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Abstract 

A review of automatic unstructured grid generators is given. These types of grids have found widespread use in 
computational fluid dynamics, computational structural dynamics, computational electro-magnetics and computational 
thermodynamics. The following topics are treated: the methods most commonly used, the specification of desired element 
size/shape and surface definition/meshing. Finally, the use of automatic grid generators as an enabling technology for 
moving body simulations and adaptive remeshing techniques is discussed. 
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1. Introduction 

The advent of numerical methods based on the spatial subdivision of a domain into 
polyhedra or elements immediately gave rise to the task of generating a mesh. This is especially 
true for the case of numerical techniques based on the so-called unstructured grids. Typical 
grids of this kind consist of triangular or tetrahedral elements that may have an arbitrary number  
of neighbours. Other  element types include trapezoids, bricks or prisms. With the availability 
of more versatile field solvers and powerful computers, analysts at tempted the simulation of 
ever increasing geometrical and physical complexity. At some point (probably around 1985), 
the main bottleneck in the analysis process became the grid generation itself. The last decade 
has seen a considerable amount  of effort devoted to automatic grid generation [1-5],  resulting 
in two very powerful and by now mature techniques: the Advancing Front  and the Delauney 
Triangulation. Typical unstructured grids commonly  used in C F D  today consist of 1 Mpts 
for simple parts (e.g. a wing with an Euler solver), and up to 25 Mpts for complete configura- 
tions. It is estimated that before the end of the decade grids in excess of 100 Mpts will 
be common for Reynolds-Averaged Navier Stokes (RANS) flow simulations of complete 
configurations. 

Any automatic  grid generator requires as input the following information: 
(a) Surface definition, i.e. a description of the bounding surfaces of the domain to be gridded; 

0168-874X/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved 
PII S0 1 68-874X(96)00038-8  



112 R. LiJhner Finite Elemems in Analysis and Design 25 (1997) I l l  134 

(b) Mesh size and shape, i.e. a description of how the element size, shape and orientation should 
be in space; 

(c) Element type, i.e. tetrahedron, brick, etc.; and 
(d) Grid generation technique, i.e. the choice of a suitable method to achieve the generation of the 

desired mesh given the first three pieces of information. 
Historically, the work progressed in the opposite order to the list given above. This is not 

surprising as the same happened when solvers were being developed. In the same way that the need 
of grid generation was only realized after field solvers were sufficiently efficient and versatile, 
surface definition and the specification of element size and shape only became issues once 
sufficiently versatile grid generators were at hand. 

The present paper attempts a review of automatic grid generators for triangles and tetrahedra. 
The intended use of these grids is for computational fluid dynamics (CFD), computational 
structural dynamics (CSD), computational electro-magnetics (CEM) and computational thermo- 
dynamics (CTD), although they may also be used for visualization and data interpolation. The 
topics treated follow the historical development, i.e. the methods are first treated in Section 2, the 
specification of element size/shape follows in Section 3, and surface definition is dealt with in 
Section 4. The paper then focuses in Section 5 on the use of automatic grid generators as an 
enabling technology for adaptive remeshing techniques. 

2. Unstructured grid generation methods 

If we consider the task of filling a given domain with elements, there appear to be only two basic 
ways of accomplishing it: 

- Filling the 'empty', i.e. as yet ungridded region with elements; or 
- Modifying an existing grid that already covers the domain to be gridded. 

The first class of techniques denotes the advancing front methods (AFMs) [6-21], the front being 
defined as the boundary between the gridded and ungridded region. The key algorithmic step that 
must be addressed for Advancing Front Methods is the proper introduction of new elements to the 
ungridded region. For triangular and tetrahedral grids the elements are introduced sequentially 
one at a time. For quadrilateral and hexahedral elements, this technique is known as paving or 
plastering [22, 23]. The second class of techniques is known as Voronoi or Delaunay triangulation 
methods. Here, the key algorithmic step is the proper introduction of new points to the given grid. 
This class of techniques has been used only for the construction of triangular or tetrahedral grids. 
The name Voronoi or Delaunay that is associated with these techniques stems from the element 
reconnection technique most often employed [24-46]. We remark that the modified or finite octree 
[47, 48] techniques represent just one possible realization of a Delaunay triangulation. Given the 
known distribution of points from the octree, the mesh connectivity is obtained by applying the 
circumcircle or Delaunay criterion. 

