e a d  o f  k. 

F ig .  10 s h o w s  p l o t s  o f  V , B  d i v i d e d  b y  t h e  n o r m  o f  t h e  m a g n e t i c  f ie ld  m a g n i t u d e  ( e  = V.B/IBImed) f o r  t h e  

F E  s i m u l a t i o n  fo r  M = 0 .2 ,  at  t = 2, a n d  M = 0 .6 ,  at  t = 2 a n d  t = 8, r e spec t i ve ly .  In  o r d e r  to  f a c i l i t a t e  t h e  
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Fig. 6. Time evolution of global quantities. M = 0.6, S = 100 (diamonds correspond to PS results from Dahlburg and Picone [22]; lines 
correspond to FE results computed at 100 time intervals): (a) cross helicity, (b) kinetic plus magnetic energy, (c) correlation coefficient, 
(d) alignment factor, (e) kinetic energy, (f) magnetic energy, (g) kinetic enstrophy, and (h) magnetic enstrophy. Ll-norms, as defined 
in the text are: (a)6.5 x 10 -3, (b)l.3 x 10 -2, (c)!.8 x 10 -3, (d)2.5 x 10 -3, (e) l . l  × 10 -2, (f)l.4 x 10 -2, (g)8.7 × 10 -2, and 
(h)7.4 x 10 -2, respectively. 

analysis, only one contour level is plotted. The choice of  the • = 0.05 contour level is arbitrary. On all three 
cases, • < 0.05 over most of  the domain. For t = 2, the regions where • is largest coincide with the location 
of  the current sheets (c.f. Fig 5 versus Fig. 10b). Nevertheless, a review of  the contour comparison of  PS and 
FE simulations results (cf. Figs. 2 -5 )  show good agreement at the locations of  the current sheets (as well as 
the rest of  the domain).  

The current sheets are particularly interesting on studies of  reconnection, and are likely to require the highest 
spatial resolution on the domain. If AMR was implemented, it would be desirable to target for refinement 
the regions of  the domain where current sheets are found. The question of  how • behaves as the spatial 
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Fig. 7. Comparison of PS and FE k-spectra of mass density (S = 100): (a) PS, M = 0.2, t = 2; (b) FE, M = 0.2, t = 2; (c) PS, M = 0.6, 
t = 2; (d) FE, M = 0.6, t = 2; (e) PS, M = 0.6, t = 8; (f) FE, M = 0.6, t = 8. (PS plots reproduced from Dahlburg and Picone 122]. See 
text.) 

resolution changes becomes important. To address this question we computed e for simulations of  identical 
initial condit ions and parameters, but different resolution. We found that • decreased with increasing spatial 
resolution. Figs. I l a  and 1 lb  are both plots of  • for FE simulations with M = .6, S = 100 at t = 2. Fig. 1 l a  
corresponds to a simulation on a 64 × 64 grid, whereas Fig. 1 lb  corresponds to a simulation on a 128 x 128 
grid ( the same size grid used on the rest of  the simulations reported).  Although it is not immediately apparent 
form the figures, the port ion of  the domain where • > 0.05 is four times bigger  on Fig. 1 l a  ( low resolution) 
than on Fig. 1 lb  (high resolut ion) .  Moreover, the maximum value of  • also decreased by a factor of  two as 
the resolution was doubled. 
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Fig. 8. Comparison of PS and FE k-spectra of magnetic energy (S = 100): (a) PS, M = 0.2, t = 2; (b) FE, M = 0.2, t = 2; (c) PS, 
M = 0.6, t = 2; (d) FE, M = 0.6, t = 2; (e) PS, M = 0.6, t = 8; (f) FE, M = 0.6, t = 8. (PS plots reproduced from Dahlburg and Picone 
[22]. See text.) 

6. Conclusions 

By using an MHD-FE  simulation, we have reproduced very closely the results reported by Dahlburg and 
Picone of  a PS simulation o f  a turbulent MHD system, thus showing that a FE-MHD method can be effective 
on simulating turbulent systems. This is an important finding, given that the flexibility of  the FE method 
could allow simulations o f  turbulent systems with realistic geometries and boundary conditions. Moreover, with 
unstructured grids and adaptive refinement, simulations o f  problems where very small scale phenomena occur 
on small regions o f  the domain (e.g. reconnection) can be tackled by allocating the fine grid resolution only 
when and where it is needed. 
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t = 8; (g) PS, non-solenoidal, t = 8; and (h) FE, non-solenoidal, t = 8. (PS plots reproduced from Dahlburg and Picone [221. See text.) 
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Fig. 11. Comparison of  contour plots o f  • from FE simulations performed at different spatial resolutions (M = 0.6, t = 2, S = 100): (a) 
64 x 64 grid,  (b) 128 x 128 grid. Minimum, maximum, and median contour values are (a) 0.0, 1.53, and 0.014, (b) 0.0, 0.71, and 0.010. 
Percentage o f  the domain where  • > 0.05: (a) 17.2%, (b) 4.3%. 

Given the close agreement of  the two simulations, and given that ~7-B ==- 0 on the PS simulation, we 
concluded that the deviations from V-B = 0 caused no obvious degradation of  the FE solution. We were also 
able to make some observations on the behavior of  ~7.B on the FE simulation. In particular we found that the 
error on V . B  = 0, which is largest along the current sheets, decreased with increasing spatial resolution. This 
suggests that as more resolution is applied through AMR, on the domain regions that require it, the error on 
V . B  = 0 can be expected to decrease. Moreover, [V.B I might prove useful to target domain regions that need 
refinement. We believe that these issues warrant further study. 
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