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Abstract 

Two renumbering strategies for field solvers based on unstructured grids that operate on shared-memory, cache-based parallel machines 

are described. Special attention is paid to the avoidance of cache-line overwrite, which can lead to drastic performance degradation on this 

type of machines. Both renumbering techniques avoid cache-misses and cache-line overwrite while allowing pipelining, leading to optimal 

coding for this type of hardware. 0 1998 Elsevier Science S.A. All rights reserved. 

1. Introduction 

There can hardly be any doubt that the 1990s are the decade of parallelism. Even though machines with 
several powerful vector-processors were installed at many places in the 198Os, the operating system or the 

system administration hardly allowed for the use of several processors during the same run. Moreover, in many 
instances the compilers were not mature, leading to meaningless gains in performance. With the advent of 

massively parallel machines, i.e. machines in excess of 500 nodes, the exploitation of parallelism in solvers has 
become a major focus of attention. According to Amdahl’s Law, the speed-up s obtained by parallelizing a 

portion cx of all operations required is given by 

where R,, R, denote the scalar and parallel processing rates (speeds), respectively. Table 1 shows the speed-ups 

obtained for different percentages of parallelization and different numbers of processors. 
Note that even on a traditional shared-memory, multiprocessor vector machine, such as the CRAY T-90 with 

16 processors, the maximum achievable speed-up between scalar code and parallel vector code is a staggering 
R,/R, = 240. What is important to note is that as we migrate to higher numbers of processors, only the 

Table 1 
Speed-ups obtainable (Amdahl’s Law) 

VR, 50% 90% 99% 99.9% 

10 1.81 5.26 9.17 9.91 

100 1.98 9.90 50.25 90.99 

1000 2.00 9.91 90.99 500.25 

0045-7825/98/$19.00 0 1998 Elsevier Science S.A. All rights reserved 
PII: SOO45-7825(98)00005-X 



96 R. tihner I Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109 

embarrassingly parallel codes will survive. Most of the applications ported successfully to parallel machines to 
date have followed the Single Program Multiple Data (SPMD) paradigm. For grid-based solvers, a spatial 
subdomain was stored and updated in each processor. For particle solvers, groups of particles were stored and 

updated in each processor. For obvious reasons, load balancing [l-4] has been a major focus of activity. 

Despite the striking successes reported to date, only the simplest of all solvers: explicit timestepping or 

implicit iterative schemes, perhaps with multigrid added on, have been ported without major changes and/or 

problems to massively parallel machines with distributed memory. Many code options that are essential for 

realistic simulations are not easy to parallelize on this type of machine. Among these, we mention local 

remeshing [5], repeated h-refinement, such as required for transient problems [6], contact detection and force 

evaluation [7], some preconditioners [S], applications where particles, flow, and chemistry interact, and 

applications with rapidly varying load imbalances. Even if 99% of all operations required by these codes can be 
parallelized, the maximum achievable gain will be restricted to 1:lOO. If we accept as a fact that for most 

large-scale codes we may not be able to parallelize more than 99% of all operations, the shared memory 

paradigm, discarded for a while as non-scalable, will make a comeback. It is far easier to parallelize some of the 

more complex algorithms, as well as cases with large load imbalance, on a shared memory machine. And it is 

within present technological reach to achieve a 100 processor, shared memory machine. Such an alternative, i.e. 

having less expensive RISC chips linked via shared memory, is currently being explored by a number of 

vendors. One example of such machines is the SGI Power Challenge, which at the time of writing allows up to 

18 processors to work in shared memory mode on a problem, with upgrades to 92 processors planned within the 

next two years. In order to obtain proper performance from such a machine, the codes must be written in such a 
way as to avoid: 

(a) Cache-misses (in order to perform well on each processor); 

(b) Cache overwrite (in order to perform well in parallel); and 

(c) Memory contention (in order to allow pipelining). 

Thus, although in principle a good compromise, shared memory, RISC-based parallel machines actually 

require a fair degree of knowledge and reprogramming for codes to run optimally. 

The present paper describes renumbering techniques for field solvers operating on unstructured grids that have 

proven useful for machines of this kind. A summary of the remainder of the paper follows. Sections 2 and 3 

recall some previously described renumbering techniques to minimize cache-misses and achieve pipelining. 