2.1. The advancing front method 

The advancing front method [6-11, 14-19, 21], consists in marching into as yet ungridded space 
by adding one element at a time. The region separating the gridded portion of space from the as yet 
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Fig. 1. Advancing front method (2-D). 

ungridded one is called the front. The algorithm, which is sketched in Fig. 1, may be summarized as 
follows: 

F1. Define the boundaries of the domain to be gridded. Without going into further detail, we 
will assume some general form of hierarchical surface definition consisting of patches, the lines 
that surround or delimit them, and points at the intersections of lines. 

F2. Define the spatial variation of element size, stretchings, and stretching directions for the 
elements to be created. 

F3. Using the information given for the distribution of element size and shape in space and the 
line-definitions: generate sides along the lines that connect surface patches. These sides form an 
initial front for the triangulation of the surface patches. 

F4. Using the information given for the distribution of element size and shape in space, the sides 
already generated, and the surface definition: triangulate the surfaces. This yields the initial front of 
faces. 

F5. Find the generation parameters (element size, element stretchings and stretching directions) 
for these faces. 

F6. Select the next face to be deleted from the front; in order to avoid large elements crossing 
over regions of small elements, the face forming the smallest new element is selected as the next face 
to be deleted from the list of faces. 

F7. For the face to be deleted: 
F7.1 Select a 'best point' position for the introduction of a new point IPNEW. 
F7.2 Determine whether a point exists in the already generated grid that should be used in 

lieu of the new point. If there is such a point, set this point to IPNEW and continue searching (go to 
F.7.2). 

F7.3 Determine whether the element formed with the selected point IPNEW crosses any 
given faces. If it does, select a new point, as IPNEW and try again (go to F.7.3). 

F8. Add the new element, point, and faces to their respective lists. 
F9. Find the generation parameters for the new faces from the background grid and the sources. 
F10. Delete the known faces from the list of faces. 
F11. Add the new faces to the front. 
F12. If there are any faces left in the front, go to F6. 
A recent thesis by Frykestig [19] gives a good overview of the different possibilities explored to 

date for selecting the 'best point position', when to use given points vs. the introduction of a new 
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point, specialized data structures for storing and retrieving mesh data, etc. The complexity of the 
advancing front method is of O(N Jog(N)), where N denotes the number of elements. Over the 
years, optimal data structures have been implemented to realize such a favourable scaling [10, 11, 
14, 49, 17, 19]. The procedure has been used extensively to grid large-scale complex geometry 
domains [50-56] and within adaptive remeshing procedures [8, 57 63, 14]. Sustained speeds in 
excess of 50 Ktet/min have been achieved on the CRAY-YMP and SGI Power Challenge [58, 17], 
and the procedure has been ported to parallel machines [17, 64]. Recent extensions include special 
gridding procedures for the highly stretched grids required when solving the Reynolds-Averaged 
Navier-Stokes equations [65 -68]. 

2.2. Delaunav technique 

The Delaunay triangulation technique has a long history in mathematics, geophysics and 
engineering. Given a set of points .~:= x l , x z  . . . .  x,,, one may define a set of regions or volumes 
;~ : = vl, v2 . . . .  vn assigned to each of the points, that satisfy the following property: any location 
within vi is closer to xi than to any other of the points: 

Q : = . ~ : l ] x - x i [ [  < l l x - x j ! i  V j ¢ : i .  (1) 

This set of volumes 1 2 which covers the domain completely, is known as the Dirichlet tesselation. 
The volumes l;i are convex polyhedra, and are referred to as Voronoi regions. Joining all the pairs 
of points x~, x i across polyhedral boundaries results in a triangulation of the convex hull of.~. It is 
this triangulation that is commonly know as the Delaunay trianyulation. The set of triangles 
(tetrahedra) that form the Delaunay triangulation satisfy the property that no other point is 
contained within the circumcircle (circumsphere) formed by the nodes of the triangle (tetrahedron). 
Although this and other properties of Delaunay triangulations have been studied for some time, 
practical triangulation procedures have only appeared in the last decade [25-46, 69-72]. Most of 
these are based on Bowyer's algorithm [26], which is summarized here for 3-D applications (see 
Fig. 2): 

B1. Define the convex hull within which all points will lie. This can either be a single large 
tetrahedron (4 points), or a brick (8 points) subdivided into five tetrahedra. 

