
ELSEVIER Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109

Computer methods
in applied

mechanics and
engineerlng

Renumbering strategies for unstructured-grid solvers operating on
shared-memory, cache-based parallel machines

Rainald Lijhner
GMUICSI, The George Mason University, Fairfax, VA 22030-4444, USA

Received 30 July 1996; revised 18 June 1997

Abstract

Two renumbering strategies for field solvers based on unstructured grids that operate on shared-memory, cache-based parallel machines

are described. Special attention is paid to the avoidance of cache-line overwrite, which can lead to drastic performance degradation on this

type of machines. Both renumbering techniques avoid cache-misses and cache-line overwrite while allowing pipelining, leading to optimal

coding for this type of hardware. 0 1998 Elsevier Science S.A. All rights reserved.

1. Introduction

There can hardly be any doubt that the 1990s are the decade of parallelism. Even though machines with
several powerful vector-processors were installed at many places in the 198Os, the operating system or the

system administration hardly allowed for the use of several processors during the same run. Moreover, in many
instances the compilers were not mature, leading to meaningless gains in performance. With the advent of

massively parallel machines, i.e. machines in excess of 500 nodes, the exploitation of parallelism in solvers has
become a major focus of attention. According to Amdahl’s Law, the speed-up s obtained by parallelizing a

portion cx of all operations required is given by

where R,, R, denote the scalar and parallel processing rates (speeds), respectively. Table 1 shows the speed-ups

obtained for different percentages of parallelization and different numbers of processors.
Note that even on a traditional shared-memory, multiprocessor vector machine, such as the CRAY T-90 with

16 processors, the maximum achievable speed-up between scalar code and parallel vector code is a staggering
R,/R, = 240. What is important to note is that as we migrate to higher numbers of processors, only the

Table 1
Speed-ups obtainable (Amdahl’s Law)

VR, 50% 90% 99% 99.9%

10 1.81 5.26 9.17 9.91

100 1.98 9.90 50.25 90.99

1000 2.00 9.91 90.99 500.25

0045-7825/98/$19.00 0 1998 Elsevier Science S.A. All rights reserved
PII: SOO45-7825(98)00005-X

96 R. tihner I Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109

embarrassingly parallel codes will survive. Most of the applications ported successfully to parallel machines to
date have followed the Single Program Multiple Data (SPMD) paradigm. For grid-based solvers, a spatial
subdomain was stored and updated in each processor. For particle solvers, groups of particles were stored and

updated in each processor. For obvious reasons, load balancing [l-4] has been a major focus of activity.

Despite the striking successes reported to date, only the simplest of all solvers: explicit timestepping or

implicit iterative schemes, perhaps with multigrid added on, have been ported without major changes and/or

problems to massively parallel machines with distributed memory. Many code options that are essential for

realistic simulations are not easy to parallelize on this type of machine. Among these, we mention local

remeshing [5], repeated h-refinement, such as required for transient problems [6], contact detection and force

evaluation [7], some preconditioners [S], applications where particles, flow, and chemistry interact, and

applications with rapidly varying load imbalances. Even if 99% of all operations required by these codes can be
parallelized, the maximum achievable gain will be restricted to 1:lOO. If we accept as a fact that for most

large-scale codes we may not be able to parallelize more than 99% of all operations, the shared memory

paradigm, discarded for a while as non-scalable, will make a comeback. It is far easier to parallelize some of the

more complex algorithms, as well as cases with large load imbalance, on a shared memory machine. And it is

within present technological reach to achieve a 100 processor, shared memory machine. Such an alternative, i.e.

having less expensive RISC chips linked via shared memory, is currently being explored by a number of

vendors. One example of such machines is the SGI Power Challenge, which at the time of writing allows up to

18 processors to work in shared memory mode on a problem, with upgrades to 92 processors planned within the

next two years. In order to obtain proper performance from such a machine, the codes must be written in such a
way as to avoid:

(a) Cache-misses (in order to perform well on each processor);

(b) Cache overwrite (in order to perform well in parallel); and

(c) Memory contention (in order to allow pipelining).

Thus, although in principle a good compromise, shared memory, RISC-based parallel machines actually

require a fair degree of knowledge and reprogramming for codes to run optimally.

