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Introduction

The graceful motions of swimming fish, which appear almost effortless, have
fascinated people for thousands of years, dating at least back to Aristotle,
and possibly earlier, according to Lindsey [1]. In recent years, since the early
1970's, there has been increased experimental and analytical investigation of
the physiology, biomechanics, and hydrodynamics of fish propulsion, for the
purposes of quantifying the energy budget and actual swimming speeds for a
variety of fish propulsive modes. These modes were classified by Breder [2]
in 1926 and characterized steady forward swimming according to the oc-
currence and extent of body undulations, fin oscillations, and combinations
of the two. For example the eel generates thrust via undulatory motion,
while the tuna produces thrust almost exclusively through the oscillation
of its lunate tail, or caudal fin. Webb [3,4], who has studied the morpho-
logic adaptations of fish for optimized locomotion characterizes the tuna as
a cruising specialist that has adapted for long distance steady swimming.
Since the tuna body is relatively free from undulation it is an excellent case
to examine analytically. The traditional hydrodynamics methods of slender
body theory and elongated body theory unfortunately do not apply to the
lunate fin of the tuna, as is discussed in detail by Yates [5], thus necessitating
the use of unsteady lifting wing theories, which themselves require a number
of simplifying assumptions to be made. Only recently has a capability for
computing three-dimensional, unsteady incompressible flow over a changing
geometry become available [6]. In that work, the flow field generated during
a torpedo launch from a submarine was computed. In this paper we describe
the extension of that work to carry out a direct computation, making no
geometric simplifications, of the unsteady flow past the tuna, including the
oscillatory caudal fin motion. In particular, we describe the computation of
the time variation of the pressure distribution over the entire body and the
integration over all surfaces to obtain the unsteady thrust. This is the first
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such 3D incompressible flow, unsteady thrust computation for a deforming
body that we are aware of.

The Incompressible Flow Solver

The governing equations employed are the incompressible Navier-Stokes
equations in the arbitrary Lagrangian Eulerian (ALE) and can be written
as

<9v
-57 + Va • Vv + Vp = V • a , (la)
ot

V-v = 0, (16)

where p denotes the pressure, v& = v- w the advective velocity vector (flow
velocity v minus mesh velocity w) and both the pressure p and the stress-
tensor a have been normalized by the (constant) density p, are discretized
in time using an implicit timestepping procedure. It is important that the
flow solver be able to capture the unsteadiness of a flow field if such exists.
The present flow solver is built as time-accurate from the onset, allowing
local timestepping as an option. The resulting expressions are subsequently
discretized in space using a Galerkin procedure with linear tetrahedral ele-
ments. In order to be as fast as possible, the overhead in building element
matrices, residual vectors, etc. should be kept to a minimum. This re-
quirement is met by employing simple, low-order elements that have all the
variables (u,v,w,p) at the same location. The resulting matrix systems are
solved iteratively using a preconditioned gradient algorithm (PCG). The
preconditioning is achieved through linelets [7]. The flow solver has been
successfully evaluated for both 2-D and 3-D, laminar and turbulent flow
problems by Ramamurti et al. [8,9]. The flow solver was also parallelized
in order to improve its efficiency and portability to various supercomputer
architectures. The parallelized grid generation and flow solver codes have
been run on Intel iPSC/860, IBM SP-2 and CRAY C-90.

Rigid Body Motion

In order to fully couple the motion of rigid bodies with the hydrodynamic
or aerodynamic forces exerted on them, consistent rigid body motion in-
tegrators must be developed. The governing equations of motion for rigid
bodies can be found in textbooks on classical mechanics. The rigid body
motion in 3-D is not straightforward due to its nonlinear character. The
code integrates the pressure distribution on the surface to compute forces
and moments at each time step and the equations of motion are advanced
in time to produce self-consistent trajectories. A more detailed descrip-
tion of the equations and the incorporation of the rigid body motion in the
numerical scheme for solving the fluid flow are described in [6].

Adaptive Remeshing

A fast regridding capability is essential for tracking important features in
unsteady flows and the flow past deforming bodies. The surface motion
and deformation of bodies may be severe, leading to distorted elements

                                                             Transactions on Engineering Sciences vol 9, © 1996 WIT Press, www.witpress.com, ISSN 1743-3533 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



Advances in Fluid Mechanics 171

which in turn lead to poor numerical results. If the bodies in the flow
field undergo arbitrary movement, a fixed mesh structure will lead to badly
distorted elements. This means that at least a partial regeneration of the
computational domain is required. On the other hand, if the bodies move
through the flow field, the positions of relevant flow features will change.
Therefore, in most of the computational domain a new mesh distribution will
be required. One approach to solve these problems is to regenerate the whole
computational domain adaptively, taking into consideration the current flow
field solution. A typical simulation where bodies undergo severe motion
typically requires hundreds of remeshings. Therefore, the grid generator
must be reliable and fast. In order to generate or regenerate a mesh reliably
and quickly, we use the advancing front technique [10,11].