B2. Introduce a new point x,,+ 1. 
B3. Find all tetrahedra LEDEL (I:NEDEL) whose circumsphere contains x,,+ ~; these are the 

tetrahedra that will be deleted. 
B4. Find all the points belonging to these tetrahedra. 
B5. Find all the external faces LFEXT (I:NFEXT) of the void that results when deleting these 

tetrahedra. 
B6. Form new tetrahedra by connecting the NFEXT external faces to the new point x,+ 1. 
B7. Add the new elements and the points to their respective lists. 
B8. Update all data structures. 
B9. If more points are to be introduced, go to B.2. 
The algorithm described above assumes a given point distribution. The specification of a point 

distribution (in itself a tedious task) may be replaced by a general specification of desired element 
size and shape in space. The key idea, apparently proposed independently by Frey [73] and 
Holmes [36], is to check the discrepancy between the desired and the actual element shape and size 
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Fig. 2. Delaunay triangulation (2-D). 

of the current mesh. Points are then introduced in those regions where the discrepancy exceeds 
a user-defined tolerance. An automatic Delaunay mesh generator of this kind proceeds as follows: 

D1. Assume given a boundary point distribution. 
D2. Generate a Delauney triangulation of the boundary points. 
D3. Using the information stored on the background grid and the sources, compute the desired 

element size and shape for the points of the current mesh. 
D4. Introduce new points as required. 
D5. If new points were introduced: 
- Perform a Delaunay Triangulation for the new points; 
- Go to D.3 
D6. Recover the surface mesh. 
Important  aspects of Delauney triangulators that require special care include: 
- Circumsphere calculations, particularly if roundoff is a problem [33-1; 
- Avoidance of 'sliver elements' [30, 41, 45, 46]; and 
- Boundary recovery [33, 69, 39, 74, 41, 42, 75]. 
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The complexity of the Delaunay triangulation technique is of O(N log(N)), where N denotes the 
number of elements. Over the years, optimal data structures have been implemented to realize such 
a favourable scaling [41-43, 45, 46]. The procedure has been used extensively to grid large-scale 
complex geometry domains [76, 41-43, 72, 45, 46] and within adaptive remeshing procedures 
[37, 72]. Sustained speeds in excess of 250 Ktet/min have been achieved on the CRAY-YMP 
[-41-43, 45, 46], and the procedure has been ported to parallel machines [43]. In some cases, the 
Delaunay circumsphere criterion is replaced by or combined with a max(min) solid angle criterion 
[70, 71, 78, 45, 46], which has been shown to improve the quality of the elements generated. For 
these techniques, a 3-D edge-swapping technique is used to speed up the generation process. 

2.2. I. Front-based point introduction 
When comparing 2-D grids generated by the advancing front or the Delauney technique, the 

most striking difference lies in the appearance of the grids. The Delauney grids always look more 
'ragged' than the advancing front grids. This is because the grid connectivity obtained from 
Delauney triangulations is completely free, and the introduction of points in elements does not 
allow a precise control. In order to improve this situation, several authors [79-8l, 44-46] have 
tried to combine the two methods. These methods are called advancing front Delaunay, and can 
produce extremely good grids that satisfy the Delaunay or max(min) criterion. 

3. Specification of element size and shape 

As the versatility, speed and generality of unstructured grid generators increased, the specifica- 
tion of the desired element size and shape in space became a problem. This is because the 
requirements for simplicity (low user input) and flexibility (complex geometries) are conflicting. The 
earliest automatic unstructured grid generators employed a background grid for simple geometries. 
This was particularly suited for adaptive remeshing procedures. For CAD-based surface descrip- 
tions, the modified quad- and octree techniques provide an automatic way of refining the mesh in 
regions of high surface curvature [47, 83, 48]. This works well for problems that require a fine mesh 
in regions of high surface curvature, and a coarser mesh away from surfaces. While this is indeed 
the case for many elliptic problems, a user may still wish to refine the mesh in some spatial region 
away from surfaces (e.g. a heat-source, an oblique shock in supersonic flow, etc.). Therefore, 
alternate ways to prescribe element size and shape in space, that combine generality and low user 
input, are required. 