The present paper describes renumbering techniques for field solvers operating on unstructured grids that have

proven useful for machines of this kind. A summary of the remainder of the paper follows. Sections 2 and 3

recall some previously described renumbering techniques to minimize cache-misses and achieve pipelining.

Section 4 treats cache overwrite, a new, and previously not accounted-for design requirement for renumbering

strategies. In Section 5, implementational issues are considered. Section 6 reports several scalability studies

obtained on SGI Power Challenge and SGI Origin systems. Finally, some conclusions are drawn in Section 7.

2. Renumbering to avoid cache misses

Consider the following loop over edges that typifies the central loop of many field solvers based on

unstructured grids [9-141. Similar loops are obtained for element- or face-based solvers, and what follows is

equally applicable to them. A right-hand side (RHS), or residual, is formed at the edge-level by gathering

information from a vector of unknowns. This edge-RHS is then added to a global point-RHS. The operations are

shown schematically in Fig. 1, and a typical FORTRAN implementation would be the following:

Laop 1
do 1600 iedge=l,nedge

ipoil=lneod(l,iedge)

ipoi2=lnoed(2,iedge)

redge=geoed(iedge) * (unkno(ipoi2)-unkno tipoil))

rhspo(ipoil)=rhspoiipoil) +redge

rhspo(ipoi2)=rhspo(ipoi2) --edge

1600 continue

If cache-misses are a concern, then it is clear that the storage locations for the required point information stored

R. Liihner I Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109 97

0
geosd. redgs

0
ipoil ipoi2

c’ fispfi*
0
ipoil ipoi2

Fig. I. Information flow for edge-based loop.

in the arrays unkno and rhspo should be as close as possible in memory when required by an edge. At the
same time, as the loop progresses through the edges, the point information should be accessed as uniformly as
possible. This may be achieved by first renumbering the points using a bandwidth-minimization technique (e.g.
Reverse Cuthill and McKee [15], wavefront [16], recursive bisection), and subsequently renumbering the edges
according to the minimum point number on each edge [161. All of these algorithms are of complexity O(N) or at
most O(N log N), and are well worth the effort.

3. Avoidance of memory contention

Pipelining or vectorization offers the possibility of substantial performance gain on any kind of system. While
previously restricted to so-called vector machines, such as those manufactured by CRAY, Convex, NEC, Fujitsu
or Hitachi, the concept has migrated to current RISC chips, such as the MIPS R8000 and RlOOOO. For the latter
chip, so-called software pipelining is invoked by the compiler for certain optimization options. In order to
achieve pipelining or vectorization, memory contention issues must be avoided. The enforcement or pipelining
or vectorization is then carried out using a compiler directive, as Loop 1, which becomes an inner loop, still
offers the possibility of memory contention. In this case, we would have:

Loop 2
do 1400 ipass=l,npass

nedgO=edpas(ipass) +l

nedgl=edpas(ipass+I)

c$dir ivdep ! Pipelining directive

do 1600 iedge=nedgO,nedgl

ipoil=lnoed(l,iedge)

ipoi2=lnoed(2,iedge)

redge=geoed(iedge)*(unkno(ipoi2) -unkno(ipoil))

rhspo(ipoil)=rhspo(ipoil) +redge

rhspo(ipoi2)=rhspo(ipoi2) -redge

1600 continue

1400 continue

It is clear that in order to avoid memory contention, for each of the groups of edges (1600 loop), none of the

98 R. Liihner I Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109

Fig. 2. Point-range covered by each group of edges; l-Processor machine; renumbering to minimize cache-misses and avoid memory

contention.

corresponding points may be accessed more than once. Given that in order to achieve good pipelining

performance on current RISC-chips a relatively short vector length of 16 is sufficient, one can simply start from

the edge-renumbering obtained in order to minimize cache-misses, and renumber it further into groups of edges

that are 16 long and avoid memory contention [16]. As before, this renumbering is of complexity O(N). The

resulting loop is shown schematically in Fig. 2.