Section 4 treats cache overwrite, a new, and previously not accounted-for design requirement for renumbering 

strategies. In Section 5, implementational issues are considered. Section 6 reports several scalability studies 

obtained on SGI Power Challenge and SGI Origin systems. Finally, some conclusions are drawn in Section 7. 

2. Renumbering to avoid cache misses 

Consider the following loop over edges that typifies the central loop of many field solvers based on 

unstructured grids [9-141. Similar loops are obtained for element- or face-based solvers, and what follows is 

equally applicable to them. A right-hand side (RHS), or residual, is formed at the edge-level by gathering 

information from a vector of unknowns. This edge-RHS is then added to a global point-RHS. The operations are 

shown schematically in Fig. 1, and a typical FORTRAN implementation would be the following: 

Laop 1 
do 1600 iedge=l,nedge 

ipoil=lneod(l,iedge) 

ipoi2=lnoed(2,iedge) 

redge=geoed( iedge) * (unkno(ipoi2)-unkno tipoil)) 

rhspo(ipoil)=rhspoiipoil) +redge 

rhspo(ipoi2)=rhspo(ipoi2) --edge 

1600 continue 

If cache-misses are a concern, then it is clear that the storage locations for the required point information stored 
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Fig. I. Information flow for edge-based loop. 

in the arrays unkno and rhspo should be as close as possible in memory when required by an edge. At the 
same time, as the loop progresses through the edges, the point information should be accessed as uniformly as 
possible. This may be achieved by first renumbering the points using a bandwidth-minimization technique (e.g. 
Reverse Cuthill and McKee [15], wavefront [16], recursive bisection), and subsequently renumbering the edges 
according to the minimum point number on each edge [ 161. All of these algorithms are of complexity O(N) or at 
most O(N log N), and are well worth the effort. 

3. Avoidance of memory contention 

Pipelining or vectorization offers the possibility of substantial performance gain on any kind of system. While 
previously restricted to so-called vector machines, such as those manufactured by CRAY, Convex, NEC, Fujitsu 
or Hitachi, the concept has migrated to current RISC chips, such as the MIPS R8000 and RlOOOO. For the latter 
chip, so-called software pipelining is invoked by the compiler for certain optimization options. In order to 
achieve pipelining or vectorization, memory contention issues must be avoided. The enforcement or pipelining 
or vectorization is then carried out using a compiler directive, as Loop 1, which becomes an inner loop, still 
offers the possibility of memory contention. In this case, we would have: 

Loop 2 
do 1400 ipass=l,npass 

nedgO=edpas(ipass) +l 

nedgl=edpas(ipass+I) 

c$dir ivdep ! Pipelining directive 

do 1600 iedge=nedgO,nedgl 

ipoil=lnoed(l,iedge) 

ipoi2=lnoed(2,iedge) 

redge=geoed( iedge)*(unkno(ipoi2) -unkno(ipoil)) 

rhspo(ipoil)=rhspo(ipoil) +redge 

rhspo(ipoi2)=rhspo(ipoi2) -redge 

1600 continue 

1400 continue 

It is clear that in order to avoid memory contention, for each of the groups of edges (1600 loop), none of the 
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Fig. 2. Point-range covered by each group of edges; l-Processor machine; renumbering to minimize cache-misses and avoid memory 

contention. 

corresponding points may be accessed more than once. Given that in order to achieve good pipelining 

performance on current RISC-chips a relatively short vector length of 16 is sufficient, one can simply start from 

the edge-renumbering obtained in order to minimize cache-misses, and renumber it further into groups of edges 

that are 16 long and avoid memory contention [16]. As before, this renumbering is of complexity O(N). The 

resulting loop is shown schematically in Fig. 2. 

4. Cache line overwrite 

The next stage is to port Loop 2 to a parallel, shared memory machine. If the loop is left untouched, the 

auto-parallelizing compiler will simply split the inner loop across processors. It would then appear that 
increasing the vector-length to a sufficiently large value would offer a satisfactory solution. However, this is not 

advisable for the following reasons: 

(a) Every time a parallel do- loop is launched, a start-up time penalty, equivalent to several hundred Flops is 

incurred. This implies that if scalability to even 16 processors is to be achieved, the vector loop lengths 

would have to be 16 * 1000. For typical tetrahedral grids we encounter approximately 22 maximum 

vector-length groups, indicating that we would need at least 22 * 16 * 1000 = 352 000 edges to run 

efficiently. 