3.1. Sources 

A flexible way that combines the smoothness of functions with the generality of boxes or other 
discrete elements is to define sources. Indeed, a number of authors have proposed the use of sources 
in recent years [83, 41, 67, 68]. The element size for an arbitrary location x in space is given as 
a function of the closest distance to the source r(x). Consider first the line source given by the points 
x~, x2 shown in Fig 3. The vector x can be decomposed into a portion lying along the line, and the 
normal to it. With the notation of Fig. 3, we have 

x =x~ + ~gl + an, (2) 
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Fig. 3. Line source. 
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Fig. 4. Surface source. 

The (-coordinate may be obtained by scalar multiplication with gl,  and given by 

(x - x l ) " g l  
- (3) 

gx g l  

By delimiting the value of ( to be on the line: 

4' = max(0, min(1, ()) ,  (4) 

the distance between point x and the closest point on the line source is given by 

3(x) = Ix - xl - ~'gl l- (5) 

Point-sources can be constructed by collapsing both into one. Consider next the surface source 
element given by the point xl,  x2, x3 shown in Fig. 4. The vector x can be decomposed into 
a portion lying in the plane given by the surface source-points, and the normal to it. With the 
notat ion of Fig. 4, we have 

X = X 1 + ~ g l  + r/g2 + Yg3, (6) 

where 

gl  × g2  (7) 
g3  - -  [gl × g 2 1 '  

By using the contravariant  v e c t o r s  g 2 , g 2 ,  where gt  .gS = fi~, we have 

¢ = (X - - X l ) ' g  1, r/ = (X --Xl)'g 2, ( = 1 -- ~ -- r/. (8) 

Whether  the point x lies 'on the surface' can be determined by the conditions: 

0 ~< ¢,r/,( ~< 1. (9) 
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if this condition is violated, point x is closest to any of the given edges, and the distance to the 
surface is evaluated by checking the equivalent line-source associated with the edges. If, on the 
other hand, Eq. (8) is satisfied, the closest distance between the surface and the point is given by 

(5(x) = I(1 -- ~ - t l)xj  + ~.xz + ~lx~ - x [ .  (10) 

As one can see, the number of operations required to determine (~(x) is not considerable if one 
pre-computes and stores the geometrical parameters of the sources (gi,g i, etc.). In order to reduce 
the internal complexity of a code, it is advisable to only work with one type of source. Given that 
the most general source is the surface source, line- and point-sources are prescribed as surface 
sources, leaving a small distance between the points to avoid numerical problems (e.g. divisions by 
zero). 

Having defined the distance from the source, the next step is to select a function that is general 
yet requires a minimum amount  of input to define the element size as a function of distance. 
Typically, the user desires a small element size close to the source, and a large element size away 
from it. Moreover, the element size should, in many instances, be constant (and small) in the 
vicinity r < r0 of the source. An elegant way to satisfy these requirements is to work with functions 
of the transformed variable 

max(o,r[x)-r°~- - . (l 1) p =  
~ / r l  / 

For obvious reasons, the parameter rl is called the scaling length. Commonly  used functions of 
p used to define the element size in space are: 

(a) Power  laws: given by expressions of the form [83] 

~(x) = ~o[1 + p~], (12) 

with the four input parameters ¢)o, ro, r~ 7; typically, 1.0 ~< 7 ~< 2.0. 
(b) Exponent ia l  functions: which are of the form [41-43] 

~(x) = 60 e:~', (13) 

with the four parameters 6o, ro, r~. ,'. 
(c) Polynomial  expressions: which avoid the high cost of exponents and logarithms by employing 

expressions of the form: 

with the n + 3 parameters ()0. ro, r~, a~. We have found that in practice quadratic polynomials are 
sufficient, i.e. n = 2. 

Obviously, many other functions may be considered. As a matter  of fact, in the hands of 
experienced users all of them will lead to similar grids. Given a set of m sources, the minimum 
element size computed for each of them is taken whenever an element is to be generated: 

c~(x) = min(~l,~2 . . . .  ~,,). (15) 
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Fig. 5. Localization with sources: Closest source(s) may not be the one(s) Determining Element sizes. 