4. Cache line overwrite

The next stage is to port Loop 2 to a parallel, shared memory machine. If the loop is left untouched, the

auto-parallelizing compiler will simply split the inner loop across processors. It would then appear that
increasing the vector-length to a sufficiently large value would offer a satisfactory solution. However, this is not

advisable for the following reasons:

(a) Every time a parallel do- loop is launched, a start-up time penalty, equivalent to several hundred Flops is

incurred. This implies that if scalability to even 16 processors is to be achieved, the vector loop lengths

would have to be 16 * 1000. For typical tetrahedral grids we encounter approximately 22 maximum

vector-length groups, indicating that we would need at least 22 * 16 * 1000 = 352 000 edges to run

efficiently.

(b) Because the range of points in each group increases at least linearly with vector length, so do cache
misses. This implies that even though one may gain parallelism, the individual processor performance

would degrade. The end result is a very limited, non-scalable gain in performance.
(c) Because the points in a split group access a large portion of the edge-array, different processors may be

accessing the same cache-line. When a ‘dirty cache-line’ overwrite occurs, all processors must update this
line, leading to a large increase of interprocessor communication, severe performance degradation and
non-scalability. Experiments on an 8-processor SGI Power Challenge showed a maximum speed-up of
only 1:2.5 when using this option. This limited speed-up was attributed, to a large extent, to cache-line

overwrites.
In view of these consequences, additional renumbering strategies have to be implemented. In the following,

we discuss two edge-group agglomeration techniques that minimize cache misses, allow for pipelining on each

processor, and avoid cache overwrite across processors. Both techniques operate on the premise that the points
accessed within each parallel inner edge-loop (1600 loop) do not overlap.

Before going on, we define edmin (1: npass) , edmax (I : npass) to be the minimum and maximum point

accessed within each group, nproc the number of processors, and the point-range of each group ipass as
[edminlipass), edmax(ipass)l.

R. Liihner / Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109 99

4.1. Local agglomeration

The first way of achieving pipelining and parallelization is by processing, in parallel, nproc independent

vector-groups whose individual point-range does not overlap. The idea is to renumber the edges in such a way

that nproc groups are joined together where, for each one of these groups, the point ranges do not overlap (see
Fig. 3). As each one of the sub-groups has the same number of edges, the load is balanced across the processors.

The actual loop is given by

Loop 3
do 1400 impass=l,npass

nedgO=edpas(ipass) +l

nedgl=edpas(ipass+l)

C 1 Parallelization directive

c$doacross local(iedge,ipoil,ipoi2,redge)

c$dir ivdep ! Pipelining directive

do 1600 iedge=nedgO,nedgl

ipoil=lnoed(l,iedge)

ipoi2=lnoed(2,iedge)

redge=geoed(iedge)*(unkno(ipoi2) -unkno(ipoil))

rhspo(ipoil)=rhspo(ipoil) +redge

rhspo(ipoi2)=rhspo(ipoi2) -redge

1600 continue

1400 continue

Note that the number of edges in each pass, i.e. the difference nedgl - nedgO + 1 is now nproc times as large

as in the original Loop 2. As one can see, this type of renumbering entails no code modifications, making it very

attractive for large production codes. However, a start-up cost is incurred whenever a loop across processors is

launched. This would indicate that long vector-lengths should be favoured. However, cache-misses increase with

vector-length, so that this strategy only yields a limited speed-up. This leads us to the second renumbering

strategy.

I * c

NEDGE I

Fully Pam:et
Regmn

t
1 Proceaeor
Regmn

4
Fig. 3. Point-range covered by each group of edges: 3-Processor machine; renumbering to minimize cache-misses and avoid memory

contention.

100 R. tihner I Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109

4.2. Global agglomeration

A second way of achieving pipelining and parallelization is by processing all the individual vector-groups in
parallel at a higher level (see Fig. 4). In this way, short vector lengths can be kept and low start-up costs are
achieved. As before, the point-range between macro-groups must not overlap. This renumbering of edges is
similar to domain-splitting [1,4,17-191, but does not require an explicit message passing or actual identification
of domains. Rather, all the operations are kept at the (algebraic) array level. The number of sub-groups, as well
as the total number of edges to be processed in each macro-group, is not the same. However, the imbalance is
small, and does not affect performance significantly. The actual loop is given by

Loop 4
do 1000 imacg=l,npasg,nproc

imacO= imacg

imacl=min(npasg,imacO+nproc-1)