(b) Because the range of points in each group increases at least linearly with vector length, so do cache 
misses. This implies that even though one may gain parallelism, the individual processor performance 

would degrade. The end result is a very limited, non-scalable gain in performance. 
(c) Because the points in a split group access a large portion of the edge-array, different processors may be 

accessing the same cache-line. When a ‘dirty cache-line’ overwrite occurs, all processors must update this 
line, leading to a large increase of interprocessor communication, severe performance degradation and 
non-scalability. Experiments on an 8-processor SGI Power Challenge showed a maximum speed-up of 
only 1:2.5 when using this option. This limited speed-up was attributed, to a large extent, to cache-line 

overwrites. 
In view of these consequences, additional renumbering strategies have to be implemented. In the following, 

we discuss two edge-group agglomeration techniques that minimize cache misses, allow for pipelining on each 

processor, and avoid cache overwrite across processors. Both techniques operate on the premise that the points 
accessed within each parallel inner edge-loop (1600 loop) do not overlap. 

Before going on, we define edmin ( 1: npass) , edmax ( I : npass ) to be the minimum and maximum point 

accessed within each group, nproc the number of processors, and the point-range of each group ipass as 
[edminlipass), edmax(ipass)l. 



R. Liihner / Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109 99 

4.1. Local agglomeration 

The first way of achieving pipelining and parallelization is by processing, in parallel, nproc independent 

vector-groups whose individual point-range does not overlap. The idea is to renumber the edges in such a way 

that nproc groups are joined together where, for each one of these groups, the point ranges do not overlap (see 
Fig. 3). As each one of the sub-groups has the same number of edges, the load is balanced across the processors. 

The actual loop is given by 

Loop 3 
do 1400 impass=l,npass 

nedgO=edpas(ipass) +l 

nedgl=edpas(ipass+l) 

C 1 Parallelization directive 

c$doacross local(iedge,ipoil,ipoi2,redge) 

c$dir ivdep ! Pipelining directive 

do 1600 iedge=nedgO,nedgl 

ipoil=lnoed(l,iedge) 

ipoi2=lnoed(2,iedge) 

redge=geoed( iedge)*(unkno(ipoi2) -unkno(ipoil)) 

rhspo(ipoil)=rhspo(ipoil) +redge 

rhspo(ipoi2)=rhspo(ipoi2) -redge 

1600 continue 

1400 continue 

Note that the number of edges in each pass, i.e. the difference nedgl - nedgO + 1 is now nproc times as large 

as in the original Loop 2. As one can see, this type of renumbering entails no code modifications, making it very 

attractive for large production codes. However, a start-up cost is incurred whenever a loop across processors is 

launched. This would indicate that long vector-lengths should be favoured. However, cache-misses increase with 

vector-length, so that this strategy only yields a limited speed-up. This leads us to the second renumbering 

strategy. 

I * c 

NEDGE I 

Fully Pam:et 
Regmn 

t 
1 Proceaeor 
Regmn 

4 
Fig. 3. Point-range covered by each group of edges: 3-Processor machine; renumbering to minimize cache-misses and avoid memory 

contention. 
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4.2. Global agglomeration 

A second way of achieving pipelining and parallelization is by processing all the individual vector-groups in 
parallel at a higher level (see Fig. 4). In this way, short vector lengths can be kept and low start-up costs are 
achieved. As before, the point-range between macro-groups must not overlap. This renumbering of edges is 
similar to domain-splitting [ 1,4,17-191, but does not require an explicit message passing or actual identification 
of domains. Rather, all the operations are kept at the (algebraic) array level. The number of sub-groups, as well 
as the total number of edges to be processed in each macro-group, is not the same. However, the imbalance is 
small, and does not affect performance significantly. The actual loop is given by 

Loop 4 
do 1000 imacg=l,npasg,nproc 

imacO= imacg 

imacl=min(npasg,imacO+nproc-1) 