Sources offer a convenient and general way to define the desired element size in space. They may be 
introduced rapidly on a workstation in interactive mode with a mouse-driven menu once the 
surface data are available. For moving or tumbling bodies (e.g. store separation), the points 
defining the sources relevant to them may be synchronized in their movement to the movement of 
the respective body. This allows high quality remeshing when required for this case of problems 
[58, 51, 55]. On the other hand, sources suffer from one major disadvantage: at every instance, the 
generation parameters of all sources need to be evaluated. For a distance distribution given by Eqs. 
(10)-(15), it is very difficult to 'localize' the sources in space in order to filter out the relevant ones. 
As an example, consider the 1-D situation shown in Fig. 5. Although sources $3, $5 are closer to the 
shaded region than any other source, the source that yields the smallest element size 6 is not in this 
region. The evaluation of the minimum distance obtained over the sources may be vectorized in 
a straightforward way. Nevertheless, a high number of sources (Ns > 100) will have a marked 
impact on CPU-times, even on a vector-machine. It has been our experience that the high 
number of sources dictated by some complex geometries can lead to situations where the 
dominant,  CPU cost is given by the element-size evaluations of the sources, not the advancing front 
method itself. 

3.2. Element size attached to CAD-data 

For problems that require gridding complex geometries, the specification of proper element sizes 
can become a tedious process. Conventional background grids would involve many tetrahedra, 
whose generation is a labour-intensive, tedious task. Point, line, or surface-sources are not always 
appropriate either. Curved 'ridges' between surface patches, as sketched in Fig. 6, may require 
many line-sources. Similarly, the specification of gridding parameters for surfaces with high 
curvature may require the many surface-sources. The net effect is that for complex geometries one 
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Fig. 6. Element size attached to CAD-data .  
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is faced with excessive labour-costs (background grids, many sources), and/or CPU requirements 
during mesh generation (many sources). 

A better way to address these problems is to attach element size (or other gridding parameters) 
directly to CAD-data. For many problems, the smallest elements are required close to the 
boundary. Therefore, if the element size for the points of the current front is stored, the next element 
size may be obtained by multiplying it with a user-specified increase factor c;. The element size for 
each new point introduced is then taken as the minimum obtained from the background grid (~bg, 
the sources ~s and the minimum of the point sizes corresponding to the face being deleted, 
multiplied by a user-specified increase factor el: 

6 = min(6bg, ~s, ci" min(6A, 6B, ~)c)). (16) 

Typical values for ci are 1.0 ~< ci ~< 1.5. The first value yields a mesh of uniform element size, 
whereas the latter gives rise to grids with elements that grow rapidly in size away from the surface. 
Specifying or attaching element sizes to CA D-data can lead to incompatibilities if surfaces are close 
to each other. For example, in the situation shown in Fig. 7, specifying a small distance for line L1 
without proper modification of the distance-parameter for line L2 can lead to size incompatibilities 
and badly shaped elements. This happens because this type of specification of element size is 
'hyperbolic' by nature, starting from the surfaces and marching blindly into the domain. This 
limitation may be circumvented by the use of adaptive background gridding (see below). A con- 
siderable reduction in input requirements for complex geometries may be realized by assigning to 
the end-points of lines a point-size that is related to the minimum length of the lines surrounding it. 
As these end-points of lines are 'inherited' by the final grid, this is a natural way to assign proper 
element sizes to regions where small lines occur. 

3.3. Adaptive background gridding 

As was seen from the previous sections, the specification of proper element size and shape in 
space can be a tedious, labour-intensive task. Adaptive background grid refinement may be 
employed in order to reduce the amount  of user intervention to a minimum. As with any other 
mesh refinement scheme, one has to define where to refine and how to refine. Because of its very 
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Fig. 8. Background grid adjustment/refinement. 

high speed we prefer to refine the background grid via classic h-refinement [84]. In this way the 
possible interactivity on current workstations is maintained. 

The selection as to where to refine the background mesh is made with the following 
assumptions: (a) points have already been generated; 

(b) at each of these points, a value for the characteristic or desired element size ~ is given; 
(c) for each of these points, the background grid element containing it is known; 
(d) a desired increase factor ci between elements is known. 
The refinement selection is then made in two passes (see Fig. 8): 

P a s s  1: B a c k g r o u n d  9r id  a d j u s t m e n t .  Suppose a background grid element has very large element 
sizes defined at its nodes. If it contains a generated point with characteristic length that is much 
smaller, an incompatibility is present. The aim of this first pass is to prevent these incompatibilities 
by comparing lengths. Given a set of two points with coordinates x l , x 2 ,  as well as an element 
length parameter 61, the maximum allowable element length at the second point may be deter- 
mined from the geometric progression formula: 

s .  = Ix2 - - X l l  = fil 
c7 +1 - 1 

c i - -  1 

implying that 

(17) 

s,,(ci - 1) + fil 
,~' = 6~c7 = (18) 

ci 
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Given this constraint, we compare for each of the generated points its characteristic length to the 
element size defined at each of the background grid nodes of the background grid element 
containing it. 