C 1 Parallelization directive

c$doacross local(ipasg,ipass,npasO,

cs& npasl,iedge,nedgO,nedgl,

cs& ipoil,ipoi2,redge)

do1200 ipasg=imacO,imacl

npasO=edpag(ipasg) fl

npasl=edpag(ipasg+l)

do 1400 ipass=npasO,npasl

nedgO=edpas(ipass) +l

nedgl=edpas(ipass+l)

c$dir ivdep ! Pipelining directive

do 1600 iedge=nedgO,nedgl

ipoil=lnoed(l,iedge)

ipoi2=lnoed(2,iedge)

redge=geoed(iedge) * (unkno(ipoi2)-unkno(ipoi1))

rhspo(ipoil)=rhspo(ipoil) +redge

rhspo(ipoi2)=rhspo(ipoi2)-redge

1600 continue

1400 continue

1200 continue

1000 continue

NPOIN
1

Fully Pan

h 1Proc8rsc
, Regvm

Fig. 4. Point-range covered by each group of edges; 3-processor machine; renumbering to minimize cache-misses, Avoid memory

contention and minimize start-up costs.

R. Liihner I Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109 101

As one can see, this type of renumbering entails two outer loops, implying that a certain amount of code rewrite
is required. On the other hand, the original code can easily be retrieved by setting edpag (1) =O ,
edpag (2) =npas , npasg=l for conventional uniprocessor machines.

If the length of the cache-line is known, one may relax the restriction of non-overlapping point ranges to
non-overlapping cache-line ranges. This allows for more flexibility, and leads to almost perfect load balance for
all cases tested to date.

A simple edge-renumbering scheme that we have found effective is the following multipass algorithm:

S.l.

s.2.

Puss I: Agglomerate in groups of edges with point-range npoin / nproc, setting the maximum number of
groups in each macro-group naggl to the number of groups obtained for the range 1: npoin / nproc ;

Passes 2#:
- For the remaining groups: determine the point-range;
- Estimate the range of the first next macro-group from the point range and the number of processors;
- Agglomerate the groups in this range to obtain the first next macro-group, and determine the number of

groups for each macro-group in this pass naggl;
- March though the remaining groups of edges, attempting to obtain macro-groups of length naggl.

Although not optimal, this simple strategy yields balanced macro-groups, as can be seen from the examples
below. Obviously, other renumbering or load balancing algorithms are possible, as evidenced by a large body of
literature (see e.g. [1,4,17-191).

5. Implementational issues

For large-scale codes, having to re-write and test several hundred subroutines can be an onerous burden. To
make matters worse, present compilers force the user to declare explicitly the local and shared variables. This is
easily done for simple loops such as the one described above, but can become involved for the complex loops
with many scalar temporaries that characterize advanced CFD schemes written for optimal cache reuse. We have
found that in some cases, compilers may refuse to parallelize code that has all variables declared properly. A
technique that has always worked, and that reduces the amount of variables to be declared, is to write
sub-subroutines. For Loop 4, this translates into:

Master Loop 4
do 1000 imacg=l,npasg, proc

imacO= imacg

imacl=min(npasg,imacO+nproc-1)

C ! Parallelization directive

c$doacross local(ipasg)

do 1200 ipasg=imacO,imacl

call loop2p(ipasg)

1200 continue

1000 continue

Loop 2p becomes a subroutine of the form:

subroutine loop2p(ipasg)

npasO=edpag(ipasg) +l

npasi=edpag(ipasg+l)

do 1400 ipass=npasO,npasl

nedgO=edpas(ipass) +l

nedgl=edpas(ipass+l)

c$dir ivdep

do 1600 iedge=nedgO,nedgl

, Pipelining directive

102 R. Liihner I Comput. Methods Appi. Mech. Engrg. 163 (1998) 95-109

ipoil=lnoed(l,iedge)

ipoi2=lnoed(Z,iedge)

redge=geoed(iedge)* (unkno(ipoiZ)-unkno(ipoi1))

rhspo(ipoil)=rhspo(ipoil) +redge

rhspo(ipoi2)=rhspo(ipoi2) -redge

1600 continue

1400 continue

6. Example timings

The renumbering strategies described were coded into FEFL097, an adaptive, edge-based finite element code
for the solution of compressible and incompressible flows [20]. The compressible solver incorporates, among
other options, van Leer’s flux-vector and Roe’s flux-difference splitting techniques. The incompressible solver is
based on a projection technique, implying that the bulk of the CPU time is spent in a Laplacian loop of precisely
the type discussed above. The first two cases were run on an SGI Power Challenge with 6 R8000 processors, 4
Mbytes of cache and 512 Mbytes of memory, whereas the third case was run on an SGI Origin 2000 system
with 8 RlOOOO processors, 4 Mbytes of cache and 4 Gbytes of memory.