C 1 Parallelization directive 

c$doacross local(ipasg,ipass,npasO, 

cs& npasl,iedge,nedgO,nedgl, 

cs& ipoil,ipoi2,redge) 

do1200 ipasg=imacO,imacl 

npasO=edpag(ipasg) fl 

npasl=edpag(ipasg+l) 

do 1400 ipass=npasO,npasl 

nedgO=edpas(ipass) +l 

nedgl=edpas(ipass+l) 

c$dir ivdep ! Pipelining directive 

do 1600 iedge=nedgO,nedgl 

ipoil=lnoed(l,iedge) 

ipoi2=lnoed(2,iedge) 

redge=geoed( iedge) * (unkno(ipoi2)-unkno(ipoi1)) 

rhspo(ipoil)=rhspo(ipoil) +redge 

rhspo(ipoi2)=rhspo(ipoi2)-redge 

1600 continue 

1400 continue 

1200 continue 

1000 continue 

NPOIN 
1 

Fully Pan 

h 1Proc8rsc 
, Regvm 

Fig. 4. Point-range covered by each group of edges; 3-processor machine; renumbering to minimize cache-misses, Avoid memory 

contention and minimize start-up costs. 
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As one can see, this type of renumbering entails two outer loops, implying that a certain amount of code rewrite 
is required. On the other hand, the original code can easily be retrieved by setting edpag ( 1) =O , 
edpag ( 2 ) =npas , npasg=l for conventional uniprocessor machines. 

If the length of the cache-line is known, one may relax the restriction of non-overlapping point ranges to 
non-overlapping cache-line ranges. This allows for more flexibility, and leads to almost perfect load balance for 
all cases tested to date. 

A simple edge-renumbering scheme that we have found effective is the following multipass algorithm: 

S.l. 

s.2. 

Puss I: Agglomerate in groups of edges with point-range npoin / nproc, setting the maximum number of 
groups in each macro-group naggl to the number of groups obtained for the range 1: npoin / nproc ; 

Passes 2#: 
- For the remaining groups: determine the point-range; 
- Estimate the range of the first next macro-group from the point range and the number of processors; 
- Agglomerate the groups in this range to obtain the first next macro-group, and determine the number of 

groups for each macro-group in this pass naggl; 
- March though the remaining groups of edges, attempting to obtain macro-groups of length naggl. 

Although not optimal, this simple strategy yields balanced macro-groups, as can be seen from the examples 
below. Obviously, other renumbering or load balancing algorithms are possible, as evidenced by a large body of 
literature (see e.g. [ 1,4,17-191). 

5. Implementational issues 

For large-scale codes, having to re-write and test several hundred subroutines can be an onerous burden. To 
make matters worse, present compilers force the user to declare explicitly the local and shared variables. This is 
easily done for simple loops such as the one described above, but can become involved for the complex loops 
with many scalar temporaries that characterize advanced CFD schemes written for optimal cache reuse. We have 
found that in some cases, compilers may refuse to parallelize code that has all variables declared properly. A 
technique that has always worked, and that reduces the amount of variables to be declared, is to write 
sub-subroutines. For Loop 4, this translates into: 

Master Loop 4 
do 1000 imacg=l,npasg, proc 

imacO= imacg 

imacl=min(npasg,imacO+nproc-1) 

C ! Parallelization directive 

c$doacross local(ipasg) 

do 1200 ipasg=imacO,imacl 

call loop2p(ipasg) 

1200 continue 

1000 continue 

Loop 2p becomes a subroutine of the form: 

subroutine loop2p(ipasg) 

npasO=edpag(ipasg) +l 

npasi=edpag(ipasg+l) 

do 1400 ipass=npasO,npasl 

nedgO=edpas(ipass) +l 

nedgl=edpas(ipass+l) 

c$dir ivdep 

do 1600 iedge=nedgO,nedgl 

, Pipelining directive 
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ipoil=lnoed(l,iedge) 

ipoi2=lnoed(Z,iedge) 

redge=geoed( iedge)* (unkno(ipoiZ)-unkno(ipoi1)) 

rhspo(ipoil)=rhspo(ipoil) +redge 

rhspo(ipoi2)=rhspo(ipoi2) -redge 

1600 continue 

1400 continue 

6. Example timings 

The renumbering strategies described were coded into FEFL097, an adaptive, edge-based finite element code 
for the solution of compressible and incompressible flows [20]. The compressible solver incorporates, among 
other options, van Leer’s flux-vector and Roe’s flux-difference splitting techniques. The incompressible solver is 
based on a projection technique, implying that the bulk of the CPU time is spent in a Laplacian loop of precisely 
the type discussed above. The first two cases were run on an SGI Power Challenge with 6 R8000 processors, 4 
Mbytes of cache and 512 Mbytes of memory, whereas the third case was run on an SGI Origin 2000 system 
with 8 RlOOOO processors, 4 Mbytes of cache and 4 Gbytes of memory. 