We have also recently increased the reliability of the grid generator to a
point where it can be applied on a routine basis in a production environment.
This significant increase in reliability was achieved by skipping those faces
that do not give rise to good elements. If pockets of unmeshed regions
remain, we enlarge them somewhat, and regrid them. This 'sweep and
retry' technique has proven extremely robust and reliable.

The use of optimal data structures, filtering of points and faces and au-
tomatic reduction of unused points along the advancing front has increased
the speed of the grid generation process [6]. Currently, the advancing front
algorithm constructs grids at a rate of 60,000 for very small grids to 80,000
tetrahedra per minute for large grids on the CRAY-C90.

Practical simulations revealed that the appearance of badly distorted
elements occurred more often than expected. Given the relatively high
cost of global remeshing, we explored the idea of local remeshing in the
vicinity of the elements that became too distorted. Here, the badly distorted
elements and the elements that surround it are removed. Then, a new mesh
is generated in the holes left by the removal of these elements. This is a fast
process and takes 5-6 times less CPU time compared to global remeshing.

The identification of the region of moving elements and the mesh move-
ment algorithm to be employed are also important from the point of view of
mesh distortion and remeshing requirements. These are discussed in detail
in [6].

Numerical Examples

2-D Undulating Eel

In order to observe the process of longitudinal force generation by body
undulation, a 2-D simulation of a swimming eel was considered first. The
computation was performed primarily to test the coupled rigid body motion
with the adaptive remeshing flow solver. Therefore, the parameters chosen
for the body undulation may not represent actual eel motion. The body
undulation was prescribed as a sinusoidal wave traveling from the head to
tail as follows:
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The amplitude A is given by

'0, x < xo,
Amax B(x), XQ < x < xi and (26)

X > X}.

where Amax is the maximum amplitude, B(x) is a blending function in the
region XQ to xi, t is the time, / is the frequency and A is the wavelength of
the traveling wave.

Several computations were performed by varying the traveling wave-
speed and the amplitude of the wave. The computational grid, Fig. 1, shows
adaptation to the body motion where 8 layers of elements that surround
the eel move with it rigidly. In all the cases studied, the frequency / was
maintained to be 1.5 Hz.
Case 1: The first simulation was performed with A = 1.0 L, Amax — 0.1 L,
where L is the length of the eel. The variation of the thrust and the side
force with time is shown in Fig. 2a. The mean thrust in this case is 0.0495
directed towards the head.
Case 2: Next, the wavelength of the traveling wave A was decreased to
0.5 L. The variation of the force components are shown in Fig. 2b. The
mean thrust in this case is 0.047 directed towards the tail. This is due
to the cancellation of the pressure force in the region of the tail which is
responsible for a major contribution to the thrust.
Case 3: As A is increased to 1.25 the mean thrust increased to 0.0817
directed towards the head.
Case 4: Finally, the maximum amplitude, Amax, was increased to 0.2 L.
In this case, the mean thrust increased to 0.33 directed toward the head.

3-D Steady Flow Past a Tuna
Next the three-dimensional flow past a tuna with an oscillating caudal fin
was simulated. The motion of the caudal fin was prescribed as follows

where A is the amplitude of the motion at the tip of the caudal fin, LU is the
angular frequency, XQ is the location of the peduncle, which is the smallest
part of the body where the caudal fin begins, and x\ is the location of the
tip of the caudal fin. The mean line is prescribed as a parabolic arc from
the peduncle so as to maintain C\ (slope) continuity throughout the entire
body. This also implies that the caudal fin must deform during the motion.

Several steady state solutions were obtained at various caudal positions
during one quarter of a cycle. Forces generated by the caudal fin and the
body were computed. Unsteady flow was computed for 3 cycles and the
results compared with the steady-state one quarter cycle data.