6.1. F-117

The surface mesh, as well as the (unconverged) solution after 50 timesteps are shown in Fig. 5(a,b). The mesh
had approximately 280 Ktetra, 52 Kpts, 8.6 Kboundary points and 340 Kedges. After renumbering, the

Mesh

Pressure (Ma=0.65,50 Timesteps, VL, RK3/3)

Fig. 5. F-l 17 (transonic). (a) Surface mesh; (b) pressure (Ma_ = 0.65).

R. Liihner I Comput. Methods Appi. Mech. Engrg. 163 (1998) 95-109 103

Table 2

ipasg npas0 npasl loop1 ipmin ipmax

(a) F-l 17 problem on 2 processors
1 1
2 8706
3 17411
4 18937
5 20463
6 20761
7 21059

(b) F- 117 problem on 4 processors
1 1
2 3792
3 7583
4 11374
5 15165
6 16055
7 16945
8 17835
9 18725

10 19232
11 19739
12 20246
13 20591
14 20725
17 20859

(c) F-l 17 problem on 6 processors
1 I
2 2161
3 4321
4 6481
5 8641
6 10801
7 12961
8 13556
9 14151

10 14746
II 15341
12 15936
13 16531
14 17162
15 17793
16 18424
17 19055
18 19686
19 20122
20 20274
21 20426
22 20578
25 20730
26 20858
27 20986
31 21053
37 21181

8705 139280 1 23588
17410 139280 23588 46686
18936 24416 19980 27264
20462 24416 45465 50160
20760 4768 49486 50832
21058 4767 SO875 51874
21263 3280 50319 51320

3791 60656 1 10704
7582 60656 10709 23020

11373 60656 23029 35623
15164 60656 3563 I 46685
16054 14240 8665 13101
16944 14240 19470 25301
17834 14240 32241 37526
18724 14240 45458 48692
19231 8112 19430 26447
19738 8112 34507 48782
20245 8112 48784 50727
20590 5519 50729 51874
20724 2144 22706 48803
20858 2144 50168 51041
21263 6480 47928 51226

2160 34560 1 6282

4320 34560 6413 13918

6480 34560 14021 22627
8640 34560 22668 31484

10800 34560 31487 39596

12960 34560 3975 1 46585

13555 9520 4858 7897

14150 9520 12696 17070
14745 9520 20533 25686
15340 9520 28369 33391
15935 9520 3685 1 40814
16530 9520 45325 47920
17161 10096 6247 15424
17792 10096 19030 24188
18423 10096 27860 34282
19054 10096 38363 48191

19685 10096 48192 50496
20121 6975 50497 51874
20273 2432 12674 25973
20425 2432 30955 34624
20577 2432 47184 48525
20729 2432 49873 50832
20857 2048 22256 26268
20985 2048 31320 48657
21052 1072 50319 51007
21180 2048 22573 48853
21263 1328 47985 49065

(d) F-l 17: Actual vs. optimal edge-allocation

actual % optimal % loss %

2 50.482
4 26.934
6 18.234

(e) Timings for F-l 17 problem

TlpTOC time (s)

1 919
2 485
4 281
6 220

50.00 1.0
25.00 7.7
16.67 9.4

CPU C.5) Speedup

897.0 1.00
942.5 1.89

1087.5 3.27
1235.1 4.17

104 R. Ldhner I Comput. Methods Appl. Mech. Engrg. 163 (1998) 95- 109

maximum and average bandwidths were 3797 and 2510. The vector-loop length was set to 16, which was found
to be sufficient for good performance on the SGI Power Challenge. The grouping of edges according to the
number of processors is given in Table 2(a-c). The corresponding percentage of edges processed by the

processor with the maximum number of edges, as well as the theoretical loss of performance due to imbalance

(ratio of actual work carried out by this processor vs. the minimum possible work) is shown in Table 2(d). Table

2(e) summarizes the clock time and total CPU time, as well as the speed-ups obtained for a run of 50 timesteps,

including i/o, renumbering, etc. As one can see, the performance degrades with the number of processors. This

is to be expected, as the increasing number of passes results in higher relative loop costs, and portions of the

code (i/o, renumbering, indirect data structures, some residual sums, etc.) are still running in uni-processor

mode. Given that the machine used only had 6 processors, timings obtained for the 6 processor case may be

higher than expected.