6.1. F-117 

The surface mesh, as well as the (unconverged) solution after 50 timesteps are shown in Fig. 5(a,b). The mesh 
had approximately 280 Ktetra, 52 Kpts, 8.6 Kboundary points and 340 Kedges. After renumbering, the 

Mesh 

Pressure (Ma=0.65,50 Timesteps, VL, RK3/3) 

Fig. 5. F-l 17 (transonic). (a) Surface mesh; (b) pressure (Ma_ = 0.65). 
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Table 2 

ipasg npas0 npasl loop1 ipmin ipmax 

(a) F-l 17 problem on 2 processors 
1 1 
2 8706 
3 17411 
4 18937 
5 20463 
6 20761 
7 21059 

(b) F- 117 problem on 4 processors 
1 1 
2 3792 
3 7583 
4 11374 
5 15165 
6 16055 
7 16945 
8 17835 
9 18725 

10 19232 
11 19739 
12 20246 
13 20591 
14 20725 
17 20859 

(c) F-l 17 problem on 6 processors 
1 I 
2 2161 
3 4321 
4 6481 
5 8641 
6 10801 
7 12961 
8 13556 
9 14151 

10 14746 
II 15341 
12 15936 
13 16531 
14 17162 
15 17793 
16 18424 
17 19055 
18 19686 
19 20122 
20 20274 
21 20426 
22 20578 
25 20730 
26 20858 
27 20986 
31 21053 
37 21181 

8705 139280 1 23588 
17410 139280 23588 46686 
18936 24416 19980 27264 
20462 24416 45465 50160 
20760 4768 49486 50832 
21058 4767 SO875 51874 
21263 3280 50319 51320 

3791 60656 1 10704 
7582 60656 10709 23020 

11373 60656 23029 35623 
15164 60656 3563 I 46685 
16054 14240 8665 13101 
16944 14240 19470 25301 
17834 14240 32241 37526 
18724 14240 45458 48692 
19231 8112 19430 26447 
19738 8112 34507 48782 
20245 8112 48784 50727 
20590 5519 50729 51874 
20724 2144 22706 48803 
20858 2144 50168 51041 
21263 6480 47928 51226 

2160 34560 1 6282 

4320 34560 6413 13918 

6480 34560 14021 22627 
8640 34560 22668 31484 

10800 34560 31487 39596 

12960 34560 3975 1 46585 

13555 9520 4858 7897 

14150 9520 12696 17070 
14745 9520 20533 25686 
15340 9520 28369 33391 
15935 9520 3685 1 40814 
16530 9520 45325 47920 
17161 10096 6247 15424 
17792 10096 19030 24188 
18423 10096 27860 34282 
19054 10096 38363 48191 

19685 10096 48192 50496 
20121 6975 50497 51874 
20273 2432 12674 25973 
20425 2432 30955 34624 
20577 2432 47184 48525 
20729 2432 49873 50832 
20857 2048 22256 26268 
20985 2048 31320 48657 
21052 1072 50319 51007 
21180 2048 22573 48853 
21263 1328 47985 49065 

(d) F-l 17: Actual vs. optimal edge-allocation 

actual % optimal % loss % 

2 50.482 
4 26.934 
6 18.234 

(e) Timings for F-l 17 problem 

TlpTOC time (s) 

1 919 
2 485 
4 281 
6 220 

50.00 1.0 
25.00 7.7 
16.67 9.4 

CPU C.5) Speedup 

897.0 1.00 
942.5 1.89 

1087.5 3.27 
1235.1 4.17 
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maximum and average bandwidths were 3797 and 2510. The vector-loop length was set to 16, which was found 
to be sufficient for good performance on the SGI Power Challenge. The grouping of edges according to the 
number of processors is given in Table 2(a-c). The corresponding percentage of edges processed by the 

processor with the maximum number of edges, as well as the theoretical loss of performance due to imbalance 

(ratio of actual work carried out by this processor vs. the minimum possible work) is shown in Table 2(d). Table 

2(e) summarizes the clock time and total CPU time, as well as the speed-ups obtained for a run of 50 timesteps, 

including i/o, renumbering, etc. As one can see, the performance degrades with the number of processors. This 

is to be expected, as the increasing number of passes results in higher relative loop costs, and portions of the 

code (i/o, renumbering, indirect data structures, some residual sums, etc.) are still running in uni-processor 

mode. Given that the machine used only had 6 processors, timings obtained for the 6 processor case may be 

higher than expected. 