3-D Unsteady Flow Past a Tuna
In order to demonstrate the capability of the newly developed flow solver to
compute flow past deformable bodies and to study trends, we first approxi-
mated the high Reynolds-number flow by an inviscid flow. An inviscid flow
will require a much coarser grid, which translates to fast turnaround.
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The speed of the tuna was set to 10 L/sec. [3]. First a steady state
solution was obtained. With this flow field as the initial condition, the
unsteady flow for 3 cycles of the caudal fin oscillation was computed. The
time step At = 10~* was employed and the entire unsteady computation
was performed in 2400 steps. During this interval, 161 local remeshings and
1 global remeshing were carried out. The grid for this computation consisted
of approximately 52K points and 262K tetrahedra. The total computational
time for this computation is approximately 12 CPU hours on a CRAY C-90.
The time taken for advancing the flow 1 timestep is 17 sec. per point, the
time for 1 local remeshing is 38 sees, and the time for 1 global remesh is
300 sees.

The time variation of the force components for the first 3 cycles is shown
in Fig. 3. This shows that the thrust developed by the caudal fin motion is
not quite sufficient to balance the nearly constant drag on the body. Figure
4 shows the effect of the caudal fin position on the force components, both
for the steady and unsteady simulations. It is clear that the steady state
simulation can capture neither the magnitude nor the trend of the variation
of the forces seen in the unsteady simulation results. Figures 5 shows the
differences in the surface pressure distribution between the steady state
and unsteady computation on the pressure and suction sides of the caudal
fin. The minimum pressure in the unsteady computation is lower compared
to the steady state computation. The maximum pressure which occurs at
the leading edge of the fin remains almost unchanged. In the steady state
computations, Figs. 5a and 5c, the pressure contours are symmetric about
the 'centerline' of the fish whereas the unsteady computations result in a
higher pressure on the lower side of the peduncle. Figure 6 shows the surface
pressure distribution at the end of 3 cycles. The high pressure regions in this
case are near the mouth, the leading edges of the fins and near the gill. The
velocity vectors on the surface, Fig. 7, show a low velocity region extending
from the mouth to the tail along the centerline. We believe this is due to
the open mouth geometry. Since the fish mouth is not always open the
low velocity regime does not persist but is rather more intermittent. This
conjecture requires further examination. A small recirculation region is also
evidenced near the peduncle region. This is due to the corner flow that is
set up at the maximum amplitude of oscillation. Triantafyllou et al. [12]
have carried out investigations of the experimental flow past a robotic tuna.
Future plans include Navier-Stokes computations for comparison with this
data.

Conclusions

A new, 3-D incompressible flow solver based on simple finite elements with
adaptive remeshing has been developed and validated. The main algorith-
mic ingredients were described in this paper and some validation results
shown. We have demonstrated how the combination of adaptive remesh-
ing techniques, flow solvers for transient problems with moving grids, and
integrators for rigid body motion allows the simulation of fully coupled
fluid-rigid body interaction problems of arbitrary geometric complexity in
three dimensions. Areas that deserve further study are the diffusive effect
of interpolation while remeshing and extension to Navier-Stokes problems.
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Fig. 1. Adapted Mesh About an Undulating Eel,
nelem= 9,792, npoin= 5,091

- thrust
- side force

- thrust
- side force

0.0 1.0 2.0 3.0 4.0 5.0 0.0 1.0 2.0 3.0 4.0 5.0
time time

a. A = 1.0 L, Amax = 0.1 b. A = 0.5 L, Amax = 0.1

Fig. 2. Time History of Force on an Undulating Eel
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-Body
-Caudal Fin
-Total
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a. x-component
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tllTM (••0.)

b. ̂ /-component c. z-component

Fig. 3. Time Variation of Force on a Swimming Tuna

b. ̂ /-component c. z-component

Fig. 4. Effect of Caudal Fin Position on Forces
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15.0

t=0.01
p =13.849min . _ _ , .
p =15.364

15.0

a. Steady State b. Unsteady Solution

Pressure Side

13.9

t=0.01
p =13.523min
p =15.532

c. Steady State d. Unsteady Solution

Suction Side

Fig. 5. Comparison of Pressure Distribution on the Caudal Fin
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Pr«**ur«
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1.50E+01

i 1.452+01

1.39E+01

I1.34E+01

Fig. 6. Surface Pressure Distribution on a Swimming Tuna,
t=0.24 Sees.

Fig. 7. Velocity Vectors on the Surface of a Swimming Tuna,
t=0.24 Sees.

                                                             Transactions on Engineering Sciences vol 9, © 1996 WIT Press, www.witpress.com, ISSN 1743-3533 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 