6.2. Sphere

The surface mesh, as well as the solution after 50 timesteps are shown in Fig. 6(a,b). The mesh had

approximately 332 Ktetra, 61 Kpts, 8.8 Kboundary points and 402 Kedges. After renumbering, the maximum

and average bandwidths were 1993 and 1411. The vector-loop length was again set to 16. The grouping of edges

according to the number of processors is given in Table 3(a-c). The corresponding percentage of edges

processed by the processor with the highest number of edges, as well as the theoretical loss of performance due

to imbalance is shown in Table 3(d). Table 3(e) summarizes the speed-ups obtained for a run of 50 timesteps,

including i/o, renumbering, etc. Note that the speed-up is superlinear up to four processors. A convincing

explanation of this phenomenon is still elusive, but we speculate on reduced cache-misses for the multiprocessor

runs. As before, the machine used had a total of 6 processors, so that the timings for the 6 processor case have to

be qualified. The bulk of the work for this incompressible flow case is performed in a Laplacian-like inner loop

over edges, showing that the data structures discussed perform well.

Mesh Pressure

Fig. 6. Sphere (incompressible). (a) Surface mesh; (b) pressure

R. Liihner I Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109 10.5

Table 3

ipasg npas0 npasL loop1 ipmin ipmax

(a) Sphere problem on 2 processors

1 1 10753
2 10754 21506
3 21507 22282
4 22283 23058
5 23059 23937
6 23938 24816
7 24817 35118

(b) Sphere problem on 4 processors

1 1 5023

2 5024 10046

3 10047 15069

4 15070 20092

5 20093 21097

6 21098 22102

7 22103 23107

8 23108 23940

9 23941 24175

10 24176 24410

11 24411 24645

13 24646 24773

14 24774 24836

17 24837 25118

(c) Sphere problem on 6 processors

1 1 3349

2 3350 6698

3 6699 10047

4 10048 13396

5 13397 16745

6 16746 18797

7 18798 19639

8 19640 20481

9 20482 21323

10 21324 22165

11 22166 23007

12 23008 23094

13 23095 23363

14 23364 23632

15 23633 23901

16 23902 24001

19 24002 24149

20 24150 24297

21 24298 24354

25 24355 24482

26 24483 24610
31 24611 24738

32 24739 24765

37 24766 25118

(d) Sphere: Actual vs. optimal edge-allocation

172048 1 27373
172048 27377 54935

12416 25525 29268
12416 53374 56594
14064 55413 58529
14062 58530 61039
4832 57736 59207

80368 1 13171
80368 13172 26969
80368 26970 40962
80368 40964 54771
16080 11892 28113
16080 39029 55218
16080 55219 58651
13326 58654 61039

3760 26232 28688

3760 53705 55676

3760 57869 59179
2048 26788 55787

1008 58484 59308
4512 54486 56437

53584 1 8960
53584 8962 18476
53584 18478 28352

53584 28354 38356
53584 38357 48329
32832 48330 54935

13472 7924 19449

13472 26448 38468

13472 46448 55065
13472 55066 58148

13472 58149 60703

1390 60705 61039

4304 17870 38498
4304 53557 55636
4304 57295 58737

1600 60427 60914
2368 36539 38829
2368 54246 55940

912 57991 58859
2048 36906 39125
2048 5465 1 56231
2048 37201 39439

432 54986 56291
5648 37506 40314

nproc actual % optimal % loss %

2 50.60 I
4 26.567
6 20.770

(e) Timings for sphere problem

50.00 1.2
25.00 6.2
16.67 24.6

nproc time (s) CPU (s) Speedup

1 2259 2204.0 1.00
2 1050 2043.2 2.15
4 532 2065.0 4.25
6 430 2493.3 5.25

106

Table 4

R. tihner I Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109

ipasg min (loop1 1

(a) Inlet problem on 2 processors

l-2 237776

3-4 71344

5-6 21392

7-8 6416

9-10 1770

II-12 112

13-14 0

max (loopl)