'Sbg = min[0bg, ~ (Xbg - -  Xp}) ,  (19) 

Pass 2: Selection ~?I elements to Iw r<lmed. After the element lengths at the points of the 
background grid have been made compatible with the lengths of the actual points, the next step is 
to decide where to refine the background grid. The argument used here is that if there is 
a significant difference between the element size at generated points and the points of the 
background grid, the element should be refined. This simple criterion is expressed as: 

rain,,, h. , , ,  d{¢Sbg) "~ Cl'()p ~ refine, (2O) 

where, typically 1.5 ~< cf ~< 3. All elements flagged by this last criterion are subdivided further via 
classic h-refinement [84], and the background grid variables are interpolated linearly for the newly 
introduced points. 

3.4. SurJace gridding with adaptive background grids" 

The described background grid adaptation may be used to automatically generate grids that 
represent the surface within a required or prescribed accuracy. Consider, as a measure for surface 
accuracy, the angle variation between two adjacent faces. With the notation defined in Fig. 9, the 
angle between two faces is given by 

" 
- -  = t a n  . ( 2 1 )  

21" 

This implies that for a given element size h~ and angle a~, the element size for a prescribed angle :q, 
should be 

,22, hp = h~ 

Fig. 9. Measuring surface lidelity'curvalure. 
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For other measures of surface accuracy, similar formulae will be encountered. Given a prescribed 
angle c~ o, the point-distances for the given surface triangulation are compared to those obtained 
from Eq. (21) and reduced appropriately: 

6i = min(6/, hp). (23) 

These new point-distances are then used to adjust and/or refine the background grid further, and 
a new surface triangulation is generated. This process is repeated until the surface representation is 
accurate enough. 

Adaptive background grids combine a number of advantages: 
- possible use in combination with CAD-based element size specification and/or background 

sources; 
- automatic gridding to specified surface deviation tolerance; 
- smooth transition between surface-faces of different size; 
- smooth transition from surface-faces volume-elements. 

Thus, they may be used to arrive at minimal-input grid generators, an outstanding goal over the 
last decade. 

4.  S u r f a c e  d e f i n i t i o n  

Having solved the automatic grid generation problem as such, as well as the minimization of 
labour for element size and shape specification, the final problem to tackle is the rapid definition of 
geometries and boundary conditions desired for the problem at hand. There are two possible ways 
of describing the surface of a computation domain: 

(a) using analytic functions, and 
(b) via discrete data. 
The first way is the preferred choice if a CAD-CAM data base exists for the description of the 

domain, and has been used almost exclusively to date. Splines, B-Splines, NURBS Surfaces [85] or 
other types of functions are used to define the surface of the domain. An important characteristic of 
this approach is that the surface is continuous, ie. there exist no 'holes' in the information. While 
generating elements on the surface, the desired element size and shape is taken into consideration 
via mappings [11-13, 20, 21]. The second possibility, i.e. a definition of surfaces via discrete data, 
becomes attractive when no CAD-CAM data base exists. The data may be defined simply by 
a cloud of points (e.g.remote sensing data, data from digitizers [79, 86], or medical data sets [87]) 
or via an existing triangulation (e.g. geodesic data, multi-disciplinary simulation models [86]). If 
a cloud of points is provided as the starting data, the surface definition is completed by triangulat- 
ing it. This triangulation process is far from trivial and has been the subject of major research and 
development efforts (see, e.g. [34, 87, 89]). The re-triangulation required for surfaces defined in this 
way has been treated in [89, 90]. 

The present incompatibility of formats from the description of surfaces currently makes the 
surface definition by far the most man-hour intensive task of the CFD, CEM, CSD or CTD 
analysis process. Grid generation, field solvers and visualization are processes that have been 
automated to a high degree. This is not the case with surface definition, and may not be so for 
a long time. It may also have to do with the nature of analysis: for a typical field solver run a vast 
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portion of CAD-CAM data also has to be filtered out (e.g. nuts, bolts, rivets, etc. are not required 
for the surface definition required of a standard CFD run), and the surface patches used by the 
designers seldomly match, leaving gaps or overlap regions that have to be treated manually. 