6.2. Sphere 

The surface mesh, as well as the solution after 50 timesteps are shown in Fig. 6(a,b). The mesh had 

approximately 332 Ktetra, 61 Kpts, 8.8 Kboundary points and 402 Kedges. After renumbering, the maximum 

and average bandwidths were 1993 and 1411. The vector-loop length was again set to 16. The grouping of edges 

according to the number of processors is given in Table 3(a-c). The corresponding percentage of edges 

processed by the processor with the highest number of edges, as well as the theoretical loss of performance due 

to imbalance is shown in Table 3(d). Table 3(e) summarizes the speed-ups obtained for a run of 50 timesteps, 

including i/o, renumbering, etc. Note that the speed-up is superlinear up to four processors. A convincing 

explanation of this phenomenon is still elusive, but we speculate on reduced cache-misses for the multiprocessor 

runs. As before, the machine used had a total of 6 processors, so that the timings for the 6 processor case have to 

be qualified. The bulk of the work for this incompressible flow case is performed in a Laplacian-like inner loop 

over edges, showing that the data structures discussed perform well. 

Mesh Pressure 

Fig. 6. Sphere (incompressible). (a) Surface mesh; (b) pressure 
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Table 3 

ipasg npas0 npasL loop1 ipmin ipmax 

(a) Sphere problem on 2 processors 

1 1 10753 
2 10754 21506 
3 21507 22282 
4 22283 23058 
5 23059 23937 
6 23938 24816 
7 24817 35118 

(b) Sphere problem on 4 processors 

1 1 5023 

2 5024 10046 

3 10047 15069 

4 15070 20092 

5 20093 21097 

6 21098 22102 

7 22103 23107 

8 23108 23940 

9 23941 24175 

10 24176 24410 

11 24411 24645 

13 24646 24773 

14 24774 24836 

17 24837 25118 

(c) Sphere problem on 6 processors 

1 1 3349 

2 3350 6698 

3 6699 10047 

4 10048 13396 

5 13397 16745 

6 16746 18797 

7 18798 19639 

8 19640 20481 

9 20482 21323 

10 21324 22165 

11 22166 23007 

12 23008 23094 

13 23095 23363 

14 23364 23632 

15 23633 23901 

16 23902 24001 

19 24002 24149 

20 24150 24297 

21 24298 24354 

25 24355 24482 

26 24483 24610 
31 24611 24738 

32 24739 24765 

37 24766 25118 

(d) Sphere: Actual vs. optimal edge-allocation 

172048 1 27373 
172048 27377 54935 

12416 25525 29268 
12416 53374 56594 
14064 55413 58529 
14062 58530 61039 
4832 57736 59207 

80368 1 13171 
80368 13172 26969 
80368 26970 40962 
80368 40964 54771 
16080 11892 28113 
16080 39029 55218 
16080 55219 58651 
13326 58654 61039 

3760 26232 28688 

3760 53705 55676 

3760 57869 59179 
2048 26788 55787 

1008 58484 59308 
4512 54486 56437 

53584 1 8960 
53584 8962 18476 
53584 18478 28352 

53584 28354 38356 
53584 38357 48329 
32832 48330 54935 

13472 7924 19449 

13472 26448 38468 

13472 46448 55065 
13472 55066 58148 

13472 58149 60703 

1390 60705 61039 

4304 17870 38498 
4304 53557 55636 
4304 57295 58737 

1600 60427 60914 
2368 36539 38829 
2368 54246 55940 

912 57991 58859 
2048 36906 39125 
2048 5465 1 56231 
2048 37201 39439 

432 54986 56291 
5648 37506 40314 

nproc actual % optimal % loss % 

2 50.60 I 
4 26.567 
6 20.770 

(e) Timings for sphere problem 

50.00 1.2 
25.00 6.2 
16.67 24.6 

nproc time (s) CPU (s) Speedup 

1 2259 2204.0 1.00 
2 1050 2043.2 2.15 
4 532 2065.0 4.25 
6 430 2493.3 5.25 
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ipasg min (loop1 1 