231116

11344

21392

6416

1936

1024

576

(b) Inlet problem on 4 processors

l-4 118880

5-8 35664

9-12 10704

13-16 3216

17-20 266

21-24 800

25-28 0

118880

35664

10704

3216

1024

1024

256

(c) Inlet problem on 6 processors

1-6 79248

7-12 23176

13-18 7136

19-24 0

25-30 1024

31-36 0

31-42 0

79248

23176

7136

2144

1024

1024

336

(d) Inlet problem on 8 processors

l-8 59440

9-16 17824

17-24 5360

25-32 650

33-40 0

41-48 0

49-56 0

59440

17824

5360

1600

1024

1024

288

(e) Sphere: Actual vs. optimal edge-allocation

nproc actual % optimal % loss %

2 50.122 50.00 0.24

4 25.140 25.00 0.56

6 16.884 16.67 1.01

8 12.143 12.50 1.94

(4f): Speedups for inlet problem

nproc Speedup (Shared) Speedup (PVM)

2 1.81 1.83

4 3.18 3.50

6 4.3 1 5.10
8 5.28 -

6.3. Supersonic inlet

The surface definition, as well as the solution after 800 timesteps are shown in Fig. 7(a,b). The mesh had
approximately 540 Ktetra, 106 Kpts, 30 Kboundary points and 680 Kedges. After renumbering, the maximum
and average bandwidths were 1057 and 468. The vector-loop length was again set to 16. Instead of showing
detailed tables as before, only the minimum and maximum number of edges processed for each pass over the

R. L6hner / Comput. Methods Appl. Mech. Engrg. 163 (1998) 95 IO9

Surface Ddinltion

Density

FEFL097 11111 Shared Memory

Distributed Memory (PVM)

NELEN=542895 : i : : ,
NPOIN=106285
NBouN= 30094
NTIME= 100
NSTAG= 3
NITER= 3
NRIEN= 2
NLIMI= 2
CLAPI= 0.1
coumm 1.0
MACH = 3.0

._______L________L________’ L. _____- !M ._______L________’ ______-_L------ L.

8

Processors

107

Fig. 7. Inlet problem (supersonic). (a) Surface definition; (b) density; (c) speedups.

108 R. LShner I Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109

processors is given in Table 4(a-d). The corresponding percentage of edges processed by the first processor, as
well as the theoretical loss of performance due to imbalance is shown in Table 4(e). As compared to the
previous two examples, a near optimal load balance is achieved. Two reasons may be given for this
improvement. First, this example was run with a newer version of the renumbering techniques. Second, the
constraint of monotonicity in the range of points covered by each macro-group of edges was relaxed to a
non-overlap at the cache-line level, which for the SGI Power Challenge is about 15 reals. Table 4(f) and Fig.
7(c) summarize the speed-ups obtained for a run of 100 timesteps, including i/o, renumbering, etc. for an SGI
Origin 2000 machine. Although this machine is not a true shared-memory machine, it exhibits very fast
inter-processor transfer rates, making it possible to achieve reasonable speedups in shared memory mode. The
same run was repeated using domain decomposition and message passing under PVM. Observe that although the
PVM-run achieves better speedup, the shared memory run is still competitive.

7. Conclusions

Two renumbering strategies for field solvers based on unstructured grids that operate on shared-memory,
cache-based parallel machines have been described. Special attention was given to the avoidance of cache-line
overwrite, a hitherto not considered design requirement, which, if not taken into account, can lead to drastic
performance degradation on this type of machine. Both renumbering techniques avoid cache-misses and
cache-line overwrite while allowing pipelining, leading to optimal coding. While the first technique requires no
code rewrite of the field solver, its scalability is expected to degrade for a large number of processors. The
second technique requires a moderate rewrite of traditional field solvers, but offers the potential of near-linear
scalability for a large number of processors and problem sizes. Numerical experiments indicate that with these
renumbering techniques, the number of passes over the processors is always below the theoretical minimum
number of passes one would require for maximum-length loops, which for tetrahedral meshes is 7. This implies
that these techniques are also applicable to static memory machines like the CRAY-T90, reducing loop start-up
costs and improving performance as compared to straightforward inner loop autotasking. As with any other
technique, improvements and variations are possible. The techniques described will, however, work on any
shared-memory, cache-based machine, and are in this sense general.