5. A d a p t i v e  r e m e s h i n g  

Having reviewed some of the aspects required for automatic unstructured grid generators, one 
may exploit this enabling technology further. Obvious candidates include remeshing for field 
simulations with several moving or deforming objects, and remeshing of existing data sets, in 
particular adaptive remeshing. The key idea is to use the existing grid and solution, combined with 
a proper error indicator or estimator, to generate a mesh that is more suited to the problem at 
hand. The current mesh becomes the background mesh for the new (adapted) mesh. The steps 
required for one adaptive remeshin.q are as follows: 
- Obtain the error indicator matrix for the gridpoint of the present grid. 
- Given the error indicator matrix, get the element size, element stretching and stretching direction 

for the new grid. 
- Using the old grid as the background grid, remesh the computational domain using an 

unstructured grid generator. 
- If further levels of global h-refinement are desired, refine the new grid globally. 

Interpolate the solution from the old grid to the new one. 
For adaptive remeshing using the advancing from method, see [8, 9, 1 I, 14, 17, 51. 52, 59-63, 

91-98]; using Delaunay triangulations, see [37, 77, 45, 46]; and using the modified quad/octree 
approach, see [47, 48]. 

6. E x a m p l e s  

This section gives a cross-section of gridding examples. It is not meant to be an exhaustive 
sampling. Given the author's background, all the grids were generated using the Advancing Front 
Method, and were used for CFD simulations. For some large-scale CFD applications using 
unstructured grids, the reader is referred to [50 52, 56, 60-1043 . 

(a) Generic hypersonic vehicle: This case shows the combination of discrete and analytically 
defined surfaces to obtain rapid turnaround in preliminary design calculations. The airplane 
fuselage is given from a structural dynamics calculation and shown in Fig. 10(a). The recovered 
discrete surface patches, together with the added outer box and some further analytical patches for 
nozzle entry and exit planes, is shown in Fig 10(b). The new surface discretization is shown in 
Fig 10(b). The new surface discretization, suitable for preliminary aerodynamic design calcu- 
lations, is shown in Fig. 10(c). The generated grid had approximately 1 Mtet. 

(b) Truck: This configuration shows how techniques described above may be combined in order 
to grid geometrically complex regions. The problem considered is the generation of a tetrahedral 
grid surrounding a 5 ton army truck. This mesh should be adequate for aerodynamic analysis 
simulating a shock impacting on the truck. The CAD description, shown in Fig. 11 (a), consisted of 
6306 points, 3718 lines and 1604 surface segments. An initial coarse background grid, as well as 
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Fig. 10 Generic hypersonic vehicle. 
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Fig. l l .  Truck. 

a pair of surface sources were provided initially to specify element size in space. The CAD-data 
were analysed, and the point-sizes specified were set to be commesurate with the length of the 
individual lines. This was of great help in gridding the undercarriage section of the truck, and 
without this capability, the equivalent of several dozen sources would have been required to obtain 
an adequate mesh. The background grid was adapted six times. The surface of the final mesh, which 
consisted of 38 K boundary points, 192 Kpts and approximately 1 Mtet, is shown in Fig l l(b). 
Grids consisting of quad-shells and beams were also generated for the structural members. As 
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Fig. 11. C o n t i n u e d .  

before, the element size was set to be commesurate with the length of the individual lines. The 
surface triangulation obtained in this way (Fig. 1 l(c)) was modified into a mixed quad-triangle 
mesh (Fig. 11 (d)). With one level of global h-refinement, an all-quad mesh is obtained (Fig. 11 (e)). 
For more details, see [100].  
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Fig. 11. Continued. 

7. Conclusion 

Automatic unstructured grid generators have advanced rapidly in the last decade. Both the 
advancing front method and the Delauney triangulation technique have yielded reliable and 
versatile gridding tools that may be used routinely in CFD, CSD, CEM and CTD applications. The 
combination of CAD-attached element size, sources, and adaptive background grids has led to 
a dramatic reduction of input requirements, speeding up the analysis cycle considerably. Automatic 
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Fig. 11. Continued. 

grid generators have been used for simulations that require remeshing (e.g. those with moving 
bodies), as well as adaptive remeshing procedures. 
Current research is focusing on: 

- further reductions of input requirements; 
- automatic gridding for Navier-Stokes applications; 
- wake gridding and adaptive wake remeshing; and 
- better post-processing techniques for unstructured grids. 
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