(a) Inlet problem on 2 processors 

l-2 237776 

3-4 71344 

5-6 21392 

7-8 6416 

9-10 1770 

II-12 112 

13-14 0 

max (loopl) 

231116 

11344 

21392 

6416 

1936 

1024 

576 

(b) Inlet problem on 4 processors 

l-4 118880 

5-8 35664 

9-12 10704 

13-16 3216 

17-20 266 

21-24 800 

25-28 0 

118880 

35664 

10704 

3216 

1024 

1024 

256 

(c) Inlet problem on 6 processors 

1-6 79248 

7-12 23176 

13-18 7136 

19-24 0 

25-30 1024 

31-36 0 

31-42 0 

79248 

23176 

7136 

2144 

1024 

1024 

336 

(d) Inlet problem on 8 processors 

l-8 59440 

9-16 17824 

17-24 5360 

25-32 650 

33-40 0 

41-48 0 

49-56 0 

59440 

17824 

5360 

1600 

1024 

1024 

288 

(e) Sphere: Actual vs. optimal edge-allocation 

nproc actual % optimal % loss % 

2 50.122 50.00 0.24 

4 25.140 25.00 0.56 

6 16.884 16.67 1.01 

8 12.143 12.50 1.94 

(4f): Speedups for inlet problem 

nproc Speedup (Shared) Speedup (PVM) 

2 1.81 1.83 

4 3.18 3.50 

6 4.3 1 5.10 
8 5.28 - 

6.3. Supersonic inlet 

The surface definition, as well as the solution after 800 timesteps are shown in Fig. 7(a,b). The mesh had 
approximately 540 Ktetra, 106 Kpts, 30 Kboundary points and 680 Kedges. After renumbering, the maximum 
and average bandwidths were 1057 and 468. The vector-loop length was again set to 16. Instead of showing 
detailed tables as before, only the minimum and maximum number of edges processed for each pass over the 
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Processors 
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Fig. 7. Inlet problem (supersonic). (a) Surface definition; (b) density; (c) speedups. 
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processors is given in Table 4(a-d). The corresponding percentage of edges processed by the first processor, as 
well as the theoretical loss of performance due to imbalance is shown in Table 4(e). As compared to the 
previous two examples, a near optimal load balance is achieved. Two reasons may be given for this 
improvement. First, this example was run with a newer version of the renumbering techniques. Second, the 
constraint of monotonicity in the range of points covered by each macro-group of edges was relaxed to a 
non-overlap at the cache-line level, which for the SGI Power Challenge is about 15 reals. Table 4(f) and Fig. 
7(c) summarize the speed-ups obtained for a run of 100 timesteps, including i/o, renumbering, etc. for an SGI 
Origin 2000 machine. Although this machine is not a true shared-memory machine, it exhibits very fast 
inter-processor transfer rates, making it possible to achieve reasonable speedups in shared memory mode. The 
same run was repeated using domain decomposition and message passing under PVM. Observe that although the 
PVM-run achieves better speedup, the shared memory run is still competitive. 

7. Conclusions 

Two renumbering strategies for field solvers based on unstructured grids that operate on shared-memory, 
cache-based parallel machines have been described. Special attention was given to the avoidance of cache-line 
overwrite, a hitherto not considered design requirement, which, if not taken into account, can lead to drastic 
performance degradation on this type of machine. Both renumbering techniques avoid cache-misses and 
cache-line overwrite while allowing pipelining, leading to optimal coding. While the first technique requires no 
code rewrite of the field solver, its scalability is expected to degrade for a large number of processors. The 
second technique requires a moderate rewrite of traditional field solvers, but offers the potential of near-linear 
scalability for a large number of processors and problem sizes. Numerical experiments indicate that with these 
renumbering techniques, the number of passes over the processors is always below the theoretical minimum 
number of passes one would require for maximum-length loops, which for tetrahedral meshes is 7. This implies 
that these techniques are also applicable to static memory machines like the CRAY-T90, reducing loop start-up 
costs and improving performance as compared to straightforward inner loop autotasking. As with any other 
technique, improvements and variations are possible. The techniques described will, however, work on any 
shared-memory, cache-based machine, and are in this sense general. 
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