Acknowledgments

This work was partially supported by AFOSR, with Dr. Leonidas Sake11 as the technical monitor. The author
would also like to acknowledge the many fruitful discussions with Drs. Jan Clinkemaille (ES1 Group, Paris,
France), Jeffrey D. McDonald (SGI, Mountain View, CA), Jack Perry (SGI, Boston, MA), as well as Wayne
Odachowsky (SGI, Bethesda, MD), who was instrumental in coordinating the collaboration that led to the
techniques discussed.

References

[I] D. Williams, Performance of dynamic load balancing algorithms for unstructured grid calculations, CalTech Rep. C3P913 (1990).

[2] H. Simon, Partitioning of unstructured problems for parallel processing, NASA Ames Tech. Rep. RNR-91-008 (1991).

131 P. Mehrota, J. Saltz and R. Voigt, eds., Unstructured Scientific Computation on Scalable Multiprocessors (MIT Press, 1992).

[4] A. Vidwans, Y. Kallinderis and V Venkatakrishnan, A parallel load balancing algorithm for 3-D adaptive unstructured grids,

AIAA-93-3313CP (1993).

[5] R. Lohner, Three-dimensional fluid-structure interaction using a finite element solver and adaptive remeshing, Computer Syst. Engrg.

(2-4) (1990) 257-272.

[6] R. Lohner and J.D. Baum, Adaptive H-refinement on 3-D unstructured grids for transient problems, Int. J. Numer. Methods Fluids 14

(1992) 1407-1419.

[7] E. Haug, H. Charlier, J. Clinckemaillie, E. DiPasquale, 0. Fort, D. Lasry, G. Milcent, X. Ni, A.K. Pickett and R. Hoffmann, Recent

trends and developments of crashworthiness simulation methodologies and their integration into the industrial vehicle design cycle,

Proc. Third European Cars/Trucks Simulation Symposium (ASIMUTH), Oct. 28-30, 1991.

R. LShner I Comput. Methods Appl. Mech. Engrg. J63 (1998) 95-109 109

[8] R. Ramamurti and R. Lohner, Simulation of flow past complex geometries using a parallel implicit incompressible flow solver, Proc.

1 lth AIAA CFD Conf., Orlando, FL (July 1993) 1049, 1050.

[9] T. Barth, A 3-D Upwind Euler solver for unstructured meshes, AIAA-91-1548CP, 1991.

[IO] D. Mavriplis, Three-dimensional unstructured multigrid for the Euler equations, AIAA -91.1549.CP (1991).

[I l] A. Jameson, The AIRPLANE Code, Private communication, January 1992.

[12] J. Peraire, J. Peiro and K. Morgan, A three-dimensional finite element multigrid solver for the Euler equations, AIAA-92-0449 (1992).

[131 H. Luo, J.D. Baum, R. Lohner and J. Cabello, Adaptive edge-based finite element schemes for the Euler and Navier-Stokes equations,

AIAAA-93-0336 (1993).

[14] N.P. Weatherill, 0. Hassan and D.L. Marcum, Calculation of steady compressible flowfields with the finite element method,

AIAA-93-0341 (1993).

[15] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, Proc. ACM Nat. Conf., New York (1969) 157-172.

[16] R. Lohner, Some useful renumbering strategies for unstructured grids, Int. J. Numer. Methods Engrg. 36 (1993) 3259-3270.

[171 N. Satofuka, J. Periaux and A. Ecer, eds., Parallel Computational Fluid Dynamics (North-Holland, 1995).

[18] V Venkatakrishnan, H.D. Simon and T.J. Barth, A MIMD implementation of a parallel Euler solver for unstructured grids, NASA

Ames Tech. Rep. RNR-91-024 (1991).

[19] R. Lohner and R. Ramamurti, A load balancing algorithm for unstructured grids, Comput. Fluid Dyn. 5 (1995) 39-58.

[20] R. Lohner, FEFL097 Theoretical Manual; GMU-CSI-CFD Lab. Report, 1996.

